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Abstract This paper studies the eigenvalue problem for p(x)-Laplacian equations involving

Robin boundary condition. We obtain the Euler-Lagrange equation for the minimization of the

Rayleigh quotient involving Luxemburg norms in the framework of variable exponent Sobolev

space. Using the Ljusternik-Schnirelman principle, for the Robin boundary value problem, we

prove the existence of infinitely many eigenvalue sequences and also show that, the smallest

eigenvalue exists and is strictly positive, and all eigenfunctions associated with the smallest

eigenvalue do not change sign.
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1. Introduction

In the last decade, the study of partial differential equations and variational problems with

variable exponent growth conditions has been a very attractive field. These investigations are

stimulated mainly by the development of the study of electrorheological fluids [1], image restora-

tion [2] and the theory of nonlinear elasticity [3–5]. The eigenvalue problem involving variable

exponent is one of the important research field as well.

Nonlinear eigenvalue problem for the p-Laplacian equations with Dirichlet, Neumann or

Robin boundary conditions has been extensively studied by many authors, and it has many inter-

esting results as explained in the works of [6–10] and references therein. The nonlinear eigenvalue

problem for p(x)-Laplacian equations which possesses more complicated nonlinearity than the

p-Laplacian equations is also considered, but there is still a gape existing in the literature. We

point out that Fan [11,12] has made contributions to the study of p(x)-Laplacian eigenvalue prob-

lem. Moreover, the Steklov and Robin eigenvalue problems involving p(x)-Laplacian equations

have been respectively studied by Deng [13] and Deng et al. [14]. These investigations mainly

have relied on variational methods and deduce there exist infinitely many eigenvalue sequences,

and also give some suitable conditions for which the infimum of all eigenvalues is either zero

or positive. Mihǎilescu and Rǎdulescu have also studied the variable exponent eigenvalue prob-

lem in different cases [15–17]. We notice that all results obtained depend on Rayleigh quotient
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of two modulars, which are similarly defined in the case of p-Laplacian equations. The main

shortcoming of this method is lack of homogeneity of Rayleigh quotient with variable exponen-

t. To overcome the above mentioned shortcoming scholars [11–14] imposed some constrained

conditions. In their view, the difficulty is to compare the minimizers obtained from different

normalization constants.

Furthermore, the definition of eigenvalues using the Rayleigh quotient of two modulars is

not a proper generalization of the constant exponent case. Recently, Franzina and Lindqvist s-

tudied the Dirichlet eigenvalue problem, which is based on replacing the modulars by Luxemburg

norms of the variable exponent Lebesgue space in the Rayleigh quotient [18]. This homogeneous

definition of first eigenvalue of the p(x)-Laplacian has been firstly introduced in [18] as an ap-

propriate replacement for the previous nonhomogeneous notions in the literature. Franzina and

Lindqvist proved that the first eigenvalue is positive, and all eigenfunctions associated with the

first eigenvalue are continuous and strictly positive. According to the definition of the Rayleigh

quotient introduced by Franzina and Lindqvist, the asymptotic behavior and stability of eigen-

value for variable exponent problem were studied in [19–21]. Motivated by [18], we discuss the

eigenvalue problem for p(x)-Laplacian equations with Robin boundary condition in this paper.

This paper is organized as follows. In Section 2, we recall some important notions concerning

the variable exponent Lebesgue and Sobolev spaces. In Section 3, we establish the Euler-Lagrange

equation for the minimization of a Rayleigh quotient of two Luxemburg norms. In Section 4, we

prove the existence of infinitely many eigenvalue sequences for Robin boundary value problem.

2. Preliminaries

In order to deal with the variable exponent eigenvalue problem, we recall the theory of

Lebesgue and Sobolev spaces with variable exponents [22–26].

Let Ω ⊂ RN , with N ≥ 2 be a bounded domain with Lipschitz boundary ∂Ω. For any

Lipschitz continuous function p : Ω → (1,+∞), we denote

1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ sup
x∈Ω

p(x) := p+ < N, for all x ∈ Ω. (2.1)

We consider the variable exponent Lebesgue space Lp(x)(Ω) defined as follows

Lp(x)(Ω) =
{
u |u is a measurable function onΩ such that

∫
Ω

|u(x)|p(x)dx < +∞
}
.

This space is equipped with Luxemburg norm

|u|p(x) = inf
{
λ > 0;

∫
Ω

|u(x)
λ

|p(x) dx

p(x)
≤ 1

}
.

Let variable exponent Sobolev space W 1,p(x)(Ω) defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

with its norm

∥u∥p(x) = |u|p(x) + |∇u|p(x),
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which is equivalent to

∥u∥p(x) = inf
{
λ > 0;

∫
Ω

[
|u
λ
|p(x) + |∇u

λ
|p(x)

] dx

p(x)
≤ 1

}
.

Proposition 2.1 ([22,23,25,26]) Both (Lp(x)(Ω), | · |p(x)) and (W 1,p(x)(Ω), ∥ ·∥p(x)) are separable
and reflexive Banach spaces.

