
Journal of Mathematical Research with Applications

Nov., 2017, Vol. 37, No. 6, pp. 743–753

DOI:10.3770/j.issn:2095-2651.2017.06.009

Http://jmre.dlut.edu.cn

Complete Convergence of Randomly Weighted Sums of
NOD Random Variables

Zhangrui ZHAO, Xudong QIAO, Wenzhi YANG∗, Shuhe HU

School of Mathematical Sciences, Anhui University, Anhui 230601, P. R. China

Abstract In this paper, we investigate the complete convergence of double-indexed random-

ly weighted sums of negatively orthant dependent (NOD) random variables. Some complete

moment convergence and complete convergence of this dependent sequence are presented,

Marcinkiewicz-Zygmund-type strong law of large numbers is also obtained. Our results ex-

tend some corresponding ones. In addition, some simulations are illustrated to show the

convergence.
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1. Introduction

Definition 1.1 A finite collection of random variables X1, X2, . . . , Xn is said to be negatively

upper orthant dependent (NUOD) if for all real numbers x1, x2, . . . , xn,

P (X1 > x1, . . . , Xn > xn) ≤

n
∏

i=1

P (Xi > xi),

and negatively lower orthant dependent (NLOD) if for all real numbers x1, x2, . . . , xn,

P (X1 ≤ x1, . . . , Xn ≤ xn) ≤

n
∏

i=1

P (Xi ≤ xi).

A finite collection of random variables X1, X2, . . . , Xn is said to be negatively orthant de-

pendent (NOD) if they are both NUOD and NLOD.

An infinite sequence {Xn, n ≥ 1} is said to be NOD (NUOD or NLOD) if every finite

subcollection is NOD (NUOD or NLOD).

Lehmann [1] introduced the notion of NOD. Joag-Dev and Proschan [2] introduced the well-

known notion negatively associated (NA) and presented many examples of NA sequences. They
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pointed out NA sequences are NOD sequences but the converse statement cannot always be

true. NA sequences are stronger than NOD sequences but they maintain many good properties

of independent sequences. For more examples and limit theorems of these random fields and

related systems, one can refer to Bulinski and Shaskin [3]. Many authors pay attention on

the study of NOD. For the study of NOD sequence, Bozorgnia et al. [4] investigated the limit

theory, Asadian et al. [5] obtained some moment inequalities, Wang et al. [6] established some

exponential inequalities and inverse moments, Wang et al. [7] obtained the strong limit theory,

Sung [8] investigated the moving average processes, Yang et al. [9], Wang et al. [10] and Wang

and Si [11] studied the estimator of nonparametric regression with NOD errors, etc.

On the one hand, since Hsu and Robbins [12] gave the concept of complete convergence,

the complete convergence has been an important basic tool in probability and statistics. Many

authors investigated the complete convergence and complete moment convergence. For example,

Zhang [13], Li and Zhang [14] and Yang et al. [15] studied the complete convergence and complete

moment convergence for moving-average processes based on ϕ-mixing sequence, NA sequence

and negative quadrant dependent (NQD) sequences, respectively; Wu [16,17] and Sung [18]

investigated the complete convergence of weighted sums of NOD sequences; Wang et al. [19] and

Wu and Volodin [20] established the complete convergence for arrays of rowwise NOD sequence;

Chen and Sung [21] obtained the complete convergence and strong laws of large numbers for

weighted sums of NOD sequences, etc.

On the other hand, many researchers pay attention on the study of randomly weight sums

of random variables. For example, Thanh and Yin [22] established the almost sure and com-

plete convergence of randomly weighted sums of independent random elements in Banach spaces;

Thanh et al. [23] investigated the complete convergence of randomly weighted sums of ρ̃-mixing

sequences; Han and Xiang [24] extended the results of Thanh et al. [23] to the results of com-

plete moment convergence based on the double-indexed randomly weighted sums of ρ̃-mixing

sequences; Cabrera et al. [25] and Shen et al. [26] investigated the conditional convergence for

randomly weighted sums of dependent random variables; Yang et al. [27] and Yao and Lin [28]

obtained some results of complete convergence and moment of maximum normed based on the

randomly weighted sums of martingales differences, etc.

