
Journal of Mathematical Research with Applications

Jan., 2018, Vol. 38, No. 1, pp. 77–84

DOI:10.3770/j.issn:2095-2651.2018.01.007

Http://jmre.dlut.edu.cn
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Abstract In the paper [Monotone countable paracompactness and maps to ordered topo-

logical vector spaces, Top. Appl., 2014, 169(3): 51–70], Yamazaki initiated the study on

maps with values into ordered topological vector spaces. Characterizations of monotonically

countably paracompact spaces and some other spaces in terms of maps to ordered topological

vector spaces were obtained. In this paper, following Yamazaki’s method, we present some

characterizations of stratifiable spaces and k-semi-stratifiable spaces in terms of maps with

values into ordered topological vector spaces.
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1. Introduction and preliminaries

Throughout, all spaces are assumed to be T1 topological spaces. A vector space always

means a real vector space. The origin of a vector space is denoted by 0. The set of all positive

integers is denoted by N. TX and FX denote the topology and the family of all closed subsets

of a space X, respectively. For a space X and A ⊂ X, we use intA and A to denote the interior

and the closure of A in X, respectively. Also, χA denotes the characteristic function of A.

A partially ordered vector space (Y,≤) is called an ordered vector space if

(1) For each x, y, z ∈ Y , if x ≤ y, then x+ z ≤ y + z;

(2) For each x, y ∈ Y and r ∈ R with r ≥ 0, if x ≤ y, then rx ≤ ry.

For y1, y2 ∈ Y , y1 ≤ y2 will be sometimes written as y2 ≥ y1. Also, we write y1 < y2 if

y1 ≤ y2 and y1 ̸= y2.

A topological vector space Y is called an ordered topological vector space if Y is an ordered

vector space and the positive cone Y + = {y ∈ Y : y ≥ 0} is closed in Y .

Let Y be an ordered topological vector space and e ∈ Y +. Then e is called an interior point

of Y + if e ∈ intY (Y
+). If e is an interior point of Y + and e > 0, then e is called a positive

interior point. It is clear (see [1]) that if e is an interior point of Y +, then −re+Y + and re−Y +

are both 0-neighborhoods for each r > 0.
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Recall that a real-valued function f on a space X is called lower (resp., upper) semi-

continuous if for any real number r, the set {x ∈ X : f(x) > r} (resp., {x ∈ X : f(x) < r})
is open. In [2], the notion of real-valued semi-continuous functions was generalized to the semi-

continuous maps with values into ordered topological vector spaces. Let X be a topological space

and Y an ordered topological vector space. A map f : X → Y is called lower semi-continuous

[2] if the set-valued mapping φ : X → 2Y , defined by letting φ(x) = f(x)− Y + for each x ∈ X,

is lower semi-continuous. f is upper semi-continuous if −f is lower semi-continuous. We write

C(X, [0, e]Y ) (resp., L(X, [0, e]Y ), U(X, [0, e]Y )) for the set of all continuous (resp., lower semi-

continuous, upper semi-continuous) maps from X to Y with values in Y + ∩ (e − Y +). Let f

and g be two maps from a space X to an ordered topological vector space. We write f ≤ g if

f(x) ≤ g(x) for all x ∈ X.

Definition 1.1 ([3]) A space X is called stratifiable if there is a map ρ : N × TX → TX such

that

(1) U =
∪

n∈N ρ(n,U) =
∪

n∈N ρ(n,U) for each U ∈ TX ;

(2) If U ⊂ V , then ρ(n,U) ⊂ ρ(n, V ) for all n ∈ N.

Definition 1.2 ([4]) A space X is k-semi-stratifiable if and only if there is a map ϱ : N×TX →
FX , such that

(1)
∪

n∈N ϱ(n,U) = U for each U ∈ TX ;

(2) If U ⊂ V , then ϱ(n,U) ⊂ ϱ(n, V ) for each n ∈ N;
(3) For each compact subset K of X and U ∈ TX with K ⊂ U , there is n ∈ N such that

K ⊂ ϱ(n,U).

Recall that a sequence ⟨fn⟩ of functions on a space X is said to be weakly locally uniformly

convergent to a function f on X if for each x ∈ X and ε > 0, there exists an open neighborhood

U of x and m ∈ N such that |fn(y) − f(y)| < ε for all n ≥ m and y ∈ U (see [5]). In [6],

the notion of the weakly locally uniform convergence of real-valued functions was generalized to

maps with values into topological vector spaces as follows.

Definition 1.3 ([6]) Let X be a topological space and Y a topological vector space. A sequence

⟨fn⟩ of maps from X to Y is said to be weakly locally uniformly convergent to a map f : X → Y

on X if for each x ∈ X and any 0-neighborhood V in Y , there exists an open neighborhood U

of x and m ∈ N such that fn(x
′)− f(x′) ∈ V for all n ≥ m and x′ ∈ U .

In [1], Yamazaki generalized real-valued functions in some insertion theorems to maps with

values into ordered topological vector spaces. Characterizations of monotonically countably

paracompact spaces and some other spaces in terms of maps to ordered topological vector spaces

were obtained. In this paper, we shall carry on the similar study for stratifiable spaces and

k-semi-stratifiable spaces. Some characterizations of stratifiable spaces and k-semi-stratifiable

spaces in terms of maps with values into ordered topological vector spaces are obtained. These

results generalize real-valued functions in some known results to maps with values into ordered

topological vector spaces.
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2. Some basic lemmas

In this section, we list some basic lemmas which will be used in the sequel.