Proposition 2.2 ([22,25]) Assume that u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω) and 1
p(x) +

1
q(x) = 1 for all

x ∈ Ω. Then ∫
Ω

|uv|dx ≤ 2|u|p(x)|v|q(x).

Proposition 2.3 ([27]) Let ϱp(x)(u) =
∫
Ω
[|u|p(x) + |∇u|p(x)] dx

p(x) . For any u, uk ∈ W 1,p(x)(Ω)

(k = 1, 2, . . .), then we have

(1) ∥u∥p(x) < 1 (= 1;> 1) ⇔ ϱp(x)(u) < 1 (= 1;> 1).

(2) ∥u∥p(x) ≤ 1 ⇒ ∥u∥p
+

p(x) ≤ ϱp(x)(u) ≤ ∥u∥p
−

p(x).

(3) ∥u∥p(x) ≥ 1 ⇒ ∥u∥p
−

p(x) ≤ ϱp(x)(u) ≤ ∥u∥p
+

p(x).

(4) ∥uk − u∥p(x) → 0 ⇔ ϱp(x)(uk − u) → 0.

Proposition 2.4 ([23–26]) If q(x) ∈ C(Ω̄) and 1 ≤ q(x) < p∗(x), ∀x ∈ C(Ω̄), then there is a

compact embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω), where p∗(x) = Np(x)
N−p(x) if p(x) < N and p∗(x) = +∞

if p(x) ≥ N .

Proposition 2.5 ([22,28,29]) Let fn be a sequence of measurable function in Lp(x)(Ω), if fn → f

a.e. in Ω, and |fn(x)| ≤ g(x) a.e. x ∈ Ω with f, g ∈ Lp(x)(Ω), then fn → f in Lp(x)(Ω).

Let a : ∂Ω → R be a real function with a ∈ L∞(∂Ω) and a− := infx∈∂Ω a(x) > 0, and we

define the weighted variable exponent Lebesgue space as follows

L
p(x)
a(x)(∂Ω) =

{
u|u : ∂Ω → R is a measurable and

∫
∂Ω

a(x)|u(x)|p(x)dσ < +∞
}
,

equipped with the norm

|u|(p(x), a(x)) = inf
{
λ > 0;

∫
∂Ω

a(x)|u(x)
λ

|p(x) dσ

p(x)
≤ 1

}
where dσ is the measure on the boundary ∂Ω. Notice that it is easy to prove that L

p(x)
a(x)(∂Ω) is

a Banach space.

Proposition 2.6 ([13,22]) Let ρp(x)(u) =
∫
∂Ω

[a(x)|u|p(x)] dσ
p(x) . For any u, uk ∈ L

p(x)
a(x)(∂Ω) (k =

1, 2, . . .), then we have

(1) |u|(p(x), a(x)) < 1 (= 1;> 1) ⇔ ρp(x)(u) < 1 (= 1;> 1).

(2) |u|(p(x), a(x)) ≤ 1 ⇒ |u|p
+

(p(x), a(x)) ≤ ρp(x)(u) ≤ |u|p
−

(p(x), a(x)).

(3) |u|(p(x), a(x)) ≥ 1 ⇒ |u|p
−

(p(x), a(x)) ≤ ρp(x)(u) ≤ |u|p
+

(p(x), a(x)).

(4) |uk − u|(p(x), a(x)) → 0 ⇔ ρp(x)(uk − u) → 0.

Proposition 2.7 ([13]) Suppose that a(x) ∈ Lr(x)(∂Ω), r(x) ∈ C(∂Ω) with r(x) > p1(x)
p1(x)−1 for

all x ∈ ∂Ω. If q(x) ∈ C(∂Ω) and 1 ≤ q(x) < p1r(x)(x) for all x ∈ C(∂Ω), then there is a compact
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embedding W 1,p(x)(Ω) ↪→ L
q(x)
a(x)(∂Ω), where p1(x) = (N−1)p(x)

N−p(x) if p(x) < N and p1(x) = +∞ if

p(x) ≥ N , p1r(x)(x) :=
r(x)−1
r(x) p1(x).

3. The Euler-Lagrange equation

In this section we prove the existence of a non-trivial minimizer and the Euler-Lagrange

equation corresponding to the minimizer. Moreover, we show λ1 is the smallest eigenvalue and

the existence of the strictly positive first eigenfunction.

Define

β : ∂Ω → R to be a real function with β ∈ L∞(∂Ω) and β− := inf
x∈∂Ω

β(x) > 0, (3.1)

and

λ1 = inf
u∈W 1,p(x)(Ω), u ̸≡0

|∇u|p(x) + |u|(p(x), β(x))

|u|p(x)
. (3.2)

In the following theorem we establish the existence of a nonnegative minimizer.

Theorem 3.1 There is a non-negative minimizer u ∈ W 1,p(x)(Ω) and u ̸≡ 0 for (3.2) and λ1 > 0.

Proof (1) In view of (3.2), we state that λ1 ≥ 0.