Inspired by the papers above, we investigate the complete convergence of double-indexed

randomly weighted sums of NOD sequence. Some complete moment convergence and complete

convergence of this dependent sequence are presented, Marcinkiewicz-Zygmund-type strong law

of large numbers is also obtained. We extend the results of Thanh et al. [23] and Yang et al. [27]

for the randomly weighted cases of ρ̃-mixing sequence and martingale differences to the one of

NOD sequences. In addition, some simulations are illustrated to show the convergence. For the

details, please see the results in Section 3. Some lemmas and the proofs of main results are

presented in Sections 2 and 4, respectively. Throughout the paper, let I(A) be the indicator

function of set A, x+ = max(0, x) and C1, C2 . . . denote some positive constants independent of

n, which may be different in various places.
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2. Some lemmas

Lemma 2.1 ([4]) Let random variables X1, X2, . . . , Xn be NOD, f1, f2, . . . , fn be all nonde-

creasing (or nonincreasing) functions. Then random variables f1(X1), f2(X2), . . . , fn(Xn) are

NOD.

Remark 2.2 Let {Xn, n ≥ 1} be an NOD sequence and {Yn, n ≥ 1} be a sequence of nonnega-

tive and independent random variables, which is independent of {Xn, n ≥ 1}. Let Zn = XnYn.

Then, by the definition of NOD and the nonnegativity and independence of {Yn, n ≥ 1}, we have

that for all real numbers z1, . . . , zn,

P (Z1 ≤ z1, . . . , Zn ≤ zn) = P (X1Y1 ≤ z1, . . . , XnYn ≤ zn)

=

∫ ∞

0

· · ·

∫ ∞

0

P (X1u1 ≤ z1, . . . , Xnun ≤ zn)dFY1
(u1) · · · dFYn(un)

≤

∫ ∞

0

· · ·

∫ ∞

0

n
∏

i=1

P (Xiui ≤ zi)dFY1
(u1) · · · dFYn(un)

=

n
∏

i=1

P (XiYi ≤ zi) =

n
∏

i=1

P (Zi ≤ zi),

by using the fact that u1X1, u2X2, . . . , unXn are NOD following from Lemma 2.1. Similarly, we

have for all real numbers z1, . . . , zn,

P (Z1 > z1, . . . , Zn > zn) ≤

n
∏

i=1

P (Zi > zi).

Thus, {Zn, n ≥ 1} is also an NOD sequence.

Lemma 2.3 ([5]) Let p ≥ 2 and {Xn, n ≥ 1} be an NOD sequence such that EXn = 0 and

E|Xn|
p < ∞ for all n ≥ 1. Then there holds

E
∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

p

≤ Cp

{

n
∑

i=1

E|Xi|
p +

(

n
∑

i=1

EX2
i

)p/2}

,

where Cp is a positive constant depending only on p.

Lemma 2.4 ([29]) Let {Xn, n ≥ 1} and {Yn, n ≥ 1} be sequences of random variables. Then

for any n ≥ 1, q > 1, ε > 0 and a > 0,

E
(
∣

∣

∣

n
∑

i=1

(Xi + Yi)
∣

∣

∣
− εa

)+

≤ (
1

εq
+

1

q − 1
)

1

aq−1
E
∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

q

+ E
∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣
.

Lemma 2.5 ([30,31]) Let {Xn, n ≥ 1} be a sequence of random variables, which is stochastically

dominated by a nonnegative random variable X , i.e., supn≥1 P (|Xn| > t) ≤ CP (X > t) for some

positive constant C and for all t ≥ 0. Then for any n ≥ 1, α > 0 and β > 0, the following two

statements hold:

E[|Xn|
αI(|Xn| ≤ β)] ≤ C1{E[XαI(X ≤ β)] + βαP (X > β)},

E[|Xn|
αI(|Xn| > β)] ≤ C2E[XαI(X > β)].
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Consequently, we have E|Xn|
α ≤ C3EXα for all n ≥ 1.

3. Main results and simulation

In the following, we list some assumptions:

(A.1) Let {Xn, n ≥ 1} be a mean zero sequence of NOD random variables stochastically

dominated by a nonnegative random variables X .

