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Abstract In this paper, we study some properties of dual Toeplitz operators on the orthog-

onal complement of Bergman space of the unit ball. We first completely characterize the

boundedness and compactness of dual Toeplitz operators. Then we obtain spectral properties

of dual Toeplitz operators. Finally, we show that there are no quasinormal dual Toeplitz

operators with bounded holomorphic or anti-holomorphic symbols.
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1. Introduction

For a fixed integer n, let Bn denote the unit ball in Cn. The Bergman space A2(Bn) is

the Hilbert space of holomorphic functions on the unit ball Bn that are square integrable with

respect to normalized volume measure dV .

The reproducing kernel on A2(Bn) is given by

Kw(z) =
1

(1 − 〈z, w〉)n+1
,

where z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Bn and 〈z, w〉 = z1w1 + · · ·+ znwn. If 〈·, ·〉2 denotes

the inner product in L2(Bn, dV ), then 〈h,Kw〉2 = h(w), for every h ∈ A2(Bn) and w ∈ Bn.

Let P be the Bergman orthogonal projection from L2(Bn, dV ) onto A2(Bn, dV ), which is

given by

(Pg)(w) = 〈g,Kw〉2 =

∫

Bn

g(z)
1

(1− 〈w, z〉)n+1
dV (z),

for every g ∈ L2(Bn) and w ∈ Bn. In this paper, we use ‖ · ‖ to denote the norm in L2(Bn, dV ).

Given f ∈ L∞(Bn, dV ), the Toeplitz operator Tf is defined by

Tf(h)(w) = P (fh)(w) =

∫

Bn

f(z)h(z)

(1 − 〈w, z〉)n+1
dV (z),
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for h ∈ A2(Bn) and w ∈ Bn. The dual Toeplitz operator Sf with symbol f is defined by

Sfu = (I − P )(fu)

for u ∈ (A2(Bn))
⊥. It is clear that Sf : (A2(Bn))

⊥ → (A2(Bn))
⊥ is a bounded linear operator.

In what follows, let Q denote I − P .

Although dual Toeplitz operators differ in many ways from Toeplitz operators, they do

have some of the same properties. The purpose of this paper is to study some properties of dual

Toeplitz operators on the Bergman space of the unit ball. Our results for dual Toeplitz operators

may offer some insight into the study of similar questions for Toeplitz operators on the Bergman

space. The reader can obtain corresponding details about dual Toeplitz operators in [1–7].

There is a natural and fundamental question: What is the relationship between the prop-

erties of an operator and its symbol? We shall recall some classical results. Brown and Halmos

[8] showed that the only compact Toeplitz operator on the Hardy space is the zero operator and

a Toeplitz operator is bounded on the Hardy space if and only if its symbol is bounded. This is

false for Toeplitz operators on the Bergman space. Axler and Zheng [9] completely characterized

compact Toeplitz operators on the Bergman space. Le [10] obtained that if the symbol of a

Toeplitz operator is continuous on the closed unit ball, then the Toeplitz operator is compact if

and only if its symbol is zero on the unit sphere. A characterization of compact dual Toeplitz

operators on the orthogonal complement of Bergman space has been obtained by Karel Stroethoff

and Zheng in [11]. In Section 3, we continue to investigate the boundedness and compactness of

dual Toeplitz operators on the Bergman space of the unit ball.

The symbol map on the Toeplitz algebra in the Hardy space has been an important tool in

the study of Fredholm properties of Toeplitz operators and the structure of the Toeplitz algebra

[12,Chapter 7]. Analogous to the symbol map in the classical Hardy space setting, in Section

4, we obtained the symbol map on the Bergman space of the unit ball. As an application of

our symbol map we obtain a necessary condition on symbols of a finite number of dual Toeplitz

operators whose product is the zero operator.

The spectral properties of dual Toeplitz operators on the orthogonal complement of the

Bergman space have been introduced and well elaborated by Karel Stroethoff and Zheng [11].

Further investigations from a spectral point of view has been done by Guediri [13]. In Section

5, we mainly study the spectral properties of dual Toeplitz operators on the higher dimensional

space. In addition, we obtain a necessary and sufficient condition for the inverse of a dual Toeplitz

operator to be a dual Toeplitz operator.

In the final section of the paper we discuss quasinormal dual Toeplitz operator on the

orthogonal complement of Bergman space of the unit ball. We use the operator Lw to prove that

there are no quasinormal dual Toeplitz operators with bounded holomorphic or anti-holomorphic

symbols. The purpose we defined quasinormal Toeplitz operator was to answer an open question

whether every subnormal Toeplitz operator is either normal or analytic on the Hardy space. The

original problem was reduced to whether every quasinormal Toeplitz operator is either normal

or analytic, it was completely solved by the authors in [14]. Guediri [13] showed that there are
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no quasinormal dual Toeplitz operators with bounded analytic or co-analytic symbols on the

Bergman space. The reader can obtain more corresponding details in [15–18].

