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1. Introduction

In recent years, there has been tremendous interest in the inner relationship between the

theory of combinatorial designs with some kinds of symmetric properties and the theory of

finite groups. Studying the symmetric properties of designs such as point-transitivity and flag-

transitivity can make us better understand the structure of some groups. We are concerned in

this paper with the flag-transitive (v, k, λ)-symmetric designs when λ = 4.

A 2-(v, k, λ) symmetric design is an incidence structure D = (P,B) where P is a non-empty

set of points and B is the set of blocks with an incidence relation such that: (i) |P| = |B| = ⊑,

(ii) every block is incident with exactly k points, and (iii) every 2-element subset of points is

incident with exactly λ blocks. The design D is called nontrivial if 2 < k < v−1, and denoted by

(v, k, λ)-symmetric design for simplicity. For a nontrivial (v, k, λ)-symmetric design, let r denote

the number of the blocks through a given point, it is well-known that r = k and k(k−1) = λ(v−1).

A flag of D is an incident pair of point and block. An automorphism of a design D = (P,B)
is a permutation of P which leaves the set B invariant. The group consisting of all automorphisms

of D is the full automorphism group of D, denoted by Aut(D). For G ≤ Aut(D), the design

D = (P,B) is called flag-transitive if G is transitive on the set of flags, and point-primitive if G

is primitive on P.

In fact, 2-(v, k, 1) design is a linear space. Saxl [1] classified the finite linear spaces with

an automorphism group which is an almost simple group of Lie type acting flag-transitively. In

2007, Regueiro [2] gave the classification of biplanes which admits a flag-transitive automorphism
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group of almost simple type with classical socle. Zhou, Dong and Fang [3] proved that if D is a

nontrivial triplane with a flag-transitive point-primitive automorphism group G which is almost

simple and classical socle, then D has parameters (11, 6, 3) and (45, 12, 3). Zhou and Tian proved

in [4] that if a 2-(v, k, 4) symmetric design admits a flag-transitive point-primitive automorphism

group G with PSL2(q) as socle, then D is a 2-(15, 8, 4) symmetric design.

The main purpose of this paper is to generalize above result to the case of X := Soc(G) =

PSLn(q), with n ≥ 3, and (n, q) ̸= (3, 2).

Now, we give the result as follows.

Theorem 1.1 If D is a nontrivial (v, k, 4)-symmetric design admitting a flag-transitive, point-

primitive automorphism group G of almost simple type, then the socle of G cannot be PSLn(q),

with n ≥ 3, and (n, q) ̸= (3, 2).

This, together with [4, Theorem 1.1], yields the following:

Corollary 1.2 Let D be a (v, k, 4)-symmetric design, which admits a flag-transitive, point-

primitive automorphism group G of almost simple type and X = PSLn(q) for n ≥ 2 and (n, q) ̸=
(3, 2). Then D is a 2-(15, 8, 4) symmetric design with X = PSL2(9) and Xx = PGL2(3), where

x is a point of D.

2. Preliminary results

Lemma 2.1 ([5]) If D is a (v, k, 4)-symmetric design and G is a flag-transitive point-primitive

automorphism group of D, then

(i) k(k − 1) = 4(v − 1);

(ii) 16v − 15 is a square;

(iii) k2 > 4v, and |Gx|3 > 4|G|, where x ∈ P;

(iv) k | 4di, where di is any subdegree of G;

(v) k | 4 · gcd(v − 1, |Gx|).

Lemma 2.2 ([6, 1.6]) If X is a simple group of Lie type in characteristic p, then any proper

subgroup of index prime to p is contained in a parabolic subgroup of X.

Lemma 2.3 Suppose D is a (v, k, 4)-symmetric design with a primitive, flag-transitive almost

simple automorphism group G with simple socle X of Lie type in characteristic p, and the

stabilizer Gx is not a parabolic subgroup of G. If p is odd, then p does not divide k; and if p = 2,

then 8 does not divide k. Hence |G| < 4|Gx|2p′ · |Gx|.