(A.2) For every n ≥ 1, let {Ani, 1 ≤ i ≤ n} be a sequence of independent random variables

satisfying that {Ani, 1 ≤ i ≤ n} is independent of {Xn, n ≥ 1}.

Theorem 3.1 Assume that (A.1) and (A.2) are satisfied. Let α > 1/2, 1 < p < 2 and EXp < ∞.

If
n
∑

i=1

EA2
ni = O(n), (1)

then for every ε > 0,
∞
∑

n=1

nαp−2−αE
(
∣

∣

∣

n
∑

i=1

AniXi

∣

∣

∣
− εnα

)+

< ∞. (2)

So it follows
∞
∑

n=1

nαp−2P
(∣

∣

∣

n
∑

i=1

AniXi

∣

∣

∣
> εnα

)

< ∞. (3)

Theorem 3.2 Assume that (A.1) and (A.2) are satisfied. Let α > 1/2, p ≥ 2 and EXp < ∞.

If
n
∑

i=1

E|Ani|
q = O(n), for some q >

2(αp− 1)

2α− 1
, (4)

then we obtain the results of (2) and (3) for every ε > 0.

If 1 ≤ l < 2, p = 2l and α = 2/p in Theorem 3.2, then we establish the following result.

Theorem 3.3 Suppose that (A.1) and (A.2) are fulfilled. Let 1 ≤ l < 2 and EX2l < ∞. If

n
∑

i=1

E|Ani|
q = O(n), for some q >

2l

2− l
, (5)

then for every ε > 0,
∞
∑

n=1

n−1/lE
(∣

∣

∣

n
∑

i=1

AniXi

∣

∣

∣
− εn1/l

)+

< ∞, (6)

and
∞
∑

n=1

P
(∣

∣

∣

n
∑

i=1

AniXi

∣

∣

∣
> εn1/l

)

< ∞. (7)

In particular, we have the Marcinkiewicz-Zygmund-type strong law of large numbers

lim
n→∞

1

n1/l

n
∑

i=1

AniXi = 0, a.s. (8)

Meanwhile, for the case p = 1, we have the following result.
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Theorem 3.4 Suppose that (A.1) and (A.2) are fulfilled. Let α > 0 and E[X logX ] < ∞. If

(1) holds, then for every ε > 0,

∞
∑

n=1

n−2E
(∣

∣

∣

n
∑

i=1

AniXi

∣

∣

∣
− εnα

)+

< ∞. (9)

In particular, we have
∞
∑

n=1

nα−2P
(∣

∣

∣

n
∑

i=1

AniXi

∣

∣

∣
> εnα

)

< ∞. (10)

Simulation 3.5 We use MATLAB software to do some simulations for the convergence of

(8) in Theorem 3.3. For n ≥ 2, let (X1, X2, . . . , Xn) be a normal random vector such as

(X1, X2, . . . , Xn) ∼ Nn(0,Σ), where 0 is zero vector,

Σ =











1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ
...

...
...

...

ρ ρ ρ . . . 1











n×n

,

and ρ ∈ (− 1
n−1 , 0]. By Joag-Dev and Proschan [2], it can be seen that (X1, X2, . . . , Xn) is an

NA vector, which implies that it is also an NOD vector. In the following, there are two cases of

assumption of {Ani, 1 ≤ i ≤ n, n ≥ 1}:

(i) For all n ≥ 1, let {Ani, 1 ≤ i ≤ n} be i.i.d. uniform distribution satisfying An1 ∼

U(−1, 1), which are also independent of {Xn, n ≥ 1}.

(ii) For all n ≥ 1, let {Ani, 1 ≤ i ≤ n} be i.i.d. student distribution satisfying An1 ∼ t(m)

with degree of freedom m > 0, which are also independent of {Xn, n ≥ 1}.