2. Preliminaries

Both Toeplitz operators and dual Toeplitz operators are closely related to Hankel operators.

For a bounded measurable function f on Bn, the Hankel operator Hf is the operator A2(Bn) →

(A2(Bn))
⊥ defined by

Hfh = (I − P )(fh) = Q(fh), h ∈ A2(Bn).

Under the decomposition L2(Bn) = A2(Bn)⊕(A2(Bn))
⊥, for f ∈ L∞(Bn, dV ), the multiplication

operator Mf is represented as

Mf =

[

Tf H∗
f

Hf Sf

]

.

The identity Mfg =MfMg implies the following basic relations between those operators:

Tfg = TfTg +H∗
f
Hg, (1)

Sfg = SfSg +HfH
∗
g , (2)

Hfg = HfTg + SfHg. (3)

Lemma 2.1 If f and g are in L∞(Bn, dV ), α and β are in C, then

S∗
f = Sf , Sαf+βg = αSf + βSg.

If f is a bounded holomorphic function on Bn and g is a bounded measurable function on

Bn, then the following identities hold:

Sfg = SfSg, Sgf = SgSf , (4)

SfHg = HgTf , H∗
gSf = TfH

∗
g . (5)

Lu and Yang characterized the following condition for the product of two dual Toeplitz

operators to be a dual Toeplitz operator [19,Theorem 3.3].

Lemma 2.2 If f and g are in L∞(Bn, dV ), then SfSg is a dual Toeplitz operator if and only

if f is holomorphic on Bn or g is anti-holomorphic on Bn, in which case SfSg = Sfg.

Suppose f and g are in L2(Bn). Consider the operator f ⊗ g defined by

(f ⊗ g)h = 〈h, g〉2f

for h ∈ L2(Bn). We also have

A(f ⊗ g)B∗ = (Af)⊗ (Bg),

where A and B are bounded linear operators.

For any multi-index α = (α1, . . . , αn) ∈ Nn, where N denote the set of all non-negative

integers, we write

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!
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and

zα = zα1
1 · · · zαn

n , z = (z1, . . . , zn) ∈ C
n.

For i ∈ N, we have

〈z, w〉i =
∑

|γ|=i

i!

γ!
zγwγ .

By the binomial rule, we obtain

K−1
w (z) = (1− 〈z, w〉)n+1 =

n+1
∑

i=0

(n+ 1)!

i!(n+ 1− i)!
(−1)i〈z, w〉i

=

n+1
∑

i=0

∑

|γ|=i

(−1)i(n+ 1)!

i!(n+ 1− i)!

i!

γ!
zγwγ

=

n+1
∑

i=0

∑

|γ|=i

λi,γz
γwγ , where λi,γ =

(−1)i(n+ 1)!

(n+ 1− i)!γ!
.

Using the reproducing property of Kw, we have

‖Kw‖
2 = 〈Kw,Kw〉2 = Kw(w) =

1

(1− |w|2)n+1
,

thus the normalized reproducing kernel is given by

kw(z) =
(1− |w|2)

n+1
2

(1− 〈z, w〉)n+1
.

Let w ∈ Bn − {0}. Automorphism ϕw is defined by

ϕw(z) =
w − Pw(z)−

√

1− |w|2Qw(z)

1− 〈z, w〉
,

where Pw is the orthogonal projection from Cn onto the one dimensional subspace [w] generated

by w, and Qw is the orthogonal projection from Cn onto Cn⊖ [w]. When w = 0, we simply define

ϕw(z) = −z. The reader can get more details about automorphism ϕw in [20]. Define an operator

Uw on A2(Bn) by Uwh = (h◦ϕw)kw , h ∈ A2(Bn). Then Uw is unitary. Furthermore, Tf◦ϕw
Uw =

UwTf . We have the following fact about the normalized reproducing kernel [19, Lemma 2.3].

Proposition 2.3 For all w ∈ Bn, we have

kw ⊗ kw =
n+1
∑

i=0

∑

|γ|=i

λi,γTϕγ
w
Tϕw

γ .

For a bounded linear operator T on (A2(Bn))
⊥ and w ∈ Bn, we define the operator Lw(T )

by

Lw(T ) =
n+1
∑

i=0

∑

|γ|=i

λi,γSϕγ
w
TSϕw

γ .

The operator Lw(T ) gives rise to an interesting characterization of dual Toeplitz operators on

the orthogonal complement of the Bergman space of the unit ball.
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Proposition 2.4 Let Sf be a dual Toeplitz operator on (A2(Bn))
⊥, for f ∈ L∞(Bn). Then

Lw(Sf ) = S f

‖Kϕw ‖2
, for all w ∈ Bn.