Proof By Lemma 2.1, p divides v = [G : Gx]. Since k divides 4(v − 1), if p is odd, then

(k, p) = 1, and if p = 2, then (k, p) ≤ 2. Hence k divides 4|Gx|p′ , and since k2 > 4v, we have

|G| < 4|Gx|2p′ · |Gx|.

Lemma 2.4 ([2, Lemma 9]) Suppose p divides v, and Gx contains a normal subgroup H of Lie

type in characteristic p which is quasisimple and p - |Z(H)|; then k is divisible by [H : P ], for
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some parabolic subgroup P of H.

Lemma 2.5 ([7, Lemma 3.9]) If X is a group of Lie type in characteristic p, acting on the set

of cosets of a maximal parabolic subgroup, and X is not PSLd(q), PΩ+
2m(q) (with m odd), nor

E6(q), then there is a unique subdegree which is a power of p.

3. Proof of Theorem 1.1

In this section, let D be a nontrivial (v, k, 4)-symmetric designs, and G ≤ Aut(D) be a

flag-transitive, point-primitive with X = PSLn(q), where n ≥ 3 and (n, q) ̸= (3, 2).

Let q = pm, and take {v1, . . . , vn} to be a basis for the natural n-dimensional vector space

V for X. Since the stabilizer Gx is a maximal subgroup of G, then by Aschbacher’s Theorem

in [8], Gx lies in one of the families Ci of subgroups of ΓLn(q), or in the set S of almost simple

subgroups which is not contained in any of these families. We will analyze each of these cases

separately. In order to describe the Aschbacher subgroups, we denote the pre-image of the group

H by ˆH in the corresponding linear group.

C1) In this case, Gx is reducible. That is to say, Gx
∼= Pi stabilizes an i-dimension subspace

of V . Suppose Gx
∼= P1. Then G is 2-transitive, and this case has already been discussed by

Kantor [9].

Now suppose Gx
∼= Pi (1 < i < n) fixes W which is an i-subspace of V . Since our

arguments are arithmetic and for i and n − i we have the same calculations, we will assume

i ≤ n/2. Considering the Gx-orbits of the i-spaces intersecting W in (i− 1)-dimensional spaces,

we know k divides
4q(qi − 1)(qn−i − 1)

(q − 1)2
.

Also,

v =
(qn − 1) · · · (qn−i+1 − 1)

(qi − 1) · · · (q − 1)
> qi(n−i),

but k2 > 4v, we have
4q2(qi − 1)2(qn−i − 1)2

(q − 1)4
> qi(n−i),

so i = 2; i = 3, n = 6, 7, 8, 9, 10 or i = 4, n = 8.

Case 1 i = 4 and n = 8. Then

k | 4q(q
4 − 1)2

(q − 1)2
, v =

(q8 − 1)(q7 − 1)(q6 − 1)(q5 − 1)

(q4 − 1)(q3 − 1)(q2 − 1)(q − 1)
> q16.

The inequality k2 > 4v implies q = 2 or 3. But for every q, 16v − 15 is not a square.

Case 2 i = 3 and n = 6, 7, 8, 9 or 10.

Subcase 2.1 q = 2.

For n = 6, 7, 8, 9 or 10, we have v = 1395, 11811, 97155, 788035 or 6347715, respectively, and

it is easily known that 16v − 15 is not a square for every case.
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Subcase 2.2 q > 2.

If n = 6, then k divides

4(
q(q3 − 1)(q3 − 1)

(q − 1)2
,
(q6 − 1)(q5 − 1)(q4 − 1)

(q3 − 1)(q2 − 1)(q − 1)
− 1)

and k2 > 4v, and we have 4 > q5(q2 − q + 1), which is a contradiction.

The other cases can be ruled out in the same way.

Case 3 i = 2.

Here, v = (qn−1)(qn−1−1)
(q2−1)(q−1) , and G has suborbits |{2-subspaces H: dim(H ∩ W )=1}| and

|{2-subspaces H: H ∩W = 0}| with sizes:

q(q + 1)(qn−2 − 1)

q − 1
and

q4(qn−2 − 1)(qn−3 − 1)

(q2 − 1)(q − 1)
.