(2) We can choose a minimizing sequence {un} such that

λ1 = lim
n→∞

(|∇un|p(x) + |un|(p(x),β(x)))

with |un|p(x) = 1. Note that the sequence {un} is bounded in W 1,p(x)(Ω). Then there exists

a subsequence which still denotes {un} and a measurable function u ∈ W 1,p(x)(Ω) such that

un ⇀ u in W 1,p(x)(Ω). Combining Proposition 2.4 with Proposition 2.7, we get un → u in

Lp(x)(Ω), ∇un ⇀ ∇u in Lp(x)(Ω) and un → u in L
p(x)
β(x)(∂Ω). Therefore, together with the weak

lower semi-continuity of the norm, we infer that |u|p(x) = 1 and

λ1 ≤ |∇u|p(x) + |u|(p(x),β(x)) ≤ lim inf
n→∞

(|∇un|p(x) + |un|(p(x),β(x))) = λ1.

(3) If λ1 = 0, then there exists a minimizer u with |u|p(x) = 1 such that

0 = λ1 = |∇u|p(x) + |u|(p(x), β(x)).

It follows that

|∇u|p(x) = 0, |u|(p(x),β(x)) = 0.

Hence u ≡ 0, it is a contradiction with |u|p(x) = 1, consequently λ1 > 0.

This shows that u ∈ W 1,p(x)(Ω) is a minimizer. If u is a minimizer, so is |u|, which can be

obtained from the definition of λ1.

The following theorem is giving the Euler-Lagrange equation associated to a minimizer.

Theorem 3.2 The Euler-Lagrange equation corresponding to the minimization of the Rayleigh

quotient (3.2) is given by{
−div(| ∇u

K(u) |
p(x)−2 ∇u

K(u) ) = λ1(Ω)S(u)| u
k(u) |

p(x)−2 u
k(u) in Ω,

| ∇u
K(u) |

p(x)−2 ∂u
∂ν + β(x)T (u)K(u)| u

H(u) |
p(x)−2 u

H(u) = 0 on ∂Ω,
(3.3)
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where

K(u) := |∇u|p(x), k(u) := |u|p(x), H(u) := |u|(p(x), β(x))

S(u) :=

∫
Ω
| ∇u
K(u) |

p(x)dx∫
Ω
| u
k(u) |p(x)dx

, T (u) :=

∫
Ω
| ∇u
K(u) |

p(x)dx∫
∂Ω

| u
H(u) |p(x)dσ

. (3.4)

Proof Assume that v ∈ W 1,p(x)(Ω) and ε > 0 is small enough, let Q(x) = u(x) + εv(x) and we

write

f1(ε) = |∇Q|p(x), f2(ε) = |Q|p(x) and f3(ε) = |Q|(p(x), β(x)).

If u ∈ W 1,p(x)(Ω) is a minimizer of (3.2), then

λ1 =
K(u) +H(u)

k(u)
≤ f1(ε) + f3(ε)

f2(ε)
, ∀ε > 0.

That is

d

dε
(
f1(ε) + f3(ε)

f2(ε)
) =

(f ′
1(ε) + f ′

3(ε))f2(ε)− (f1(ε) + f3(ε))f
′
2(ε)

f2
2 (ε)

= 0, at ε = 0.

Thus we get

f ′
1(0) + f ′

3(0) =
(f1(0) + f3(0))f

′
2(0)

f2(0)
. (3.5)

Applying [18, Lemma A.1], then for any v belonging to W 1,p(x)(Ω), we obtain

f ′
1(0) = ⟨K ′(u), v⟩ =

∫
Ω
| ∇u
K(u) |

p(x)−2 ∇u
K(u)∇vdx∫

Ω
| ∇u
K(u) |p(x)dx

, (3.6)

f ′
2(0) = ⟨k′(u), v⟩ =

∫
Ω
| u
k(u) |

p(x)−2 u
k(u)vdx∫

Ω
| u
k(u) |p(x)dx

, (3.7)

f ′
3(0) = ⟨H ′(u), v⟩ =

∫
∂Ω

β(x)| u
H(u) |

p(x)−2 u
H(u)vdσ∫

∂Ω
β(x)| u

H(u) |p(x)dσ
. (3.8)

Recalling equations (3.5)–(3.8), we have∫
Ω
| ∇u
K(u) |

p(x)−2 ∇u
K(u)∇vdx∫

Ω
| ∇u
K(u) |p(x)dx

+

∫
∂Ω

β(x)| u
H(u) |

p(x)−2 u
H(u)vdσ∫

∂Ω
β(x)| u

H(u) |p(x)dσ

=
(K(u) +H(u))

∫
Ω
| u
k(u) |

p(x)−2 u
k(u)vdx

k(u)
∫
Ω
| u
k(u) |p(x)dx

,

so that ∫
Ω

| ∇u

K(u)
|p(x)−2∇u · ∇v

K(u)
dx+ T (u)

∫
∂Ω

β(x)| u

H(u)
|p(x)−2 uv

H(u)
dσ

= λ1S(u)

