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Abstract A mixed graph means a graph containing both oriented edges and undirected

edges. The nullity of the Hermitian-adjacency matrix of a mixed graph G, denoted by ηH(G),

is referred to as the multiplicity of the eigenvalue zero. In this paper, for a mixed unicyclic

graph G with given order and matching number, we give a formula on ηH(G), which combines

the cases of undirected and oriented unicyclic graphs and also corrects an error in Theorem

4.2 of [Xueliang LI, Guihai YU. The skew-rank of oriented graphs. Sci. Sin. Math., 2015, 45:

93-104 (in Chinese)]. In addition, we characterize all the n-vertex mixed graphs with nullity

n− 3, which are determined by the spectrum of their Hermitian-adjacency matrices.
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1. Introduction

The nullity of an undirected simple graph is defined as the multiplicity of the eigenvalue

zero of the adjacency matrix, which has received intensive study for recent years and originates

from the problem of characterizing all the singular or nonsingular graphs, proposed by Collatz

and Sinogowitz [1]. In particular, if G is bipartite and the nullity of G is greater than zero, then

as described in [2] the alternant hydrocarbon, corresponding to G, is unstable. Moreover, this

topic is also attracting in mathematics for it is in close relation to the problem of minimum rank

of symmetric matrices with patterns described by graphs [3].

Due to the important application in chemistry and independent interest in mathematics,

many papers focusing on this theme have been published. The n-vertex graphs with nullity n−2

or n − 3 were characterized by Cheng and Liu [4]. The nullity of some special graph classes,

such as trees, bipartite graphs, unicyclic graphs, bicyclic graphs, graphs with pendant trees, were

investigated in [5–13]. The problem of determining the graphs with given rank is equivalent to

that of the nullity, since for the rank r(G) and the nullity η(G) of an n-vertex undirected graph

G, r(G) + η(G) = n. In this case, Cheng et al. obtained the graphs with rank 4 and 5 in [14]

and [15], respectively. Furthermore, Fan et al. [16] generalized the nullity of undirected graphs

to signed graphs.

The adjacency matrix and Laplacian matrix of a mixed graph have been studied intensively

[17–21]. Let G be a mixed graph of order n with vertex set V (G) = {v1, v2, . . . , vn}. Denote
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by A(G) = (ast) the adjacency matrix of G, where ast = 1 if the vertices vs and vt are joined

by an undirected edge, ast = ats = −1 if there is an oriented edge between vs and vt and

ast = 0 otherwise. Bapat, Grossman and Kulkarni [17] introduced the Laplacian matrix L(G) =

D(G) + A(G) for a mixed graph G and gave a generalization of the Matrix Tree Theorem for

mixed graphs. In [22], the authors introduced the adjacency matrices of the (edge) weighted

directed graphs, which generalize the adjacency (resp., Laplacian) matrices of mixed graphs,

and so do the adjacency matrices of 3-colored digraphs [22–24]. Let X be a weighted directed

graph with simple underlying graph and V (X) = {v1, v2, . . . , vn}. Then the adjacency matrix

A(X) = (aij) of X is defined by aij = wij if there is an oriented edge from vi to vj , aij = wji if

there is an oriented edge from vj to vi and aij = 0 otherwise, where wij , a complex number of

unit modulus with nonnegative imaginary part, is the weight of the corresponding edge and wji

is the complex conjugate of wji.

For a weighted directed graph X, if we let the weights of edges belong to {1, i}, then

the adjacency matrix A(X) may be identified with the Hermitian-adjacency matrix for a mixed

graph, named by Liu and Li [25]. Notice that the Hermitian-adjacency matrices for mixed graphs

may be considered as a kind of the adjacency matrices for weighted directed graphs (3-colored

digraphs), which can be seen more clearly from the following definition. Let G be a mixed graph

of order n with V (G) = {v1, v2, . . . , vn}. The Hermitian-adjacency matrix of G is written as

H(G) = (hst) and

hst =


i, if vs → vt;

−i, if vt → vs;

1, if vs ∼ vt;

0, otherwise,

where i is the imaginary number unit and vs → vt means there is an oriented edge from vs to vt

and vs ∼ vt means there is an undirected edge between vs and vt. Motivated by the conclusion

of [16] and the importance of the nullity, we here extend the nullity of the adjacency matrix

of undirected graphs to the Hermitian-adjacency matrix of mixed graphs. For convenience, the

nullity of a mixed graph is always referred to as the nullity of the Hermitian-adjacency matrix

for the mixed graph.