If n is even, then k divides 4q(qn−2−1)
q2−1 , since q+1 is prime to qn−3−1

q−1 . Then k ≤ 4q(qn−2−1)
q2−1 ,

k2 ≤ 16q2(qn−2−1)2

(q2−1)2 = ( q
n−2−1
q−1 )2 · (q+1)2 · 16q2

(q+1)4 < 4 · (q
n−1)(qn−1−1)
(q−1)(q2−1) · 16q2

(q+1)4 < 4 · (q
n−1)(qn−1−1)
(q−1)(q2−1) =

4v, which contradicts the condition k2 > 4v.

Hence n is odd, and k divides 4q(qn−2−1)
q−1 (q + 1, n−3

2 ). First assume n = 5. Then v =

(q2 + 1)(q4 + q3 + q2 + q + 1), and k | 4q(q2 + q + 1). Suppose k = 4q(q2+q+1)
u , by k2 > 4v, we

have
4q2(q2 + q + 1)2

u2
> (q2 + 1)(q4 + q3 + q2 + q + 1),

which implies u2 < 4q2(q2+q+1)2

(q2+1)(q4+q3+q2+q+1) < 4(q4+2q3+3q2+2q+1)
q4 = 4(1 + 2

q + 3
q2 + 2

q3 + 1
q4 ) <

4(1 + 2
2 + 3

22 + 2
23 + 1

24 ) = 12 + 1
4 , then u = 1, 2, 3.

If u = 1 or 2, then k = 4q(q2 + q+1) or 2q(q2 + q+1) which contradicts the basic equation

k(k − 1) = 4(v − 1).

If u = 3, then k = 4
3q(q

2 + q + 1). By k2 > 4v, we have

16

9
q2(q2 + q + 1)2 > 4(q2 + 1)(q4 + q3 + q2 + q + 1).

It follows that

5q6 + q5 + 6q4 + 10q3 + 14q2 + 9q + 9 < 0,

a contradiction.

Therefore n ≥ 7. Here

v = (qn−1 + qn−2 + · · ·+ q2 + q + 1)(qn−3 + qn−5 + · · ·+ q4 + q2 + 1),

and k | 4dc, where d = q(qn−3 + qn−4 + · · · + q + 1) = q(qn−2−1)
q−1 and c = (q + 1, n−3

2 ). Say

k = 4dc
e , then k2 = 16d2c2

e2 > 4v implies e2 < 4d2c2

v < 4 · 4q2 = 16q2. Thus, we have e < 4q.

Then we have the following equality

v − 1

d
= qn−2 + qn−4 + · · ·+ q3 + q + 1,

and also, since k(k − 1) = 4(v − 1), we have

k =
4(v − 1)

k
+ 1 =

eqn−2 + eqn−4 + · · ·+ eq3 + eq + e+ c

c
,
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then

kc = eqn−2 + eqn−4 + · · ·+ eq3 + eq + e+ c.

Thus we have (kc, q) = (e+c, q) and (kc, qn−3+qn−4+ · · ·+q2+q+1) divides (kc, e(qn−3+

qn−4+ · · ·+ q2+ q+1)) which equals to (eqn−4+eqn−6+ · · ·+eq3+eq+2e+ c, (2e+ c)q+e+ c).

From k | 4dc, we have kc | 4c2d. Then, kc = (kc, 4c2d) divides (kc, 4c2) ·(kc, d), which equals

to (kc, 4c2) · (kc, q(qn−3 + qn−4 + · · · + q + 1)). But (kc, q(qn−3 + qn−4 + · · · + q + 1)) divides

(kc, q) · (kc, qn−3 + qn−4 + · · ·+ q+1) which implies kc divides 4c2 · (e+ c, q) · [(2e+ c)q+ e+ c].

Thus kc | 4c2q[(2e+ c)q + e+ c]. Then kc ≤ 4c2q[(2e+ c)q + e+ c]. It follows that

qn−2 + qn−4 + · · ·+ q3 + q + 1 + 1 ≤ eqn−2 + eqn−4 + · · ·+ eq3 + eq + e+ c = kc

≤ 4c2q[(2e+ c)q + e+ c]

< 4(
n− 3

2
)2q[(8q +

n− 3

2
)q + 4q +

n− 3

2
]

= (n− 3)2(8q3 +
n+ 5

2
q2 +

n− 3

2
q).