∫
Ω

| u

k(u)
|p(x)−2 uv

k(u)
dx. (3.9)

The proof of Theorem 3.2 is completed. �

Definition 3.3 (1) A pair (u, λ) ∈ W 1,p(x)(Ω) × R is called a weak solution to the following
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Robin boundary value problem{
−div(| ∇u

K(u) |
p(x)−2 ∇u

K(u) ) = λS(u)| u
k(u) |

p(x)−2 u
k(u) in Ω,

| ∇u
K(u) |

p(x)−2 ∂u
∂ν + β(x)T (u)K(u)| u

H(u) |
p(x)−2 u

H(u) = 0 on ∂Ω,
(3.10)

if ∫
Ω

| ∇u

K(u)
|p(x)−2∇u · ∇v

K(u)
dx+ T (u)

∫
∂Ω

β(x)| u

H(u)
|p(x)−2 uv

H(u)
dσ

= λS(u)

∫
Ω

| u

k(u)
|p(x)−2 uv

k(u)
dx, ∀v ∈ W 1,p(x)(Ω). (3.11)

(2) If (u, λ) ∈ W 1,p(x)(Ω) × R is a weak solution to problem (3.10), then u and λ are

called eigenfunction and eigenvalue, respectively. Notice that u is a nontrivial eigenfunction

corresponding to λ in the problem (3.10).

Remark 3.4 If p(x) ≡ p, the problem (3.10) can be written −div(|∇u|p−2∇u) = (
|∇u|Lp(Ω)

|u|Lp(Ω)
)p−1λ|u|p−2u in Ω,

|∇u|p−2 ∂u
∂ν + (

|∇u|Lp(Ω)

|u|Lp
β(x)

(∂Ω)
)p−1β(x)|u|p−2u = 0 on ∂Ω.

(3.12)

Theorem 3.5 λ1 is the smallest eigenvalue of problem (3.10) and the corresponding eigenfunc-

tions are strictly positive. Moreover, they are called the first eigenvalue and the first eigenfunction

of problem (3.10), respectively.

Proof (1) If u is an eigenfunction corresponding to the eigenvalue λ of problem (3.10), then

(3.11) holds. Taking v = u in (3.11) and using (3.2), we obtain

λ =
K(u) +H(u)

k(u)
≥ λ1,

then λ1 is the smallest eigenvalue of problem (3.10).

(2) Obviously, if u is an eigenfunction corresponding to λ1, so is |u|, thus the first eigen-

functions are non-negative.

Assume W = u
K(u) . Then W ≥ 0, ∇W = ∇u

K(u) , k(u) = k(W )K(u) and K(W ) = 1. From

−div(| ∇u

K(u)
|p(x)−2 ∇u

K(u)
) = λ1S(u)|

u

k(u)
|p(x)−2 u

k(u)
,

it follows that

−div(|∇W |p(x)−2∇W ) = λ1d(x)|W |p(x)−2W, (3.13)

where

d(x) = (
1

k(w)
)p(x)−1

∫
Ω
|∇W |p(x)dx∫

Ω
| W
k(W ) |p(x)dx

≥ 0.

Multiplying both sides of (3.13) by any test function φ ∈ C∞
0 (Ω) (φ ≥ 0) and integrating over

Ω, we have ∫
Ω

|∇W |p(x)−2∇W∇φdx = λ1

∫
Ω

d(x)|W |p(x)−2Wφdx ≥ 0, (3.14)
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so that W is a weak supersolution of problem (3.13). By virtue in [30, Theorem 4.1], we obtain

W (x) = W ∗(x) for almost every x ∈ Ω, where W ∗(x) is a lower semi-continuous representative

of W (x).

Since φ = W + φ−W , from (3.14), we infer that∫
Ω

|∇W |p(x)−2∇W (∇(W + φ)−∇W )dx ≥ 0. (3.15)

Applying well-known Young’s inequality, we get∫
Ω

|∇W |p(x) dx ≤
∫
Ω

|∇W |p(x)−2 ∇W∇(W + φ)dx

≤
∫
Ω

|∇W |p(x)−1 |∇(W + φ)| dx

≤
∫
Ω

|∇(W + φ)|p(x)

p(x)
dx−

∫
Ω

|∇W |p(x)

p(x)
dx+

∫
Ω

|∇W |p(x) dx, (3.16)

namely, ∫
Ω

|∇W |p(x) dx ≤ p+

p−

∫
Ω

|∇(W + φ)|p(x) dx,

and W is a quasisuperminimizer in Ω.

In [30, Theorem 4.1] and [31, Theorem 5.3], we obtain W > 0 in Ω, thus u > 0 in Ω. This

completes the proof. �

Remark 3.6 According to [32, Theorem 4.4], the weak solutions to problem (3.10) are locally

Hölder continuous if p(x) is Hölder continuous.