The paper is arranged as follows. Prior to showing our main results, in Section 2 we list

some elementary notations and useful lemmas. Besides, we characterize the nullity of the mixed

cycles. In Section 3, the nullity of the mixed unicyclic graphs is formulated, which corrects an

error in a result of the oriented unicyclic graphs [26, Theorem 4.2]. In addition, the mixed graphs

with nullity n − 3 are characterized definitely, from which we can see that they are determined

by the spectrum of their Hermitian adjacency matrices under the switching equivalence.

2. Preliminaries

Throughout this paper, only simple graphs are considered. A graph G is called mixed, if

part of the edges in G are given some orientations, i.e., G contains both oriented edges and
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undirected edges. Clearly, the oriented graphs and the undirected graphs are two extreme cases

of the mixed graphs. The undirected simple graph corresponding to a mixed graph G is called

the underlying graph of G and denoted by GU . A mixed graph is said to be a mixed unicyclic

graph if its underlying graph is a unicyclic graph. For a mixed graph G, if the edge euv is oriented

from u to v, then we write u → v; if euv is undirected, then we write u ∼ v.

From the definition of the Hermitian-adjacency matrix for a mixed graph G, it is obvious

that H(G) is a Hermitian matrix, so its eigenvalues are real. Suppose C is a mixed cycle with

V (C) = {v1, v2, . . . , vk} labelled clockwise in C. If the value of h12h23 . . . h(k−1)khk1 is positive

(resp., negative), then we say the mixed cycle C is positive (resp., negative). Otherwise, the

value of h12h23 . . . h(k−1)khk1 is not real and we call C non-real cycle. In fact, the sign of a

mixed cycle (positive, negative, or non-real) is independent of the direction choice in calculation

[25]. A mixed graph is positive if each mixed cycle of it is positive. A mixed graph is called an

elementary graph if each component is a mixed cycle or an edge, and every edge-component is

viewed as undirected. A real spanning elementary subgraph of a mixed graph G is an elementary

graph such that its order is the same as G and all the mixed cycles of it are real (positive or

negative). By ηH(G) we denote the nullity of a mixed graph G for H(G) to distinguish from the

nullity η(X) of an undirected simple graph X for its adjacency matrix.

The following notations and definitions of mixed graphs are only based on their underlying

graphs. A vertex u is a pendant vertex if its degree is one, and the vertex adjacent to u is said

quasi-pendant. A matching of G is a subset of edges such that any two edges in it share no

common vertex. The maximum matching of G is a matching with the largest cardinality and

if it covers all the vertices of G, then we call it perfect matching. The matching number of G,

denoted by µ(G), is defined as the cardinality of a maximum matching.

Let U be a vertex subset of G and G− U be the subgraph obtained from G by deleting all

the vertices of U together with the edges incident to them. Sometimes, for a subgraph G1 of G

we use G − G1 instead of G − V (G1). By G1 ∪ G2 we denote the disjoint union of G1 and G2.

For the terminologies and notations not mentioned here, we refer the readers to [7] and [25].

Lemma 2.1 ([25]) Let G be a positive mixed graph. Then SpH(G) = SpH(GU ), where SpH(G)

and SpH(GU ) mean the spectrum of the Hermitian-adjacency matrices of G and its underlying

graph GU , respectively.

An edge is called cut-edge in a mixed graph G if its deletion leads to the increase of the

number of components of G. Then from [25, Theorem 2.16], the following corollary holds imme-

diately.

Corollary 2.2 Let euv be an oriented cut-edge of a mixed graph G. If it is changed to be an

undirected cut-edge, then the spectrum of H(G) remains invariant.