By MATLAB software, we make the Box plots to illustrate

1

n1/l

n
∑

i=1

AniXi → 0, n → ∞. (11)

For l = 1.4 (or l = 1), ρ = − 1
n (or ρ = − 1

2n ), the uniform distribution An1 ∼ U(−1, 1) and

sample size n = 100, 200, . . . , 1000, we repeat the experiments 10000 times and obtain the Box

plots such as Figures 1 and 2.
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Figure 1 The first of multiple normal random Figure 2 The second of multiple normal random

variables randomly weighted by uniform variables randomly weighted by uniform

random variables random variables
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In Figures 1 and 2, the label of y-axis is the value of (11) and the label of x-axis is the

number of sample n, by repeating the experiments 10000 times. By Figure 1, for the case of

l = 1.4, ρ = − 1
n and An1 ∼ U(−1, 1), it can be found that the medians are close to 0 and their

variation ranges slowly become smaller as the sample n increases. By the strong conditions l = 1

and ρ = − 1
2n , we can see that the medians are close to 0 and the variation ranges quickly become

smaller as the sample n increases in Figure 2.

Similarly, for l = 1.2, ρ = − 1
n , student distributions An1 ∼ t(5) and An1 ∼ t(25), we obtain

the Figures 3 and 4. By Figures 3 and 4, it can be checked that the medians are close to 0 and

their variation range become smaller as the sample n increasing. Comparing Figure 3 with Figure

4, the variation range of Figure 4 is smaller than the one of Figure 3, which can be explained

that the variance of t(25) is smaller than the one of t(5).

−1

−0.5

0

0.5

1

n=100 n=200 n=300 n=400 n=500 n=600 n=700 n=800 n=900 n=1000
Experiments times 10000

Box plots with l=1.2, ρ=−1/n and t(5)
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Figure 3 The third of multiple normal random Figure 4 The fourth of multiple normal random

variables randomly weighted by student variables randomly weighted by student

random variables random variables

4. The proofs of main results

Proof of Theorem 3.1 Since AniXi = A+
niXi −A−

niXi, without loss of generality, we assume

Ani ≥ 0 in the proof. For n ≥ 1, let Xni = −nαI(Xi < −nα) +XiI(|Xi| ≤ nα) +nαI(Xi > nα),

X̃ni = nαI(Xi < −nα) +XiI(|Xi| > nα)− nαI(Xi > nα), 1 ≤ i ≤ n.

It can be found that

AniXi = [AniXni − E(AniXni)] + E(AniXni) +AniX̃ni, 1 ≤ i ≤ n.

Therefore, by Lemma 2.4 with a = nα and q = 2, we obtain that

∞
∑

n=1

nαp−2−αE
(∣

∣

∣

n
∑

i=1

AniXi

∣

∣

∣
− εnα

)+

≤ C1

∞
∑

n=1

nαp−2−2αE
∣

∣

∣

n
∑

i=1

[AniXni − E(AniXni)]
∣

∣

∣

2

+

∞
∑

n=1

nαp−2−αE
∣

∣

∣

n
∑

i=1

AniX̃ni

∣

∣

∣
+

∞
∑

n=1

nαp−2−α
∣

∣

∣

n
∑

i=1

E(AniXni)
∣

∣

∣

:= H1 +H2 +H3. (12)
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Combining (1) with Hölder’s inequality, one has that

n
∑

i=1

E|Ani| ≤
(

n
∑

i=1

EA2
ni

)1/2( n
∑

i=1

1
)1/2

= O(n). (13)

Since that for for every n ≥ 1, {Ani, 1 ≤ i ≤ n} is independent of the sequence {Xn, n ≥ 1}, one

has by Markov’s inequality, Lemma 2.5, (13) and EXp < ∞ (p > 1) that

H2 ≤2

∞
∑

n=1

nαp−2−α
n
∑

i=1

E|Ani|E|Xi|I(|Xi| > nα)

≤C1

∞
∑

n=1

nαp−1−αE[XI(X > nα)]

=C1

∞
∑

n=1

nαp−1−α
∞
∑

m=n

E[XI(m < X1/α ≤ m+ 1)]

=C1

∞
∑

m=1

E[XI(m < X1/α ≤ m+ 1)]
m
∑

n=1

nα(p−1)−1

≤C2

∞
∑

m=1

mαp−αE[XI(m < X1/α ≤ m+ 1)]

≤C2

∞
∑

m=1

E[XpI(m < X1/α ≤ m+ 1)] ≤ C3EXp < ∞. (14)

On the other hand, it can be seen that E(AniXi) = EAniEXi = 0, 1 ≤ i ≤ n, n ≥ 1. So, by