Indeed, let

A(x, u,∇u) = | ∇u

K(u)
|p(x)−2 ∇u

K(u)
, B(x, u,∇u) = λS(u)| u

k(u)
|p(x)−2 u

k(u)
,

then it follows that

A(x, u,∇u) · ∇u ≥ min{( 1

K(u)
)p

+−1, (
1

K(u)
)p

−−1}|∇u|p(x),

|A(x, u,∇u)| ≤ max{( 1

K(u)
)p

+−1, (
1

K(u)
)p

−−1}|∇u|p(x)−1

and

|B(x, u,∇u)| ≤ λp+ max{( 1

k(u)
)p

+−1, (
1

k(u)
)p

−−1}|u|p(x)−1.

This shows that the assumptions in [32, Theorem 4.4] hold, and consequently the weak

solutions to problem (3.10) are locally Hölder continuous.

4. Existence of infinitely many eigenvalue sequences for Robin problem

In this section we discuss the variable exponent eigenvalue problem for Robin boundary

condition.
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Obviously, the problem (3.10) is equivalent to the following problem{
−div(| ∇u

K(u) |
p(x)−2 ∇u

K(u) ) + S(u)| u
k(u) |

p(x)−2 u
k(u) = µS(u)| u

k(u) |
p(x)−2 u

k(u) in Ω,

| ∇u
K(u) |

p(x)−2 ∂u
∂ν + β(x)T (u)K(u)| u

H(u) |
p(x)−2 u

H(u) = 0 on ∂Ω,
(4.1)

with λ = µ− 1.

For any u ∈ W 1,p(x)(Ω), let F (u) = K(u) + k(u) +H(u), where K(u), k(u) and H(u) are

seen in (3.4). Set

M1 = {u ∈ W 1,p(x)(Ω) : k(u) = 1}

and

Σ = {A ⊂ M1 : A is compact and−A = A}.

We denote γ(A) (see [33–35]) the genus of A ∈ Σ, which is defined as

γ(A) = inf{k : there exists h : A → Rk \ {0} such that h is continuous and odd},

if there is no integer in the above definition, we set γ(A) = +∞ and γ(ø) = 0.

Applying Ljusternik-Schnirelman principle [34], we obtain that the problem (3.10) has in-

finitely many eigenvalue sequences {λn} such that

λn = inf
A∈Σ,γ(A)≥n

sup
u∈A

(|∇u|p(x) + |u|(p(x), β(x))), n = 1, 2, . . . . (4.2)

The following Theorem is the main result in this section.

Theorem 4.1 We have 0 < λn ≤ λn+1 and λn → +∞ as n → ∞. Moreover, the problem

(3.10) has infinitely many solution pairs {±un, λn} such that k(±un) = 1, F (±un) − 1 = λn

and λn = K(un) +H(un). In particular, λ1 is the same as in (3.2).

In order to prove the Theorem 4.1, we need the following statement.

Lemma 4.2 Suppose F, k : W 1,p(x)(Ω) → R are even functionals and F, k ∈ C1(W 1,p(x)(Ω),R)
with F (0) = k(0) = 0. Then, for any v ∈ W 1,p(x)(Ω), we have

⟨F ′(u), v⟩ =

∫
Ω
| ∇u
K(u) |

p(x)−2 ∇u
K(u)∇vdx∫

Ω
| ∇u
K(u) |p(x)dx

+

∫
Ω
| u
k(u) |

p(x)−2 u
k(u)vdx∫

Ω
| u
k(u) |p(x)dx

+∫
∂Ω

β(x)| u
H(u) |

p(x)−2 u
H(u)vdσ∫

∂Ω
β(x)| u

H(u) |p(x)dσ

and

⟨k′(u), v⟩ =

∫
Ω
| u
k(u) |

p(x)−2 u
k(u)vdx∫

Ω
| u
k(u) |p(x)dx

.

Proof (1) According to the assumption of Lemma 4.2, the terms ⟨F ′(u), v⟩ and ⟨k′(u), v⟩ can

be deduced from (3.6)–(3.8).

(2) Proving that F ′(u) ∈
(
W 1,p(x)(Ω)

)∗
and k′(u) ∈

(
W 1,p(x)(Ω)

)∗
.

Using Young’s inequality, we have∫
Ω

| u

k(u)
|p(x)−1 v

k(v)
dx ≤

∫
Ω

| u

k(u)
|p(x)dx−

∫
Ω

| u

k(u)
|p(x) dx

p(x)
+

∫
Ω

| v

k(v)
|p(x) dx

p(x)
.
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The last two terms on the right hand side of the above inequality are equal to 1, then we have

|⟨k′(u), v⟩| ≤ k(v)

∫
Ω
| u
k(u) |

p(x)dx∫
Ω
| u
k(u) |p(x)dx

= |v|p(x) ≤ ∥v∥p(x).

Similarly,

|⟨K ′(u), v⟩| ≤ |∇v|p(x), |⟨H ′(u), v⟩| ≤ |v|(p(x),β(x)).