From the Lemma 2.1 and Corollary 2.2, we see that the following two results for the nullity

of undirected simple graphs also hold for mixed graphs.

Lemma 2.3 ([27]) Let T be a mixed tree (or mixed forest) of order n. Then for the nullity of
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T , ηH(T ) = n− 2µ(T ).

Lemma 2.4 ([27]) Let C be a positive mixed cycle with order n. Then ηH(C) = 2 if n ≡
0 (mod 4), and ηH(C) = 0 otherwise.

Suppose G is a mixed graph of order n and the characteristic polynomial of H(G) is written

as

Φ(G;λ) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn.

Lemma 2.5 ([25]) For an n-vertex mixed graph G, let R(G) = n−c and S(G) = m−n+c, where

m and c denote the number of edges and components of G, respectively. Then the coefficients

of Φ(G;λ) are given by

(−1)kck =
∑
G′

(−1)R(G′)+L(G′) · 2S(G′),

where the summation takes over all the real elementary subgraphs G′ of G with k vertices and

L(G′) is the number of negative mixed cycles in G′.

Lemma 2.6 Let C be a mixed cycle with order n.

(i) Suppose C is negative. If n is odd or n ≡ 0 (mod 4), then ηH(C) = 0. If n ≡ 2 (mod 4),

then ηH(C) = 2.

(ii) Suppose C is non-real. Then ηH(C) = 0 if n is even, and ηH(C) = 1 if n is odd.

Proof (i) Note that if the coefficient cn ̸= 0 in the characteristic polynomial Φ(C;λ), then

λ = 0 is not the root of Φ(C;λ) = 0, i.e., zero is not an eigenvalue of H(C).

Let C be a negative mixed cycle. If n is odd, then there is exactly one real elementary

subgraph, C itself. So by Lemma 2.5,

(−1)ncn = (−1)n−1+1 · 2 = (−1)n · 2 ̸= 0

and thus ηH(C) = 0 holds.

If n is even, it is easy to see that there are three real elementary subgraphs, namely C and

two real elementary subgraphs constructed by the two perfect matchings of C. Hence applying

Lemma 2.5 we have

(−1)ncn = (−1)n−1+1 · 2 + 2((−1)n−
n
2 · 2n

2 −n+n
2 ) = (−1)n · 2 + (−1)

n
2 · 2.

Furthermore, if n ≡ 0 (mod 4), then from the above equation (−1)ncn = (−1)n ·2+(−1)
n
2 ·2 = 4,

which implies that ηH(C) = 0. If n ≡ 2 (mod 4), then (−1)ncn = (−1)n · 2 + (−1)
n
2 · 2 = 0

and we proceed to consider cn−1 and cn−2. Clearly, in this case C contains no (n − 1)-vertex

real elementary subgraph, and thus cn−1 = 0. Moreover, one can easily obtain that n matchings

containing n
2 −1 edges construct all the (n−2)-vertex real elementary subgraphs of C. Therefore,

(−1)n−2cn−2 = n((−1)n−2−(n
2 −1) · 2n

2 −1−(n−2)+n
2 −1) = n(−1)

n
2 −1 ̸= 0.

So the characteristic polynomial can be written as Φ(C;λ) = λ2(λn−2 + c1λ
n−3 + · · · + cn−2),

together with cn−2 ̸= 0 which implies that ηH(C) = 2.
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(ii) Let C be a non-real mixed cycle. If n is even, there are exactly two real elementary

subgraphs induced by the two perfect matchings of C. Then

(−1)ncn = 2((−1)n−
n
2 · 2n

2 −n+n
2 ) = (−1)

n
2 · 2 ̸= 0,

which proves ηH(C) = 0.