(13), Lemma 2.5 and the proof of (14), we have

H3 =

∞
∑

n=1

nαp−2−α
∣

∣

∣

n
∑

i=1

[

− nαEAniI(Xi < −nα)− EAniXiI(|Xi| > nα)

+ nαEAniI(Xi > nα)
]
∣

∣

∣

≤ 2

∞
∑

n=1

nαp−2−α
n
∑

i=1

E|Ani|E[|Xi|I(|Xi| > nα)]

≤ C1

∞
∑

n=1

nαp−1−αE[XI(X > nα)] ≤ C2EXp < ∞. (15)

From Lemma 2.1 we know that {Xni, 1 ≤ i ≤ n} are NOD random variables. Combining the

assumption of {Ani} with Remark 2.2, we establish that {[AniXni −E(AniXni)], 1 ≤ i ≤ n} are

mean zero NOD random variables. So, by Markov’s inequality, (1), Lemma 2.3 with p = 2 and

Lemma 2.5, we get that

H1 = C1

∞
∑

n=1

nαp−2−2αE
∣

∣

∣

n
∑

i=1

[AniXni − E(AniXni)]
∣

∣

∣

2

≤ C2

∞
∑

n=1

nαp−2−2α
n
∑

i=1

E(AniXni)
2

≤ C3

∞
∑

n=1

nαp−1−2αE[X2I(X ≤ nα)] + C4

∞
∑

n=1

nαp−1EI(X > nα)
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:= C3H11 + C4H12. (16)

Since p < 2 and EXp < ∞, it can be checked that

H11 =

∞
∑

n=1

nαp−1−2α
n
∑

i=1

E[X2I((i− 1)α < X ≤ iα)]

=
∞
∑

i=1

E[X2I((i − 1)α < X ≤ iα)]
∞
∑

n=i

nαp−1−2α

≤ C1

∞
∑

i=1

E[XpX2−pI((i− 1)α < X ≤ iα)]iαp−2α ≤ C1EXp < ∞. (17)

By the proof of (14),

H12 ≤
∞
∑

n=1

nαp−1−αE[XI(X > nα)] ≤ CEXp < ∞. (18)

Combining (12) with (13)–(18), we can get (2) immediately. Moreover, by Remark 2.6 of Sung

[29], (3) also holds true. �

Proof of Theorem 3.2 We use the same notation as in the proof of Theorem 3.1. Obviously,

by p ≥ 2, it is easy to see that q > 2(αp− 1)/(2α− 1) ≥ 2. Consequently, for any 1 ≤ r ≤ 2, by

Hölder’s inequality and condition (4), we have

n
∑

i=1

E|Ani|
r ≤

(

n
∑

i=1

E|Ani|
q
)r/q( n

∑

i=1

1
)1−r/q

= O(n). (19)

From (12), (14), (15) and (19), it follows that H2 < ∞ and H3 < ∞. So we have to prove

H1 < ∞ under conditions of Theorem 3.2. Since q > 2, similar to the proof of (16), by Lemma

2.3, it follows

H1 =C1

∞
∑

n=1

nαp−2−qαE
∣

∣

∣

n
∑

i=1

[AniXni − E(AniXni)]
∣

∣

∣

q

≤C2

∞
∑

n=1

nαp−2−qα
(

n
∑

i=1

E[AniXni − E(AniXni)]
2
)q/2

+

C2

∞
∑

n=1

nαp−2−qα
n
∑

i=1

E|AniXni − E(AniXni)|
q

:=C2H11 + C2H12. (20)

Obviously, by Lemma 2.5, we have

E[AniXni − E(AniXni)]
2 ≤ CEA2

niEX2
ni

≤ CEA2
ni{E[X2I(X ≤ nα)] + n2αP (X > nα)}

≤ CEA2
ni{E[X2I(X ≤ nα)] + E[X2I(X > nα)]}

= CEA2
niEX2, 1 ≤ i ≤ n. (21)
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For p ≥ 2, EXp < ∞ implies EX2 < ∞. Thus, by (19) and (21), one has that