Proof Fix w ∈ Bn, we have

Lw(Sf ) =
n+1
∑

i=0

∑

|γ|=i

λi,γSϕγ
w
SfSϕw

γ =

n+1
∑

i=0

∑

|γ|=i

λi,γS|ϕγ
w|2f = Sψ ,

where

ψ(z) = f(z)

n+1
∑

i=0

∑

|γ|=i

λi,γ |ϕ
γ
w(z)|

2

= f(z)(1− 〈ϕw(z), ϕw(z)〉)
n+1 =

f(z)

‖Kϕw(z)‖2
. �

We also have the relationship between the operator Lw(T ) and Hankel operators. It can be

obtained by (5) and Proposition 2.3.

Proposition 2.5 Let f and g be in L∞(Bn). Then we have

Lw(HfH
∗
g ) = (Hfkw)⊗ (Hgkw).

3. Bounded and compact dual Toeplitz operators

In this section, we will characterize the bounded and compact dual Toeplitz operators. The

dual Toeplitz operator Sf is densely defined by the formula Sfh = Q(fh), where f is in L2(Bn)

and h is in A2(Bn)
⋂

L∞(Bn). For w ∈ Bn and 0 < s < 1 − |w|, let gw,s be the function on Bn

defined by gw,s = (z1 − w1)χw+sBn
(z), for z ∈ Bn. For any multi-index α ∈ Nn, we have

∫

Bn

zαgw,sdV (z) =

∫

sBn

(z + w)αz1dV (z) = 0.

Thus gw,s ∈ (A2(Bn))
⊥ and (z1 − w1)gw,s ∈ (A2(Bn))

⊥. Let uw,s =
gw,s

‖gw,s‖
. The function uw,s

is the unit vector in the space (A2(Bn))
⊥.

Lemma 3.1 The function uw,s → 0 weakly in (A2(Bn))
⊥, as s→ 0+.

Proof Let ψ ∈ L2(Bn, dV ). The Cauchy-Schwarz inequality gives

|〈ψ, gw,s〉2| =
∣

∣

∣

∫

w+sBn

ψ(z)gw,s(z)dV (z)
∣

∣

∣
≤ ‖gw,s‖

(

∫

w+sBn

|ψ(z)|2dV (z)
)

1
2

,

so that

|〈ψ, uw,s〉2| ≤
(

∫

w+sBn

|ψ(z)|2dV (z)
)

1
2

.

Thus uw,s → 0 weakly in L2(Bn, dV ) as s→ 0+, which gives the stated result, since (A2(Bn))
⊥ ⊂

L2(Bn, dV ). �

Lemma 3.2 Let f ∈ L2(Bn, dV ). For each w ∈ Bn, lims→0+ ‖H∗
f
uw,s‖ = 0.
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Proof Fix w ∈ Bn. For each z ∈ Bn we have

|H∗
f
uw,s(z)| =

∣

∣

∣

∫

Bn

f(λ)uw,s(λ)Kz(λ)dV (λ)
∣

∣

∣

≤ ‖uw,s‖
(

∫

w+sBn

|f(λ)Kz(λ)|
2dV (λ)

)
1
2

=
(

∫

w+sBn

|f(λ)Kz(λ)|
2dV (λ)

)
1
2

.

Integrating with respect to z gives

‖H∗
f
uw,s(z)‖

2 =
∣

∣

∣

∫

Bn

|H∗
f
uw,s(z)|

2dV (z)
∣

∣

∣

≤

∫

w+sBn

|f(λ)|2
{

∫

Bn

|Kz(λ)|
2dV (z)

}

dV (λ).

Using
∫

Bn
|Kz(λ)|2dV (z) =

∫

Bn
|Kλ(z)|2dV (z) = 〈Kλ(z),Kλ(z)〉2 = 1

(1−|λ|2)n+1 , we get

‖H∗
f
uw,s(z)‖

2 ≤

∫

w+sBn

|f(λ)|2

(1 − |λ|2)n+1
dV (λ)

≤
1

(1− (|w|+ s))n+1

∫

w+sBn

|f(λ)|2dV (λ).

Since
∫

w+sBn
|f(λ)|2dV (λ) → 0 as s→ 0+, we can obtain the stated result. �

Lemma 3.3 Let f ∈ L2(Bn, dV ). For a.e. w ∈ Bn, |f(w)| = lims→0+ ‖Sfuw,s‖.

Proof Note that Mfu = Sfu+H∗
f
u, and Sfu⊥H∗

f
u for every bounded u ∈ (A2(Bn))

⊥. Thus

‖Mfu‖
2 = ‖Sfu‖

2 + ‖H∗
f
u‖2.

Taking u = uw,s in the above equality, by Lemma 3.2 we have

lim
s→0+

‖Mfuw,s‖
2 = lim

s→0+
‖Sfuw,s‖

2.