Now assume n is odd, and it is obvious that C contains no real elementary subgraph. As

a result, cn = 0 follows. We further consider cn−1 and obtain that n matchings containing n−1
2

edges build all the (n− 1)-vertex real elementary subgraphs of C. Hence

(−1)n−1cn−1 = n((−1)n−1−(n−1
2 ) · 2

n−1
2 −(n−1)+n−1

2 ) = n(−1)
n−1
2 ̸= 0,

and finally we have ηH(C) = 1. The proof is completed. �
The following result, similar to that in undirected simple graphs, is of importance for the

research of nullity. Denote by rH(G) the rank of the Hermitian-adjacency matrix of mixed graph

G.

Lemma 2.7 Let G be a mixed graph and v1 be a pendant vertex with its quasi-pendant vertex

v2. Let G
′ = G− {v1, v2}. Then ηH(G) = ηH(G′).

Proof Denote by rH(G) the rank of the Hermitian-adjacency matrix of G. Then we have

rH(G) = r


 0 h12 0

h21 0 α

0T α H(G′)


 = r


 0 h12 0

h21 0 0

0T 0T H(G′)


 ,

where α is the conjugation and transposition of the row vector α and h12 ∈ {±i, 1}. Thus

rH(G) = rH(G′) + 2, which points out ηH(G) = ηH(G′) from ηH(G) + rH(G) = n. �
In undirected simple graphs, Gong et al. [7] extended a result as Lemma 2.7 to graphs with

pendant trees, and Fan et al. [16] obtained an analogous generalized conclusion in signed graphs.

Here we say that the similar results also hold in mixed graphs. See Theorems 2.9 and 2.10.

Definition 2.8 ([7]) Let T be a mixed tree with a vertex u and G be an n-vertex mixed graph,

disjoint with T . For 1 ≤ k ≤ n, denote by T (u)⊙kG the k-joining graph of T and G with respect

to u, obtained from T ∪ G by joining u and any k vertices of G with (oriented or undirected)

edges. Then we call T (u)⊙k G a mixed graph with the pendant tree T .

Let T be a mixed tree with at least two vertices and v ∈ V (T ). Suppose there is a maximum

matching not cover v in T , then v is said mismatched in T , and v is called matched, otherwise.

The following two theorems are similar to Theorems 3.1 and 3.3 of [7] and the proofs are absolutely

parallel. The readers can refer to [7].

Theorem 2.9 Let T be a mixed tree of order p with u a matched vertex and G be a mixed

graph with n vertices. Then for 1 ≤ k ≤ n,

ηH(T (u)⊙k G) = ηH(T ) + ηH(G).

Theorem 2.10 Let T be a mixed tree of order p with u a mismatched vertex. Let G be a mixed
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graph with n vertices. Then for 1 ≤ k ≤ n,

ηH(T (u)⊙k G) = ηH(T − u) + ηH(G+ u) = ηH(T )− 1 + ηH(G+ u),

where G+ u denotes the subgraph of T (u)⊙k G induced by u and the vertices in G.

3. Nullity of the mixed graphs

In this section, all mixed graphs are connected. We first introduce some definitions. Let

G be a mixed unicyclic graph with the unique cycle C. For v ∈ V (C), by G{v} we denote the

induced connected component of G with largest possible number of vertices, containing v and no

other vertices of C. Clearly, G{v} is a mixed tree. A unicyclic graph G is called Type I if there

is a vertex v ∈ V (C) such that v is matched in G{v}; otherwise G is of Type II. We see that if

G is of Type I, then G{v} and G−G{v} are mixed trees.

Lemma 3.1 Let G be a mixed unicyclic graph with matching number µ(G). If G is of Type

I and v ∈ V (C) is matched in G{v}, then µ(G) = µ(G{v}) + µ(G − G{v}); otherwise, µ(G) =

µ(C) + µ(G− C).

Proof First we suppose G is of Type I and v ∈ V (C) is matched in G{v}. Note that a

maximum matching of G{v}, together with one of G −G{v}, forms a matching of G. Thus we

have µ(G) ≥ µ(G{v}) + µ(G − G{v}). Next we assume that any maximum matchings of G{v}
and G−G{v} cannot form a maximum matching of G. Then in this case one can observe that a

maximum matching of G consists of a maximum matching of G{v}−v and one of G−{G{v}−v}.
Moreover, we obtain µ(G{v} − v) = µ(G{v}) − 1 and µ(G − {G{v} − v}) ≤ µ(G − G{v}) + 1,

which implies that

µ(G) = µ(G{v} − v) + µ(G− {G{v} − v}) ≤ µ(G{v}) + µ(G−G{v}).