It follows that

|⟨F ′(u), v⟩| ≤|v|p(x) + |∇v|p(x) + |v|(p(x), β(x)) = ||v||p(x) + |v|(p(x), β(x))

≤(1 + C)||v||p(x),

where C > 0 is a Sobolev constant from the embedding of W 1,p(x)(Ω) ↪→ L
p(x)
β(x)(∂Ω). Therefore,

F ′(u) ∈
(
W 1,p(x)(Ω)

)∗
and k′(u) ∈

(
W 1,p(x)(Ω)

)∗
.

(3) Showing that F ′(u), k′(u) : W 1,p(x)(Ω) →
(
W 1,p(x)(Ω)

)∗
are continuous.

Set

f(u) =

∫
Ω

| u

k(u)
|p(x)dx, ∀u ∈ W 1,p(x)(Ω),

we observe that f(u) ≥
∫
Ω
| u
k(u) |

p(x) dx
p(x) = 1.

Using Hölder’s inequality, then for any v ∈ W 1,p(x)(Ω), we have

|⟨k′(un)− k′(u), v⟩| = |

∫
Ω
| un

k(un)
|p(x)−2 un

k(un)
vdx

f(un)
−

∫
Ω
| u
k(u) |

p(x)−2 u
k(u)vdx

f(u)
|

≤
∫
Ω

|v|| 1

f(un)
| un

k(un)
|p(x)−2 un

k(un)
− 1

f(u)
| u

k(u)
|p(x)−2 u

k(u)
|dx

≤
∫
Ω

|v|| 1

f(un)
− 1

f(u)
|| u

k(u)
|p(x)−1dx+∫

Ω

|v|
f(un)

|| un

k(un)
|p(x)−2 un

k(un)
− | u

k(u)
|p(x)−2 u

k(u)
|dx

≤ I1 + 2CI2,

where

I1 =

∫
Ω

|v|| 1

f(un)
− 1

f(u)
|| u

k(u)
|p(x)−1dx,

I2 = ||v||p(x)||
un

k(un)
|p(x)−2 un

k(un)
− | u

k(u)
|p(x)−2 u

k(u)
| p(x)
p(x)−1

and C > 0 is a Sobolev constant from the embedding of W 1,p(x)(Ω) ↪→ Lp(x)(Ω).

Since un → u in W 1,p(x)(Ω), then un → u in Lp(x)(Ω) and |un|p(x) → |u|p(x), i.e., k(un) →
k(u) as n → ∞.

Using [29, Proposition 2.67] and noting the fact that un → u in Lp(x)(Ω), then there exists

a subsequence (which is still denoted {un}), and a function v ∈ Lp(x)(Ω) such that un → u and

|un| ≤ |v| a.e. in Ω for all n. Then, for n sufficiently large and ε ∈ (0, k(u)), we have

| un

k(un)
|p(x) → | u

k(u)
|p(x) a.e. in Ω,

| un

k(un)
|p(x) ≤ max{( 1

k(u)− ε
)p

+

, (
1

k(u)− ε
)p

−
}|v|p(x) ∈ L1(Ω) a.e. in Ω.
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In view of dominated convergence theorem, we get∫
Ω

| un

k(un)
|p(x)dx →

∫
Ω

| u

k(u)
|p(x)dx, as n → ∞.

From dominated convergence theorem, we can deduce that I1 → 0, as n → ∞. Let

Wn = | un

k(un)
|p(x)−2 un

k(un)
, W = | u

k(u)
|p(x)−2 u

k(u)
.

According to the above discussion, we can prove that

Wn → W a.e. in Ω,

|Wn| = | un

k(un)
|p(x)−1 ≤ max{( 1

k(u)− ε
)p

+

, (
1

k(u)− ε
)p

−
}|v|p(x)−1 ∈ L

p(x)
p(x)−1 (Ω) a.e. in Ω.

Consequently, from Proposition 2.5, we get Wn → W in L
p(x)

p(x)−1 (Ω), i.e., I2 → 0. Thus, |⟨k′(un)−
k′(u), v⟩| → 0, as n → ∞.

Similarly, we infer that |⟨F ′(un)− F ′(u), v⟩| → 0, as n → ∞.

Hence, F ′(u), k′(u) : W 1,p(x)(Ω) → (W 1,p(x)(Ω))∗ are continuous.

Remark 4.3 According to the proof of Lemma 4.2, we have

(1) ∀u, v ∈ Lp(x)(Ω), |⟨k′(u), v⟩| ≤ |v|p(x).
(2) ∀u, v ∈ Lp(x)(Ω), |⟨K ′(u), v⟩| ≤ |∇v|p(x).
(3) ∀u, v ∈ L

p(x)
β(x)(∂Ω), |⟨H

′(u), v⟩| ≤ |v|(p(x), β(x)).

As u ∈ M1, we can deduce that k′(u) ̸= 0, and so M1 is a C1-submanifold of W 1,p(x)(Ω)

with codimension 1. We denote Tu(M1) the tangent space at u ∈ M1, i.e., Tu(M1) = ker k′(u) =

{v ∈ W 1,p(x)(Ω) : ⟨k′(u), v⟩ = 0}, F̃ : M1 → R the restriction of F on M1, and F̃ ′(u) the

derivative of F̃ at u ∈ M1, i.e., the restriction of F ′(u) on Tu(M1) (see [11]).