We claim that

lim
s→0+

‖Mfuw,s‖
2 = lim

s→0+

∫

|z−w|<s
|f(z)|2|z1 − w1|2dV (z)

∫

|z−w|<s
|z1 − w1|2dV (z)

= |f(w)|2,

for a.e. w ∈ Bn. Clearly this claim will prove the stated result. Using the fact that
∫

|z−w|<s

|z1 − w1|
2dV (z) = s2n+2

∫

Bn

|z1|
2dV (z) =

s2n+2

n+ 1

and

V (B(w, s)) =

∫

|z−w|<s

dV (z) = s2n
∫

Bn

dV (z) = s2n,

we have

∣

∣

∣

∫

|z−w|<s
|f(z)|2|z1 − w1|2dV (z)

∫

|z−w|<s |z1 − w1|2dV (z)
− |f(w)|2

∣

∣

∣
≤

(n+ 1)s2
∫

|z−w|<s
||f(z)|2 − |f(w)|2|dV (z)

s2n+2

=
(n+ 1)

∫

|z−w|<s
||f(z)|2 − |f(w)|2|dV (z)

V (B(w, s))
.
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Let A = {w ∈ Bn : lims→0+

∫
B(w,s)

||f(z)|2−|f(w)|2|dV (z)

V (B(w,s)) = 0}. It is a classical theorem of Lebesgue

that the complement of the above set in Bn has volume measure 0 (see [21,Theorem 8.8]). �

Theorem 3.4 Let f ∈ L2(Bn, dV ). Then Sf is bounded if and only if f ∈ L∞(Bn), in which

case ‖Sf‖ = ‖f‖∞.

Proof If f ∈ L∞(Bn), then Sf is bounded with ‖Sf‖ ≤ ‖f‖∞. To prove the “only if” part,

suppose that Sf is bounded. Then ‖Sfuw,s‖ ≤ ‖Sf‖, for all w ∈ Bn and 0 < s < 1. It follows

from Lemma 3.3 that ‖f‖∞ ≤ ‖Sf‖. �

Theorem 3.5 For f in L∞(Bn), Sf is compact if and only if f = 0 a.e. on Bn.

Proof Since uw,s → 0 weakly in (A2(Bn))
⊥, if Sf is compact, then for each w ∈ Bn we have

‖Sfuw,s‖ → 0 as s→ 0+, and it follows from Lemma 3.3 that f = 0 a.e. on Bn. �

Theorem 3.6 Let f and g in L∞(Bn). If SfSg is a compact perturbation of a dual Toeplitz

operator Sh, then f(w)g(w) = h(w) for almost all w ∈ Bn, and HfH
∗
g is compact.

Proof Since SfSg − Sh is compact, then using (2), we see that the operator

Sfg−h −HfH
∗
g = SfSg − Sh

is compact. The function uw,s → 0 weakly in (A2(Bn))
⊥, as s→ 0+. Thus

‖(Sfg−h −HfH
∗
g )uw,s‖ → 0.

By Lemma 3.2 we also have

‖HfH
∗
guw,s‖ → 0.

Thus

‖Sfg−huw,s‖ → 0.

Applying Lemma 3.3 we see that

‖Sfg−huw,s‖ → |f(w)g(w) − h(w)|,

for almost all w ∈ Bn. Since f(w)g(w) − h(w) = 0 for a.e. w ∈ Bn, we have that Sfg−h = 0.

Hence HfH
∗
g is compact. �

4. Symbol map on the dual Toeplitz algebra

The symbol map on the Toeplitz algebra in the Hardy space setting was described in

[12,Chapter 7]. Stroethoff and Zheng [11] obtained the existence of a symbol map on the dual

Toeplitz algebra in the Bergman space of unit disk. In this section, we will show the existence

of a symbol map on the dual Toeplitz algebra on the Bergman space of unit ball.

Lemma 4.1 If the operator S is in the closed ideal generated by the semicommutators of all

bounded dual Toeplitz operators, then

‖Suw,s‖ → 0
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for all w ∈ Bn as s→ 0+.

Proof If operator S is in the closed ideal generated by the semicommutators of all bounded

dual Toeplitz operators, then S can be approximated by a finite sum of finite products of dual

Toeplitz operators or operators of the form Sfg − SfSg. Noting that

Sfg − SfSg = HfH
∗
g ,

Lemma 3.2 gives that

‖(Sfg − SfSg)uw,s‖ → 0,

for all w ∈ Bn as s→ 0+. To prove the stated result, it suffices to show that for f, g, h1, . . . , hn ∈

L∞(Bn),

‖(Sfg − SfSg)Sh1 · · ·Shn
uw,s‖ → 0,

for all w ∈ Bn as s→ 0+. This can be proved using induction. Let h = h1, repeatedly using (2)

we have

(Sfg − SfSg)Sh = SfgSh − SfSgSh = SfgSh − Sf (Sgh −HgH
∗
h
)

= SfgSh − SfSgh + SfHgH
∗
h

= (Sfgh − SfSgh)− (Sfgh − SfgSh) + SfHgH
∗
h

= HfH
∗
gh

−HfgH
∗
h
+ SfHgH

∗
h
.