Hence the first conclusion holds from the above.

Analogous with the above proof, the second result is clear. �
Let U be the graph set consisting of all the mixed unicyclic graphs with order n and cycle

length l. Denote by U1 a subset of U , consisting of all the following graphs: Type I mixed graphs,

Type II mixed graphs with non-real cycle, Type II mixed graphs with negative cycle and l ≡
0 (mod 4), Type II mixed graphs with positive cycle and l ≡ 2 (mod 4). Let U2 ⊂ U be composed

of Type II mixed graphs with odd length positive or negative cycle, and U3 = U \ {U1,U2}.
Now we formulate the nullity of a mixed unicyclic graph in terms of its matching number.

Theorem 3.2 Let G be a mixed unicyclic graph with order n and matching number µ(G).

Denote by C the unique cycle of G with length l. Then it follows that

ηH(G) =


n− 2µ(G), if G ∈ U1;

n− 2µ(G)− 1, if G ∈ U2;

n− 2µ(G) + 2, if G ∈ U3,

where Ui (1 ≤ i ≤ 3) are the graph sets shown above.
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Proof Assume that G is of Type I with v ∈ V (C) matched in G{v}. Then from Theorem 2.9

and Lemmas 2.3 and 3.1, we obtain

ηH(G) = ηH(G{v}) + ηH(G−G{v}) = n− 2(µ(G{v}) + µ(G−G{v}))

= n− 2µ(G). (1)

Next suppose that G is always of Type II. Then by Theorem 2.10, we have

ηH(G) = ηH(G− C) + ηH(C). (2)

The remaining proof can be divided into the following cases with respect to the sign of C.

Case 1 Suppose the mixed cycle C of G is non-real.

If the length l of C is even, then ηH(C) = 0 from Lemma 2.6 (ii). Therefore, by (2) and

Lemmas 2.3 and 3.1,

ηH(G) = ηH(G− C) = n− l − 2µ(G− C) = n− l − 2(µ(G)− l

2
) = n− 2µ(G).

If l is odd, then ηH(C) = 1 from Lemma 2.6 (ii), and thus

ηH(G) = ηH(G− C) + 1 = n− l − 2µ(G− C) + 1

= n− l − 2(µ(G)− l − 1

2
) + 1 = n− 2µ(G).

Case 2 Assume the mixed cycle C of G is negative.

If l is odd or l ≡ 0 (mod 4), then ηH(C) = 0 from Lemma 2.6 (i). Applying (2) and Lemmas

2.3 and 3.1, we derive

ηH(G) = ηH(G− C) = n− l − 2µ(G− C) = n− l − 2(µ(G)− ⌊ l
2
⌋),

where ⌊a⌋ denotes the largest integer not more than a. Thus ηH(G) = n−2µ(G) if l ≡ 0 (mod 4),

and ηH(G) = n− 2µ(G)− 1 if l is odd.

If l ≡ 2 (mod 4), then ηH(C) = 2 from Lemma 2.6 (i). Similarly, we have

ηH(G) = ηH(G− C) + 2 = n− l − 2µ(G− C) + 2

= n− l − 2(µ(G)− l

2
) + 2 = n− 2µ(G) + 2.