It is well known that if u is a critical point of F̃ on M1, then (u, λ) is a solution to problem

(4.1) (see [35]).

Lemma 4.4 Suppose F̃ is a mapping of type (S+), i.e., if un ⇀ u in W 1,p(x)(Ω) and

lim supn→∞⟨F̃ ′(un), un − u⟩ ≤ 0, then un → u in W 1,p(x)(Ω).

Proof Since

⟨F̃ ′(un), un⟩ = K(un) + k(un) +H(un) = ||un||p(x) + |un|(p(x),β(x))

and

⟨F̃ ′(un), u⟩ =⟨K ′(un), u⟩+ ⟨k′(un), u⟩+ ⟨H ′(un), u⟩

≤|∇u|p(x) + |u|p(x) + |u|(p(x), β(x))

=||u||p(x) + |u|(p(x), β(x))

by using Remark 4.2, we have ⟨F̃ ′(un), un−u⟩ ≥ ||un||p(x)+|un|(p(x), β(x))−||u||p(x)−|u|(p(x),β(x))
and

lim sup
n→∞

(||un||p(x) + |un|(p(x), β(x)) − ||u||p(x) − |u|(p(x), β(x))) ≤ lim sup
n→∞

⟨F̃ ′(un), un − u⟩ ≤ 0.
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Using Propositions 2.4 and 2.7 and noting that un ⇀ u in W 1,p(x)(Ω), we have un → u in

Lp(x)(Ω), ∇un ⇀ ∇u in Lp(x)(Ω) and un → u in L
p(x)
β(x)(∂Ω). Therefore, together with the weak

lower semi-continuity of the norm, we get

lim sup
n→∞

(||un||p(x) + |un|(p(x),β(x))) ≤ |u|p(x) + |∇u|p(x) + |u|(p(x), β(x))

≤ lim inf
n→∞

(
|un|p(x) + |∇un|p(x) + |un|(p(x), β(x))

)
= lim inf

n→∞

(
||un||p(x) + |un|(p(x), β(x))

)
.

Thus it follows that limn→∞ ||un||p(x) = ||u||p(x). Consequently, the conclusion holds asW 1,p(x)(Ω)

is uniformly convex.

Lemma 4.5 For all c ∈ R, F̃ satisfies the (PS)c condition, i.e., for every sequences {un} ⊂ M1

such that F̃ (un) → c and F̃ ′(un) → 0 has a convergent subsequence.

Proof Suppose that u ∈ M1 and w = u
⟨k′(u),u⟩ , it is easy to see that k′(u) ̸= 0 and w ̸∈ Tu(M1).

Thus

W 1,p(x)(Ω) = Tu(M1)⊕ {αw : α ∈ R}.

Let P : W 1,p(x)(Ω) → Tu(M1) be a natural projection. Then for any v ∈ W 1,p(x)(Ω), there

exists a unique α ∈ R such that v = Pv + αw. Since ⟨k′(u), Pv⟩ = 0, it follows α = ⟨k′(u), v⟩.
Consequently,

⟨F̃ ′(u), v⟩ = ⟨F ′(u), Pv⟩ = ⟨F ′(u), v⟩ − α⟨F ′(u), w⟩

= ⟨F ′(u), v⟩ − ⟨k′(u), v⟩ · ⟨F
′(u), u⟩

⟨k′(u), u⟩
,

and

F̃ ′(u) = F ′(u)− ⟨F ′(u), u⟩
⟨k′(u), u⟩

· k′(u).

For any sequences {un} ⊂ M1 such that F̃ (un) → c and F̃ ′(un) → 0 , then F (un) → c and there

is a sequence {cn} ⊂ R such that F ′(un)− cnk
′(un) → 0, where

cn =
⟨F ′(un), un⟩
⟨k′(un), un⟩

→ c, as n → ∞.

Noting that F (un) → c, we conclude that {un} is bounded in W 1,p(x)(Ω), and there exists a

subsequence that we still denote {un} such that un ⇀ u in W 1,p(x)(Ω) and un → u in Lp(x)(Ω).

Then, from Remark 4.3, we deduce that

0 ≤ |⟨k′(un), un − u⟩| ≤ |un − u|p(x) → 0.

Since

0 ≤|⟨F ′(un), un − u⟩ − cn⟨k′(un), un − u⟩|

≤∥F ′(un)− cnk
′(un)∥(W 1,p(x)(Ω))

∗∥un − u∥W 1,p(x)(Ω) → 0,

we have, ⟨F ′(un), un − u⟩ → 0. Since Lemma 4.4 holds, we deduce that un → u in W 1,p(x)(Ω).