Using Lemma 3.2 we conclude that ‖(Sfg − SfSg)Shuw,s‖ → 0, for all w ∈ Bn as s → 0+. The

case n > 2 can be proved similarly. The induction step follows from the observation that

(Sfg − SfSg)Sh1 · · ·Shn
=(Sfg − SfSg)Sh1 · · ·Shn−2Shn−1hn

− (Sfg − SfSg)Sh1 · · ·Shn−2Hhn−1H
∗
hn
,

for n > 2. �

Proposition 4.2 For f1, f2, . . . , fn ∈ L∞(Bn) the operator

Sf1Sf2 · · ·Sfn − Sf1f2···fn

belongs to the closed ideal generated by the semicommutators of all bounded dual Toeplitz

operators.

Proof Writing

Sf1Sf2 · · ·Sfn − Sf1f2···fn = Sf1(Sf2 · · ·Sfn − Sf2···fn) + Sf1Sf2···fn − Sf1f2···fn ,

the statement follows by induction. �

Let B((A2)⊥) be the set of bounded linear operators on (A2(Bn))
⊥. If F is a subset of

L∞(Bn), then we write I(F) for the smallest closed subalgebra of B((A2)⊥) containing {Sf :

f ∈ F}. The dual Toeplitz algebra is I(L∞(Bn)). Let D be the semicommutator ideal of the

dual Toeplitz algebra I(L∞(Bn)). We will show the existence of a symbol map from the dual

Toeplitz algebra I(L∞(Bn)) to L
∞(Bn).
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Theorem 4.3 There is a contractive C∗-homomorphism ρ from the dual Toeplitz algebra

I(L∞(Bn)) to L
∞(Bn) such that ρ(Sf ) = f , for all f ∈ L∞(Bn).

Proof First we define ρ on finite sums of finite products of dual Toeplitz operators. If S =
∑n

i=1 Sfi1Sfi2 · · ·Sfini
, we define

ρ(S) =

n
∑

i=1

fi1fi2 · · · fini
.

We must prove that ρ is well-defined. Suppose that S has another representation:

S =

m
∑

i=1

Sgi1Sgi2 · · ·Sgimi
.

Let F =
∑n

i=1 fi1fi2 · · · fini
and G =

∑m
i=1 gi1gi2 · · · gimi

. We only need to show that F (w) =

G(w) a.e. on Bn. SF − SG is in D, since S − SF and S − SG are in the semicommutator ideal

D. By Lemma 4.1 we have

lim
s→0+

‖(SF − SG)uw,s‖ → 0

for a.e. w ∈ Bn. On the other hand, Lemma 3.3 gives that

|F (w) −G(w)| = lim
s→0+

‖(SF − SG)uw,s‖.

Thus F (w) = G(w) a.e. on Bn. So that ρ is well-defined.

For each S ∈ I(L∞(Bn)) and a given positive integer n there is a finite sum Fn of finite

products of dual Toeplitz operators such that

‖S − Fn‖ <
1

n
.

By the first part of the proof, ρ(Fn) is well-defined. The sequence {ρ(Fn)} in L∞(Bn) is a

Cauchy sequence, since

‖ρ(Fn)− ρ(Fm)‖∞ ≤ ‖Fn − Fm‖.

We define ρ(S) to be the limit of the Cauchy sequence {ρ(Fn)} in L∞(Bn). It is easily seen that

ρ(S) does not depend on the chosen sequence {Fn}.

The mapping ρ is clearly linear, and it is seen that ρ(S∗) = ρ(S). To prove that ρ is

contractive, it suffices to show that ‖ρ(S)‖∞ ≤ ‖S‖ if S is a finite sum of finite products of dual

Toeplitz operators. Writing F = ρ(S), the operator D = S − SF is in the semicommutator ideal

D, so that by Lemma 4.1, lims→0+ ‖Duw,s‖ = 0. Using Lemma 3.3 it follows that

‖S‖ = ‖SF +D‖ ≥ lim
s→0+

‖(SF +D)uw,s‖ = |F (w)|,

for a.e. w ∈ Bn, proving that indeed ‖ρ(S)‖∞ = ‖F‖∞ ≤ ‖S‖.

To prove that ρ is a C∗-algebra homomorphism, it suffices to prove that ρ(ST ) = ρ(S)ρ(T ),

for operator S and T which are finite products of dual Toeplitz operators. Clearly it will be

sufficient to show that

ρ(Sf1 · · ·Sfn) = ρ(Sf1) · · · ρ(Sfn),

for f1, . . . , fn in L∞(Bn). �
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We call ρ the symbol map on the dual Toeplitz algebra I(L∞(Bn)). Define the mapping

ξ : L∞(Bn) → B((A2)⊥) by ξ(f) = Sf , for f ∈ L∞(Bn).

Theorem 4.4 If D is the semicommutator ideal of the dual Toeplitz algebra I(L∞(Bn)), then

the mapping ξ induced from L∞(Bn) to I(L∞(Bn))/D by ξ is a ∗-isometric isomorphism. Thus

there is a short exact sequence

(0) → D → I(L∞(Bn))
ρ
−→ L∞(Bn) → (0)

for which ξ is an isometric cross section.