If n = 7, then we get q5 + q3 + q + 2 < 128q3 + 96q2 + 32q. It follows q ≤ 11, then

q = 2, 3, 4, 5, 7, 8, 9 or 11.

If n = 9, then we have q7 + q5 + q3 + q + 2 < 288q3 + 252q2 + 108q. It follows that q = 2, 3

or 4.

If n = 11, then q9 + q7 + q5 + q3 + q + 2 < 512q3 + 512q2 + 256q forces q = 2.

If n = 13, then q11 + q9 + q7 + q5 + q3 + q + 2 < 800q3 + 900q2 + 500q implies q = 2.

If n ≥ 15, we get

qn−2 + qn−4 + · · ·+ q3 + q + 2 ≤ eqn−2 + eqn−4 + · · ·+ eq3 + eq + e+ c = kc

≤ 4c2q[(2e+ c)q + e+ c]

< 4(q + 1)2q[(8q + q + 1)q + 4q + q + 1]

= 36q5 + 96q4 + 88q3 + 32q2 + 4q.

But qn−2 + qn−4 + · · · + q3 + q + 2 > 36q5 + 96q4 + 88q3 + 32q2 + 4q for all n ≥ 15, a

contradiction.

Now, we consider 4 possible cases: (1) n = 7, q = 2, 3, 4, 5, 7, 8, 9 or 11; (2) n = 9, q = 2, 3

or 4; (3) n = 11, q = 2; (4) n = 13, q = 2.

Subcase (1) n = 7, q = 2, 3, 4, 5, 7, 8, 9 or 11.

If q = 2, then c = 1 and 1 ≤ e < 8. But kc = 43e+ 1 - 40e+ 24 for every e.

If q = 3, then c = 2 and 1 ≤ e < 12. For every e, kc = 2(137e + 1) - 48(7e + 8), which is

impossible.

If q = 4, then c = 1 and 1 ≤ e < 16. For every e, kc = (45 + 43 + 5)e + 1 > 144e + 80, a

contradiction.

The other cases can be ruled out similarly.

Subcase (2) n = 9, q = 2, 3 or 4.
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If q = 2, then c = 3 and 1 ≤ e < 8. For every e, kc = (27 + 25 + 23 + 3)e+ 3 - 360e+ 648.

If q = 3, then c = 1 and 1 ≤ e < 12. For every e, kc = (37 + 35 + 33 + 4)e+ 1 > 84e+ 48.

If q = 4, then c = 1 and 1 ≤ e < 16. For every e, kc = (47 + 45 + 43 + 5)e+ 1 > 144e+ 80.

Subcase (3) n = 11, q = 2.

If q = 2, then c = 1 and 1 ≤ e < 8. But then, kc = (29 + 27 + 25 + 23 + 3)e+ 1 > 40e+ 24.

Subcase (4) n = 13, q = 2.

If q = 2, then c = 1 and 1 ≤ e < 8. For every e, kc = (211+29+27+25+23+3)e+1 > 40e+24.

C′
1) Now G contains a graph automorphism and the stabilizer Gx stabilizes a pair {U,W}

of subspaces of dimension i and n − i respectively, with i < n/2. Write G0 for the subgroup

G ∩ PΓLn(q) of index 2 in G.

First suppose U ⊂ W . By Lemma 2.5, there is a subdegree with a power of p. On the other

hand, if p is odd, then the highest power of p dividing v − 1 is q, it is 2q if q > 2 is even, and is

at most 2n−1 if q = 2. Hence k2 < v, a contradiction.