By virtue of {un} ⊂ M1 and un → u in Lp(x)(Ω), we obtain u ∈ M1 and the proof is achieved.
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Let M1, F, k and F̃ be defined above. We consider

cn = inf
A∈Σ,γ(A)≥n

sup
u∈A

F̃ (u). (4.3)

The fact thatW 1,p(x)(Ω) is a separable and reflexive Banach space, then there exist {en}∞n=1 ⊂
W 1,p(x)(Ω) and {fn}∞n=1 ⊂

(
W 1,p(x)(Ω)

)∗
such that

fn(em) =

{
1, if n = m,

0, if n ̸= m,

W 1,p(x)(Ω) = span{en : n = 1, 2, . . .}, (W 1,p(x)(Ω))∗ = spanW
∗
{fn : n = 1, 2, . . .}.

Set

(W 1,p(x)(Ω))n = span{ei, 1 ≤ i ≤ n}, Yn =

n⊕
j=1

(W 1,p(x)(Ω))j , Zn =

∞⊕
j=n

(W 1,p(x)(Ω))j .

Then we have the following conclusions.

Lemma 4.6 According to the definitions of M1 and Zn, we have

lim
n→∞

inf
u∈Zn∩M1

∥u∥p(x) = +∞.

Proof Since k(u) = |u|p(x), k(0) = 0.

If un ⇀ u in W 1,p(x)(Ω), then the embedding theorem implies un → u in Lp(x)(Ω). So that

we can deduce that |un|p(x) → |u|p(x). Hence, k : W 1,p(x)(Ω) → R is weakly-strongly continuous.

Assume that there exist c0 > 0 and {un} ⊂ Zn ∩ M1 such that ∥un∥p(x) ≤ c0 for any n.

Then,

lim
n→∞

sup
u∈Zn,∥u∥p(x)≤c0

|k(u)| ≥ lim
n→∞

sup
u∈Zn∩M1,∥u∥p(x)≤c0

|k(u)| ≥ lim
n→∞

|k(un)| = 1 > 0.

In [17, Lemma 3.3], it is a contradiction.

Lemma 4.7 Suppose that (4.3) holds, for any natural number n, then 1 < cn ≤ cn+1 and

limn→∞ cn = +∞.

Proof (1) For each n, as γ(A) ≥ n+1, then also γ(A) ≥ n, thus by using (4.3), cn ≤ cn+1. Note

that for any u ∈
∑

, F̃ (u) = |∇u|p(x) + 1 + |u|(p(x), β(x)) > 1. In fact, if F̃ (u) = 1, |∇u|p(x) = 0

and |u|(p(x),β(x)) = 0, then u ≡ 0, it is a contradiction with |u|p(x) = 1. Hence cn > 1.

(2) Lemma 4.6, for any c > 0, implies that there exists n0 such that, as n > n0, ∥u∥p(x) > c

and u ∈ Zn ∩ M1. On one hand, [34, Proposition 2.3] and statement (b) imply that for any

A ∈
∑

, γ(A ∩ Yn−1) ≤ n− 1; on the other hand, the codimension of Zn is less than or equal to

n− 1, and so for each A ∈ Σ with γ(A) ≥ n, A∩Zn is nonempty by using (g) of [34, Proposition

2.3]. Then,

cn = inf
A∈Σ

sup
u∈A,γ(A)≥n

F̃ (u) = inf
A∈Σ

max{ sup
u∈A∩(X\Yn−1),γ(A)≥n

F̃ (u), sup
u∈A∩Yn−1,γ(A)≥n

F̃ (u)}

= inf
A∈Σ

max{ sup
u∈A∩(X\Yn−1\Zn),γ(A)≥n

F̃ (u), sup
u∈A∩Zn,γ(A)≥n

F̃ (u), sup
u∈A∩Yn−1,γ(A)≥n

F̃ (u)}
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= inf
A∈Σ

max{ sup
u∈A∩(X\Yn−1\Zn),γ(A)≥n

F̃ (u), sup
u∈A∩Zn,γ(A)≥n

F̃ (u)}

≥ inf
A∈Σ

sup
u∈A∩Zn,γ(A)≥n

F̃ (u) ≥ c.

Due to the arbitrariness of c, the assertion is proved. �
From Lemmas 4.5, 4.7 and the Ljusternik-Schnirelmann principle [34], we can easily deduce

the statement given by the following theorem.

Theorem 4.8 Each cn (n = 1, 2, . . .) defined by (4.3) is a critical value of F̃ , 1 < cn ≤ cn+1 and

cn → +∞ as n → ∞. Moreover, the problem (3.2) has infinitely many solution pairs {±un, µn}
such that k(±un) = 1, F (±un) = cn and µn = ⟨F ′(un),un⟩

⟨k′(un),un⟩ = K(un) +H(un) + 1.

Remark 4.9 According to Theorem 4.8, we have

µn = cn = inf
A∈Σ,γ(A)≥n

sup
u∈A

F̃ (u) (n = 1, 2, . . .).

Indeed, µn = µn · 1 = µn · k(un) = µn · ⟨k′(un), un⟩ = ⟨F ′(un), un⟩ = F (un) = cn.

Therefore, from Theorem 4.8, Eq. (3.2) and Remark 4.9, we infer that Theorem 4.1 holds.

Remark 4.10 Using the same method, we can discuss the Neumann eigenvalue problem.
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