Proof The mapping ξ is obviously linear and contractive. To show that ξ is multiplicative,

observe that for f and g in L∞(Bn),

ξ(f)ξ(g)− ξ(fg) = SfSg − Sfg

is in the semicommutator D. Thus ξ is multiplicative on L∞(Bn).

To complete the proof, we show that ‖Sf +K‖ ≥ ‖Sf‖, for f ∈ L∞(Bn) and K ∈ D, and

hence ξ is an isometry. Note that ‖Sf‖ = ‖f‖∞. So it suffices to show that ‖Sf +K‖ ≥ ‖f‖∞.

Since K is in the semicommutator, by Lemma 4.1 we have

lim
s→0+

‖Kuw,s‖ = 0,

for all w ∈ Bn. By Lemma 3.3 we also have

|f(w)| = lim
s→0+

‖Sfuw,s‖,

for a.e. w ∈ Bn. Thus

‖Sf +K‖ ≥ lim
s→0+

‖(Sf +K)uw,s‖ = |f(w)|,

for a.e. w ∈ Bn. So this gives that ‖Sf +K‖ ≥ ‖f‖∞, which completes the proof. �

Theorem 4.5 The semicommutator ideal D contains the ideal K of compact operators on

(A2(Bn))
⊥.

Proof First we show that D contains the rank one operator zα ⊗ zβ , for all α and β in Nn.

As a special case of Proposition 2.5 we have

zα ⊗ zβ = Hzα(1⊗ 1)H∗
zβ

= L0(HzαH
∗
zβ
)

=
n+1
∑

i=0

∑

|γ|=i

λi,γSϕγ
0
HzαH

∗
zβ
Sϕ0

γ

=

n+1
∑

i=0

∑

|γ|=i

λi,γS(−z)γHzαH
∗
zβS(−z)γ .

By (2),

HzαH
∗
zβ = Szαzβ − SzαSzβ ∈ D.

It follows from Lemma 2.2 and Proposition 4.2 that zα ⊗ zβ ∈ D.
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Next, we will show that the set D is irreducible in (A2(Bn))
⊥. Let N be a closed linear

subspace of (A2(Bn))
⊥ which is reducing for D. We have to show that N = (A2(Bn))

⊥. We

first prove the following claim.

Claim. The functions zi ∈ N , 1 ≤ i ≤ n.

Since N is nonzero, it contains a nonzero function ϕ. Since the linear combinations of the

functions zαzβ are dense in L2(Bn, dV ), ϕ cannot be orthogonal to all zαzβ , and thus there

exist multi-index α and β such that 〈ϕ, zαzβ〉2 6= 0. Since ϕ ∈ (A2(Bn))
⊥ is orthogonal to the

function zα, we must have β ≻ 0, thus there exists some βj > 0. Note that

〈ϕ, zαzβ〉2zi = 〈zαzβ
′

ϕ, zj〉2zi = 〈Szαzβ′ϕ, zj〉2zi = (zi ⊗ zj)Szαzβ′ϕ,

where β′ = (β1, . . . , βj−1, βj − 1, βj+1, . . . , βn) � 0. By the first part of the proof, zi ⊗ zj ∈ D.

Since D is an ideal, (zi⊗ zj)Szαzβ′ ∈ D. Because N is reducing for every operator in D, we have

〈ϕ, zαzβ〉2zi ∈ N . Since 〈ϕ, zαzβ〉2 6= 0, we conclude that zi ∈ N , and our claim is proved.

Now let ψ be a function in (A2(Bn))
⊥ which is orthogonal to N . If α � 0 and β ≻ 0, where

we can assume βj > 0, then (zi ⊗ zj)Szαzβ′ ∈ D, and since N is reducing for D it follows that

〈ψ, zαzβ〉2zi = (zi ⊗ zj)Szαzβ′ψ

is orthogonal to N . Since zi ∈ N , we must have 〈ψ, zαzβ〉2 = 0. Note that this is also true if

β = 0, since ψ ∈ (A2(Bn))
⊥. So ψ is orthogonal to functions zαzβ , for all α and β in N

n. We

conclude that ψ = 0 a.e. on Bn, and hence N = (A2(Bn))
⊥. This completes the proof that D is

irreducible. �

Note that D contains the nonzero compact operator zα ⊗ zβ = Hzα(1 ⊗ 1)H∗
zβ
. By

[11,Theorem 5.39], D contains the ideal K of compact operators on (A2(Bn))
⊥.

Theorem 4.6 The C∗-algebra I(C(Bn)) contains the ideal K of compact operators on

(A2(Bn))
⊥ as its semicommutator ideal, and the sequence

(0) → K → I(C(Bn)) → C(Bn) → (0)

is short exact; that is, the quotient algebra I(C(Bn))/K is ∗-isometrically isomorphic to C(Bn).