Now assume V = U ⊕ W . Here p divides v, so (k, p) ≤ 4. First suppose i = 1. If

x = {⟨v1⟩, ⟨v2, . . . , vn⟩}, then consider y = {⟨v1, . . . , vn−1⟩, ⟨vn⟩}, so [Gx : Gxy] =
qn−2(qn−1−1)

q−1

and k divides 4(qn−1−1)
q−1 . However, v = qn−1(qn−1)

q−1 = qn−1(qn−1 + qn−2 + · · · + q2 + q + 1) >

qn−1 · qn−1 = q2(n−1) implies k2 ≤ 16(qn−1−1)2

(q−1)2 ≤ 4q2(n−1) < 4v, a contradiction.

Next suppose i > 1. Consider x = {⟨v1, . . . , vi⟩, ⟨vi+1, . . . , vn⟩} and y = {⟨v1, . . . , vi−1, vi +

vn⟩, ⟨vi+1, . . . , vn⟩}. Then [G0
x : G0

xy]p′ divides 4(qi − 1)(qn−i − 1), so k < 4qn. On the other

hand, v > q2i(n−i), so again k2 < 16q2n ≤ 4q2i(n−i) < 4v, a contradiction.

C2) In this case, Gx preserves a partition V = V1 ⊕ · · · ⊕ Va, with each Vi of the same

dimension b, where n = ab.

Now let b = 1 and n = a, and consider x = {⟨v1⟩, . . . , ⟨vn⟩} and y = {⟨v1+v2⟩, ⟨v2⟩, . . . , ⟨vn⟩}.
Since n > 2, we see k divides 8n(n − 1)(q − 1). Now v > qn(n−1)

n! and k2 > 4v, so n =

3, q = 2, 3, 4, 5, 7 or n = 4, q = 2. But there is no such value of k satisfying the equation

k(k − 1) = 4(v − 1).

Then consider b > 1, and let x = {⟨v1, . . . , vb⟩, ⟨vb+1, . . . , v2b⟩, . . .} and y = {⟨v1, . . . , vb−1, vb+1⟩,
⟨vb, vb+2, . . . , v2b⟩, . . . , ⟨vn−b+1, . . . , vn⟩}. Then, k | 4a(a−1)(qb−1)2

q−1 , so v > qn(n−b)

a! , forcing n =

4, q = 2, 3, 4, 5 and a = 2 = b.

Since v = |G : Gx|, we have v | |G|. By X = PSLn(q) and X EG ≤ Aut(X) = X ·Out(X),

we get |G| | |X| · |Out(X)|. Then v | |X| · |Out(X)|.
For every (n, q) pair (n = 4, 2 ≤ q ≤ 5), by k | 4a(a−1)(qb−1)2

q−1 , v > qn(n−b)

a! and the equation

k(k − 1) = 4(v − 1), we can get the possible (v, k) parameters. Since X = PSLn(q), |Out(X)|
and |X| are known. The contradiction can be obtained by v - |X| · |Out(X)|.

For instance, if q = 2 and n = 4, since k | 72, then v > 27 = 128. By k(k − 1) = 4(v − 1),

the possible (v, k) parameters are (139, 24), (316, 36) and (1279, 72). Since X = PSL4(2), then

|Out(X)| = 2 and |X| = 20160 = 26 · 32 · 5 · 7. But v - |X| · |Out(X)| for every v, a contradiction.

C3) Here Gx is an extension field subgroup. Since 4|Gx| · |Gx|2p′ > |G|, by Lemma 2.3, either:
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(1) n = 3 and X ∩Gx =ˆ(q2 + q + 1) · 3 < PSL3(q) = X, or

(2) n is even and Gx = NG(ˆPSLn
2
(q2)).

First consider Subcase (1). Here v = q3(q2−1)(q−1)
3 , where q = pm, so k divides 12m(q2 +

q + 1), and k2 > 4v implies m = 1, q = 2, 3, 5, 7 or 11; m = 2, q = 22 or 32; m = 3, q = 23 or 33;

m = 4, q = 24 and m = 5, q = 25. But for every case, 16v − 15 is not a square.

Now consider Subcase (2). Write n = 2m0. Since p divides v, we have (k, p) ≤ 4. First

suppose n ≥ 8 and let W be a 2-subspace of V considered as a vector space over the field of q2

elements, then W is a 4-subspace over a field of q elements. If we consider the stabilizer of W

in Gx and in G, we see that in GW \GxW there is an element g such that Gx ∩Gg
x contains the

point-wise stabilizer of W in Gx. Therefore, k | 4(qn − 1)(qn−2 − 1), contrary to k2 > 4v.