H11 ≤ C3

∞
∑

n=1

nαp−2−qα
(

n
∑

i=1

EA2
niEX2

)q/2

≤ C4

∞
∑

n=1

nαp−2−qα+q/2 < ∞, (22)

following from the fact that q > 2(αp − 1)/(2α − 1). Meanwhile, by Cr inequality, Lemma 2.5

and (4),

H12 ≤C5

∞
∑

n=1

nαp−2−qα
n
∑

i=1

E|Ani|
qE|Xni|

q

≤C6

∞
∑

n=1

nαp−1−qαE[XqI(X ≤ nα)] + C7

∞
∑

n=1

nαp−1P (X > nα)

:=C6H
∗
12 + C7H

∗∗
12 . (23)

From p ≥ 2 and α > 1/2 it follows 2(αp − 1)/(2α − 1) − p ≥ 0, which implies q > p. So, by

EXp < ∞, we get that

H∗
12 =

∞
∑

n=1

nαp−1−qα
n
∑

i=1

E[XqI((i − 1)α < X ≤ iα)]

=

∞
∑

i=1

E[XqI((i− 1)α < X ≤ iα)]

∞
∑

n=i

nαp−1−qα

≤C1

∞
∑

i=1

E[XpXq−pI((i − 1)α < X ≤ iα)]iαp−qα

≤C1EXp < ∞. (24)

By the proof of (14),

H∗∗
12 ≤

∞
∑

n=1

nαp−1−αE[XI(X > nα)] ≤ CEXp < ∞. (25)

Consequently, by (20), (22)–(25), we obtain that H1 < ∞. So, we obtain the result (2). Similarly,

by Remark 2.6 of Sung [29], (3) also holds true. �

Proof of Theorem 3.3 By taking p = 2l, α = 2/p, we have αp = 2. On the other hand, by

the fact 1 ≤ l < 2, we can see that condition (4) reduces to (5). As an application of Theorem

3.2, one gets (6) and (7) immediately. Combining (7) with Borel Cantelli lemma, we establish

that limn→∞
1

n1/l

∑n
i=1 AniXi = 0, a.s. So, (8) holds. The proof of the theorem is completed. �

Proof of Theorem 3.4 Similarly to the proof of Theorem 3.1, by Lemma 2.4, it follows

∞
∑

n=1

n−2E
(∣

∣

∣

n
∑

i=1

AniXi

∣

∣

∣
− εnα

)+

≤ C1

∞
∑

n=1

n−2−αE
∣

∣

∣

n
∑

i=1

[AniXni − E(AniXni)]
∣

∣

∣

2

+

∞
∑

n=1

n−2E
∣

∣

∣

n
∑

i=1

AniX̃ni

∣

∣

∣
+

∞
∑

n=1

n−2
∣

∣

∣

n
∑

i=1

E(AniXni)
∣

∣

∣
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:= Q1 +Q2 +Q3. (26)

Similarly to the proof of (14), it follows

Q2 ≤3

∞
∑

n=1

n−1E[XI(X > nα)] = 3

∞
∑

n=1

n−1
∞
∑

m=n

E[XI(m < X1/α ≤ m+ 1)]

=3

∞
∑

m=1

E[XI(m < X1/α ≤ m+ 1)]

m
∑

n=1

n−1

≤C1

∞
∑

m=1

logmE[XI(m < X1/α ≤ m+ 1)] ≤ C2E[X logX ] < ∞. (27)

Similarly, by the proof of (15), we have

Q3 ≤ C1

∞
∑

n=1

n−1E[XI(X > nα)] ≤ C2E[X logX ] < ∞. (28)

On the other hand, similarly to the proof of (16), we obtain that

Q1 ≤C1

∞
∑

n=1

n−2−α
n
∑

i=1

E(AniXni)
2 = C1

∞
∑

n=1

n−2−α
n
∑

i=1

EA2
niEX2

ni

≤C2

∞
∑

n=1

n−1−αE[X2I(X ≤ nα)] + C3

∞
∑

n=1

nα−1P (X > nα)

≤C2

∞
∑

i=1

E[X2I((i − 1)α < X ≤ iα)]

∞
∑

n=i

n−1−α + C4E[X logX ]

≤C5

∞
∑

i=1

E[X2I((i − 1)α < X ≤ iα)]i−α + C4E[X logX ]

≤C6EX + C5E[X logX ] < ∞. (29)

So, by (26)–(29), (9) holds. On the other hand, by (3) with p = 1, (10) also holds under the

conditions of Theorem 3.4. �
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