Proof Write S to denote the semicommutator ideal in the dual Toeplitz algebra I(C(Bn)). By

the proof of the previous theorem, K is contained in S. For two continuous functions f and g on

Bn, by (2) the semicommutator

Sfg − SfSg = HfH
∗
g

is compact. Since S is generated by semicommutators of dual Toeplitz operators with symbols

in C(Bn), it follows that S is contained in K. Hence K equals the semicommutator ideal S. �

The symbol mapping can be used to obtain the following generalization of Theorem 3.5.

Theorem 4.7 Let f1, . . . , fn ∈ L∞(Bn). If the product Sf1Sf2 · · ·Sfn is compact, then

f1(w) · · · fn(w) = 0 for almost all w in Bn.
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Proof If Sf1Sf2 · · ·Sfn is compact, by Theorem 4.5, Sf1Sf2 · · ·Sfn is in the semicommutator

ideal D. Using Proposition 4.2 we see that Sf1f2···fn is in D. It follows that ρ(Sf1f2···fn) =

f1f2 · · · fn = 0 a.e. on Bn. �

5. Spectral properties of dual Toeplitz operators

In this section we discuss the spectrum and essential spectrum of dual Toeplitz operators

on the orthogonal complement of Bergman space of the unit ball.

Proposition 5.1 Let f be a function in L∞(Bn). If Sf is invertible, then f is invertible in

L∞(Bn).

Proof Assume that for some δ > 0 we have ‖Sfu‖ ≥ δ, for all u ∈ (A2(Bn))
⊥ with ‖u‖ = 1.

By Lemma 3.3, for a.e. w ∈ Bn we have

|f(w)| = lim
s→0+

‖Sfuw,s‖ ≥ δ.

This completes the proof. �

Theorem 5.2 Let f be a function in L∞(Bn). If Sf is invertible, then S−1
f is a dual Toeplitz

operator if and only if f is holomorphic or f is holomorphic.

Proof For the if part, assume that Sf is invertible. Using Proposition 5.1 it follows that f is

invertible in L∞(Bn). We first suppose that f is holomorphic. It follows from (4) that SfS 1
f
= I.

Therefore, by uniqueness of the inverse, we infer that the inverse of Sf must be a dual Toeplitz

operator S 1
f
. Similarly, if f is holomorphic, by (4), we see that S 1

f
Sf = I, hence S−1

f = S 1
f
,

which is a dual Toeplitz operator as well.

For the only if part, suppose that S−1
f is a dual Toeplitz operator Sg for some bounded

symbol g. On the one hand, since S−1
f Sf = SgSf = I = S1 is a dual Toeplitz operator,

then either f is holomorphic or g is holomorphic by Lemma 2.2. On the other hand, since

SfS
−1
f = SfSg = I = S1, again using Lemma 2.2, we obtain that either f is holomorphic or g

is holomorphic. Now, if f is holomorphic, then we complete the proof. If f is not holomorphic,

then g must be holomorphic and nonconstant (if g is a constant λ, then Sg = S−1
f = λI, which

means that Sf = 1
λ
I, i.e., f = 1

λ
, which is holomorphic), it follows that g is not holomorphic. By

“On the one hand” conclusion, we must have that f is holomorphic, which completes the proof.

�

If f is a measurable function on Bn, then the essential range R(f) of f is the set of all λ

in C for which {z ∈ Bn : |f(z) − λ| < ε} has positive measure for every ε > 0. We have the

following spectrum inclusion theorem, completely analogous to the spectrum inclusion theorem

of Hartman and Wintner for Toeplitz operators on the Hardy space [11,Corollary 7.7].

Theorem 5.3 If f is in L∞(Bn), then R(f) ⊂ σ(Sf ).

Proof Since Sf − λ = Sf−λ for λ in C, using Proposition 5.1 it follows that R(f) ⊂ σ(Sf ). �
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Corollary 5.4 The mapping ξ : L∞(Bn) → B((A2(Bn))
⊥) defined by ξ(f) = Sf is isometric,

for f ∈ L∞(Bn).

Proof By Theorem 5.3 and [12,Proposition 2.28], we have

‖f‖∞ ≥ ‖Sf‖ ≥ r(Sf ) = sup{|λ| : λ ∈ σ(Sf )}

≥ sup{|λ| : λ ∈ R(f)} = ‖f‖∞,

for f in L∞(Bn). �

Recall that an operator T is called nilpotent if some positive integral power T n is zero

and the least such power is the index of nilpotence. An operator T is called quasinilpotent if

σ(T ) = {0} (or equivalently if limn→∞ ‖T n‖
1
n = 0).

Corollary 5.5 There are no non-zero quasinilpotents (and hence no nilpotents) dual Toeplitz

operators.