Now let n = 6. Then since (k, p) ≤ 4, Lemma 2.4 implies k is divisible by the index of

a parabolic subgroup of Gx, so it is divisible by the primitive prime divisor of q3 − 1, but this

divides the index of Gx in G, which is v, a contradiction.

Therefore n = 4. Then v = q4(q3−1)(q−1)
2 , and so k is odd and prime to q − 1. The fact

(v − 1, q + 1) = 1 implies k is also prime to q + 1, and hence k | m(q2 + 1), contrary to k2 > 4v,

another contradiction.

C4) In this case, Gx stabilizes a tensor product of spaces of different dimensions, and n ≥ 6.

In all these cases v > k2, which Contradicts the fact k2 > 4v.

C5) Here Gx is the stabilizer in G of a subfield space. So Gx = NG(PSLn(q0)), where q = qt0

and t prime.

If t > 2, then 4|Gx| · |Gx|2p′ > |G| forces n = 2, a contradiction. Hence t = 2.

If n = 3, then v =
(q30+1)(q20+1)q30

(q0+1,3) . Since p divides v, we have (k, p) ≤ 4, so Lemma 2.4

implies GxB is contained in a parabolic subgroup of Gx, where B is a block incident with x.

Therefore, q20 + q0 + 1 divides k, and (v − 1, q20 + q0 + 1) divides 2q0 + (q0 + 1, 3), forcing q0 = 2

and v = 120, but then 16v − 15 = 3 · 5 · 127 is not a square.

If n = 4, then by Lemma 2.4 we see q20+1 divides k, but q20+1 also divides v, a contradiction.

Hence n ≥ 5. Considering the stabilizers of a 2-dimensional subspace of V , we see that k

divides 4(qn0 − 1)(qn−1
0 − 1), but then k2 < v, which is also a contradiction.

C6) In this case, Gx is an extraspecial normalizer.

Since 4|Gx| · |Gx|2p′ > |G|, we have n ≤ 4. Now, n > 2 implies that Gx ∩X is either 24A6 or

32Q8, with X either PSL4(5) or PSL3(7), respectively. Since k divides 4(v − 1, |Gx|), we obtain

that k ≤ 6, contrary to the fact k2 > 4v.

Let n = 2. Then Gx ∩X = A4.a < L2(p) = X, with a = 2 precisely when p ≡ ±1 (mod 8),

and a = 1 otherwise (and there are a conjugacy classes in X). From |G| < |Gx|3, we obtain

p ≤ 13. That is to say, a = 2 and p = 7 or a = 1 and p = 5, 11, 13.

For every pair (a, p), it is easy to know that 16v − 15 is not a square.

C7) In this case, Gx stabilizes the tensor product of a space of the same dimension, say b, and

n = ba. Since |Gx|3 > |G|, we have n = 4 and Gx∩X = (PSL2(q)×PSL2(q))2
d < X = PSL4(q),

where d = (2, q − 1). Then v = q4(q2+1)(q3−1)
z > q9

z , with z = 2 unless q ≡ 1 (mod 4), in which

case z = 4. So k divides 4m(q2 − 1)2, and if q is odd, then k divides m(q2−1)2

16 .
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If q is odd, then k2 < q9

16 < q9

z < v, a contradiction. Hence q is even, and so k =
4m(q2−1)2

y , where y is an integer, and since k2 > 4v, we get q = 2, 22, 23, 24, 25. In this case,

v = q4(q2+1)(q3−1)
4 .

All these possibilities can be ruled out by the following strategy. For every q = 2i (1 ≤ i ≤ 5),

first computing the value of v, then by k2 > 4v, we get the lower bound of k. Then combining

it with k = 4m(q2−1)2

y obtains the values of k. But k - 4(v − 1), we get contradiction.