Case 3 Let the mixed cycle C of G be positive. Applying Lemma 2.4, one can easily prove the

result with the analogous method in Case 2, omitted. �

Remark 3.3 From Theorem 3.2, we see that it combines the similar results for undirected

unicyclic graphs [8, Theorem 2.1] and for oriented unicyclic graphs [26, Theorem 4.2], and besides

it also contains the case of non-real cycle in G. Furthermore, we find there exists an error

in the condition µ(G) = 2µ(G − C) for the result of [26, Theorem 4.2]. The oriented graph

in Figure 1 may be a counter-example, which is evenly-oriented and not satisfy the condition

µ(Γ) = 2µ(Γ − C), but the rank of its Hermitian-adjacency or skew-adjacency matrix is also

2µ(Γ)− 2, not 2µ(Γ). So, here we show our statement and proof in Theorem 3.2.
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Γ

C

Figure 1 A counter-example for [26, Theorem 4.2]

Moveover, from Theorem 3.2 we easily derive the mixed unicyclic graphs with nonsingular

Hermitian-adjacency matrix (i.e., ηH(G) = 0). See the following corollary.

Corollary 3.4 Let G be a mixed unicyclic graph with order n. Then ηH(G) = 0 if and only if

G ∈ U1 with perfect matching or G ∈ U2 with G− C having perfect matching.

In [28], the author determined all the n-vertex mixed graphs with ηH = n−2 (i.e., rH = 2).

Then in the following we will characterize all the mixed graphs with nullity ηH = n − 3 (i.e.,

rH = 3). Prior to demonstrating the result, we give some concepts used in [25] and [28].

Let D be a diagonal matrix with diagonal entries belonging to {1,±i}. For two mixed

graphs G1 and G2, we say G1 and G2 are switching equivalent, denoted by G1 ∼ G2, if there

exists D such that H(G1) = D−1H(G2)D. Then we see the switching equivalent graphs have

the same spectrum. Two vertices u, v of a mixed graph G are called twin points, if G is switching

equivalent to a mixed graph G′ in which u and v have the same neighborhood and same nature

(undirected or oriented) edges. Note that the deletion of twin points does not change the rank of

Hermitian-adjacency matrix. If a mixed graph contains no twin points, then we call it reduced.

By K1
a,b,c and K2

a,b,c we denote two mixed complete tripartite graphs, whose reduced forms are

switching equivalent to positive mixed C3 and negative mixed C3 (see Figure 2 for example),

respectively.

Figure 2 A positive mixed C3 and a negative mixed C3

The following Lemmas are necessary for us.

Lemma 3.5 ([25]) Let G be a mixed bipartite graph. Then the spectrum of H(G) is symmetry

about zero.

Denote by S+
n the mixed graph obtained from the mixed star Sn by adding an (undirected

or oriented) edge joining two pendant vertices. The mixed complete graph of order n is written

as Kn.

Lemma 3.6 Let G be a connected mixed graph of order n with rH(G) = 3. Then G contains

no S+
4 and K4 as induced subgraphs.

Proof Lemma 2.7 implies that rH(S+
4 ) = 4, thus the first result holds. Next we will discuss the

rank of K4. If we also have rH(K4) = 4, then the result follows immediately.
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Let the characteristic polynomial of H(K4) be

Φ(K4;λ) = λ4 + c1λ
3 + c2λ

2 + c3λ
1 + c4.

It suffices to prove c4 ̸= 0. We can observe that there are three real elementary subgraphs of K4

with 4 vertices, which only consist of edges (i.e., three maximum matchings). In addition, there

are also three spanning cycles C4 in K4. If each spanning C4 is non-real, then there are only real

elementary subgraphs composed of edges. Thus from Lemma 2.5, c4 = 3·(−1)4−2·22−4+2 = 3 ̸= 0.

Suppose there exists positive or negative spanning C4, then by Lemma 2.5, S(C4) = 4−4+1 = 1.

Therefore, we see that each real spanning C4 contributes an even number to c4, but all the real

elementary subgraphs consisting of edges contribute an odd number 3 to c4. So, in this case we

also derive c4 ̸= 0. Finally, rH(K4) = 4 and the result holds. �

Lemma 3.7 Let G be a connected mixed graph with order n. If rH(G) = 3, then G is a mixed

complete tripartite graph.