Proof From Corollary 5.4, if Sf is quasinilpotent, then

‖Sf‖ = ‖f‖∞ = r(Sf ) = lim
n→∞

‖T n‖
1
n = 0,

it follows that f ≡ 0. �

In the sequel, we also have the following useful additional fact about dual Toeplitz operators

on the Bergman space of the unit ball.

Corollary 5.6 Let f be in L∞(Bn). Then Sf ≥ 0 if and only if f ≥ 0.

Proof If f ≥ 0, we have 〈Sfg, g〉2 = 〈Q(fg), g〉2 = 〈fg, g〉2 =
∫

Bn
f(z)|g(z)|2dV (z) ≥ 0, for

g ∈ (A2(Bn))
⊥. Conversely, suppose that Sf ≥ 0, its spectrum lies in R+, by Corollary 5.4, we

obtain R(f) ⊂ σ(Sf ) ⊂ R+, it follows that f ≥ 0. �

Stroethoff and Zheng [11] proved that the spectrum of a dual Toeplitz operator on the

Bergman space is contained in the closed convex hull of essential range of its symbol. The same

argument as the proof of [11,Theorem 9.3] shows that this is also true for dual Toeplitz operator

on the Bergman space of the unit ball.

Theorem 5.7 Since f is in L∞(Bn) we have σ(Sf ) ⊂ h(R(f)), where h(R(f)) is the closed

convex hull of R(f).

A bounded operator S on (A2(Bn))
⊥ is Fredholm if and only if the operator S + K is in-

vertible in the Calkin algebra B((A2(Bn))
⊥)/K. The following proposition states that a dual

Toeplitz operator can only be Fredholm if its symbol is invertible.

Proposition 5.8 If f is a function in L∞(Bn) such that Sf is a Fredholm operator, then f is

invertible in L∞(Bn).

Proof If Sf is Fredholm, then Sf + K is invertible in the Calkin algebra B((A2(Bn))
⊥)/K.

Since I(L∞(Bn))/K is a closed self-adjoint subalgebra of B((A2(Bn))
⊥)/K, it follows from

[12,Theorem 4.28] that Sf + K is invertible in I(L∞(Bn))/K. By Theorem 4.5, K ⊂ D, so
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Sf +D is invertible in the Calkin algebra I(L∞(Bn))/D. It follows that f = ρ(Sf ) is invertible

in L∞(Bn). �

The essential spectrum of a bounded linear operator S on (A2(Bn))
⊥, denoted by σe(S), is

the spectrum of S +K in the Calkin algebra B((A2(Bn))
⊥)/K. We have the following inclusion

theorem for the essential spectrum of a dual Toeplitz operator.

Theorem 5.9 If f is in L∞(Bn), then R(f) ⊂ σe(Sf ).

Proof Since Sf − λ = Sf−λ for λ in C, using Proposition 5.8 it follows that R(f) ⊂ σe(Sf ). �

Theorem 5.10 If f is in L∞(Bn) such that both Hankel operators Hf and Hf are compact,

then R(f) = σe(Sf ).

Proof By the previous theorem it suffices to prove that σe(Sf ) ⊂ R(f). If λ ∈ C \ R(f), then

for some ε > 0 we have |f(z)− λ| ≥ ε, for a.e. z in Bn. Thus g =
1

f−λ is in L∞(Bn). By (2)

Sf−λSg = I −HfH
∗
g and SgSf−λ = I −HgH

∗
f
.

Since both HfH
∗
g and HgH

∗
f
are compact, Sf−λ +K is invertible in the Calkin algebra, so that

λ ∈ C \ σe(Sf ). �

6. Quasinormal dual Toeplitz operators

The operator T is quasinormal if T commutes with T ∗T . As known to all, the quasinormal

operator is subnormal. Guediri [22] showed that there are no quasinormal dual Toeplitz operators

with bounded holomorphic or anti-holomorphic symbols on the sphere, which adumbrates a

famous conjecture of Halmos. Similarly to [22], we can get the following Theorem.

Theorem 6.1 Let f be a bounded holomorphic function on Bn. If Sf is quasinormal, then the

symbol function f must be constant.

For bounded anti-holomorphic symbols, we also have the following result.

Proposition 6.2 Let f be a bounded holomorphic function on Bn. If Sf is quasinormal, then

the symbol function f must be constant.

Remark 6.3 If f is constant, then Sf is normal and quasinormal. Theorems 6.1 and Proposition

6.2 can also be expressed as follows: If f is a bounded holomorphic or anti-holomorphic function.

Sf is quasinormal if and only if f is a constant. Then we can show there are no quasinormal

dual Toeplitz operators with bounded holomorphic or anti-holomorphic symbols.

For a bounded pluriharmonic function f , f = g1 + g2, where g1 and g2 are holomorphic, if

g1 = g, g2 = λg, where λ ∈ C, g is a bounded holomorphic function, we can get the following

result.

Proposition 6.4 Suppose that f = g + λg, where g is nonconstant and bounded holomorphic

function, λ ∈ C. If Sf is quasinormal, then Sf is normal and λ must be unimodular.
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