For example, if q = 2, v = q4(q2+1)(q3−1)
4 = 140. By k2 > 4v, we have k ≥ 24. However,

k = 4m(q2−1)2

y = 36
y , we have k = 36. But k - 4(v − 1), since 4(v − 1) = 22 · 139.

C8) Now suppose Gx to be a classical group.

Case 1 First assume Gx is a symplectic group, so n is even. By Lemma 2.2, k is divisible by a

parabolic index in Gx.

If n = 4, then v = q2(q3−1)
(2,q−1) , and

q4−1
q−1 divides k, however (v − 1, q2 + 1) divides 2, which is

a contradiction.

If n = 6, then v = q6(q5−1)(q3−1)
(3,q−1) and q3 + 1 divides k, but q3 + 1 divides 4(v − 1) only if

q = 2, so k = 9, too small.

Then let n ≥ 8. If we consider the stabilizers of a 4-dimensional subspace of Gx and G, we

see that k divides twice the odd part of (qn − 1)(qn−2 − 1). Also, (k, q − 1) ≤ 2, so k divides
4(qn−1)(qn−2−1)

(q−1)2 , and therefore k ≤ 16q2n−4. The inequality k2 > 4v forces n = 8. In this case,

v = q12(q7−1)(q5−1)(q3−1)
(q−1,4) which implies q ≤ 3, and in neither of these two cases is 16v − 15 a

square.

Case 2 Next let Gx be orthogonal. Then q is odd, since that is the case with odd dimension,

and with even dimension it is a consequence of the maximality of Gx in G. The case in which

n = 4 and Gx is of type O+
4 will be investigated later. In all other cases Tits Lemma (Lemma

2.2) implies that k is divisible by a parabolic index in Gx and is therefore even, but it is not

divisible by 4 since v is also even and (k, v) ≤ 4. This and the fact that q does not divide k

implies k > v. This is impossible.

Case 3 Finally consider Gx to be a unitary group over the field of q0 elements, with q = q20 . If

n ≥ 4, then considering the stabilizers of a nonsingular 2-subspace of V in G and Gx, we see k

divides 4(qn0 − (−1)n)(qn−1
0 − (−1)n−1). The inequality k2 > 4v implies n = 4, and in this case

v =
q60(q

4
0+1)(q30+1)(q20+1)

(q0−1,4) . Since k divides 4(q40 − 1)(q30 + 1) and (k, (q20 + 1)(q0 − 1)) ≤ 2, we see

that k divides 4(q30 + 1)(q0 + 1), so k2 ≤ 4v. It is impossible. Thus n = 3, and by Lemma 2.2,

q20 − q0 + 1 divides k, and k divides 4(v − 1) with v =
q30(q

3
0−1)(q20+1)

z with z either 1 or 3. This

implies q0 = 2, but then v = 280, and 16v − 15 is not a square.

S) In the end, we consider the case where Gx is an almost simple group (modulo the

scalars), not contained in the Aschbacher subgroups of G. From [10, Theorem 4.2], we have the

possibilities |Gx| < q2n+4, G′
x = An−1 or An−2, or Gx ∩X and X are as in [10, Table 4].

From Lemma 2.1, we have |G| < |Gx|3 with |G| ≤ qn
2−n−1 forcing n ≤ 7, and by the bound

4|Gx||Gx|2p′ > |G| we need only to consider the following possibilities [11, Chapter 5]:
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(1) n = 2, and Gx ∩X = A5, with q = 11, 19, 29, 31, 41, 49, 59, 61 or 121;

(2) n = 3, and Gx ∩X = A6 < PSL3(4) = X;

(3) n = 4, and Gx ∩X = U4(2) < PSL4(7) = X.

Case 1 n = 2, q = 11, 19, 29, 31, 41, 49, 59, 61 or 121.

For every case, it is easy to know that 16v − 15 is not a square.

Case 2 n = 3, q = 4. Then |X| = 20160 and v = 56. But 16v − 15 = 881 is a prime.

Case 3 n = 4, q = 7. Then |X| = 2317591180800 and v = 89413240. But 16v−15 = 52·57224473
is not a square.

This completes the proof of Theorem 1.1. �
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