Proof If G is a mixed bipartite graph, then Lemma 3.5 tells us rH(G) is an even number, a

contradiction. Thus G is non-bipartite. Suppose Cl is the longest induced cycle of G. Then

Lemmas 2.4 and 2.6 imply that l ≤ 4, otherwise, if l ≥ 5 then the rank of H(Cl), as a principal

submatrix of H(G), is not less than 4. So we see rH(G) ≥ 4, a contradiction. Now from the

above proof we claim that G must contain C3.

Next we proceed to prove that G is a mixed complete tripartite graph. Let the vertex set

of C3 be V (C3) = {x, y, z}. Let Q be the largest induced mixed complete tripartite subgraph of

G, containing C3. By X,Y, Z we denote the three color classes of Q and x ∈ X, y ∈ Y, z ∈ Z.

Suppose Q ̸= G, then there is a vertex u ∈ V (G) \ V (Q) adjacent to the vertices of Q. Without

loss of generality, let u be adjacent to the vertices of V (C3). Then from Lemma 3.6, u is exactly

adjacent to two vertices, say x and y, of V (C3). Applying Lemma 3.6 again, we have u is not

adjacent to any vertex of Z. Otherwise, G contains K4 as an induced subgraph, a contradiction

by Lemma 3.6. Furthermore, u must be adjacent to any vertex of X and Y . If not, G has

S+
4 as an induced subgraph which contradicts rH(G) = 3 from Lemma 3.6. Now we obtain a

larger induced complete tripartite subgraph than Q by adding u to Z, which contradicts the

assumption for Q. Consequently, the result holds. �

Theorem 3.8 Let G be a connected mixed graph of order n. Then ηH(G) = n− 3 if and only

if G is switching equivalent to K1
a,b,c or K2

a,b,c, where 1 ≤ a ≤ b ≤ c and a+ b+ c = n.

Proof For the sufficiency part, since the deletion of twin points does not change the rank,

from Lemmas 2.4 and 2.6 we easily get rH(K1
a,b,c) = rH(K2

a,b,c) = 3, and thus ηH(K1
a,b,c) =

ηH(K2
a,b,c) = n− 3.

Next we verify the other direction. By Lemma 3.7, we shall suppose G = Ka,b,c is a mixed

complete tripartite graph. Denote by X,Y, Z the three color classes of G. Then we claim that

the vertices of X,Y, Z are twin points, respectively. Otherwise, suppose two vertices u, v of X

are not twin points without loss of generality. Then the two rows (columns) indexed by u, v
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in H(G) will be linear independent, which implies that rH(G) ≥ 4, a contradiction. Hence, we

obtain the reduced form of G is a mixed triangle, and furthermore it is a positive or a negative

mixed triangle from Lemmas 2.4 and 2.6. Finally, we see G is switching equivalent to K1
a,b,c or

K2
a,b,c. This completes the proof. �

A mixed graph G is said determined by the spectrum of H(G), if any mixed graph sharing

the same spectrum with G is switching equivalent to G. The problem on cospectral (undirected)

graphs (or on graph determined by its spectrum) has long history, due to Günthard and Primas

[29]. In [28], the author showed that the mixed graphs with nullity n−2 are not always determined

by their spectrum of Hermitian-adjacency matrices. In the following we give a conclusion for the

mixed graphs with nullity n− 3.

Theorem 3.9 Let G be an n-vertex mixed graph with nullity n− 3. Then G is determined by

its spectrum of H(G).

Proof Suppose G is a mixed graph of order n with nullity n − 3. Then from Theorem 3.8

G is switching equivalent to either K1
a,b,c or K2

a,b,c. Since K1
a,b,c and K2

a,b,c are not switching

equivalent, it suffices to prove that the spectrum of H(K1
a,b,c) is different from that of H(K2

a,b,c).

Let c13 and c23 be the characteristic polynomial coefficients corresponding to λn−3 for H(K1
a,b,c)

and H(K2
a,b,c), respectively. If we can prove c13 ̸= c23, then this completes the proof. Note that

each subgraph C3 of K1
a,b,c (resp., K2

a,b,c) is positive (resp., negative). Thus from Lemma 2.5 we

obtain c13 = −c23. Consequently, the result follows. �
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