Lemma 2.1 ([1]) Let X be a topological space and Y an ordered topological vector space. For

a map f : X → Y , the following (1) and (2) are equivalent, and (1) implies (3).

(1) f is lower (resp., upper) semi-continuous.

(2) For each x ∈ X and each 0-neighborhood V , there exists a neighborhood Ox of x such

that f(Ox) ⊂ f(x) + V + Y + (resp., f(Ox) ⊂ f(x) + V − Y +).

(3) f−1(y − Y +) (resp., f−1(y + Y +)) is closed in X for each y ∈ Y .

Lemma 2.2 ([7]) Let X be a topological space and Y an ordered topological vector space and f

a real-valued function on X. If f is continuous, then for each y ∈ Y , the map g : X → Y defined

by letting g(x) = f(x)y for each x ∈ X is continuous. If f is lower (resp., upper) semi-continuous,

then for each y ∈ Y +, the map g : X → Y defined by letting g(x) = f(x)y for each x ∈ X is

lower (resp., upper) semi-continuous.

Lemma 2.3 Let Y be an ordered topological vector space and ⟨an⟩ a sequence of Y such that

⟨an⟩ converges to a. If b ≤ an (resp., an ≤ b) for each n ∈ N, then b ≤ a (resp., a ≤ b).

Proof Assume that b ≤ an for each n ∈ N and a − b /∈ Y +. Since Y + is closed, there exists

an open neighborhood V of a − b such that V ∩ Y + = ∅. Then V + b is an open neighborhood

of a. Since ⟨an⟩ converges to a, there exists m ∈ N such that an ∈ V + b for all n > m. Thus

an − b /∈ Y +, a contradiction. �

Lemma 2.4 ([6]) Let X be a topological space and Y an ordered topological vector space. If a

sequence ⟨fn⟩ of real valued functions on X weakly locally uniformly converges to a function f

on X, then for each y ∈ Y , the sequence ⟨fny⟩ weakly locally uniformly converges to fy.

3. Stratifiable spaces

In this section, we shall give some characterizations of stratifiable spaces in terms of maps

to ordered topological vector spaces.

Recall that a space X is called monotonically normal [8] if for each pair (F,H) of disjoint

closed subsets of X, one can assign an open set G(F,H) such that F ⊂ G(F,H) ⊂ G(F,H) ⊂
X \H and G(F,H) ⊂ G(F ′,H ′) whenever F ⊂ F ′, H ⊃ H ′.

The following characterization of monotonically normal spaces with real-valued functions is

due to Kubiak.

Lemma 3.1 ([9]) A space X is monotonically normal if and only if there exists an operator

Λ assigning to each pair (f, g) of real-valued functions with f upper semi-continuous, g lower

semi-continuous and f ≤ g, a continuous function Λ(f, g) such that f ≤ Λ(f, g) ≤ g and

Λ(f, g) ≤ Λ(f ′, g′) whenever f ≤ f ′, g ≤ g′.
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Theorem 3.2 Let X be a topological space and Y an ordered topological vector space with a

positive interior point e of Y +. Then the following are equivalent.

(a) X is stratifiable.

(b) There exists a map φ : TX → C(X, [0, e]Y ) such that X \ U = φ(U)−1(0) for each

U ∈ TX and φ(U) ≤ φ(V ) whenever U ⊂ V .

(c) There exist two maps ϕ : TX → L(X, [0, e]Y ) and ψ : TX → U(X, [0, e]Y ) such that

ϕ(U) ≤ ψ(U) and X \ U = ϕ(U)−1(0) = ψ(U)−1(0) for each U ∈ TX and ϕ(U) ≤ ϕ(V ),

ψ(U) ≤ ψ(V ) whenever U ⊂ V .

Proof (a) ⇒ (b). Let ρ be the map in Definition 1.1. For each U ∈ TX and each n ∈ N, let
α(n,U) = χ

ρ(n,U)
. Then α(n,U) is upper semi-continuous and α(n,U) ≤ χ

U
for each n ∈ N.

Since X is stratifiable, it is monotonically normal. Let Λ be the operator in Lemma 3.1 and let

ϕ(n,U) = Λ(α(n,U), χ
U
) for each n ∈ N. Then let

φ(U) =
∞∑

n=1

1

2n
ϕ(n,U)e.

By Lemma 2.2, φ(U) ∈ C(X, [0, e]Y ).

If U ⊂ V , then χU ≤ χV and α(n,U) ≤ α(n, V ) for each n ∈ N from which it follows that

ϕ(n,U) ≤ ϕ(n, V ). Thus φ(U) ≤ φ(V ).

For each x ∈ X, if x ∈ X \ U , then χ
U
(x) = 0 from which it follows that ϕ(n,U)(x) = 0

for all n ∈ N. Thus φ(U)(x) = 0. Conversely, If φ(U)(x) = 0, then α(n,U)(x) = 0 and so

x /∈ ρ(n,U) for all n ∈ N. Thus x ∈ X \ U .

(b) ⇒ (c) is clear, since a continuous map is both lower semi-continuous and upper semi-

continuous.

(c) ⇒ (a). For each U ∈ TX and n ∈ N, let

ρ(n,U) = X \ ϕ(U)−1(
1

2n
e− Y +), F (n,U) = X \ int(ψ(U)−1(

1

2n
e− Y +)).

Since ϕ(U) is lower semi-continuous, by Lemma 2.1, ϕ(U)−1( 1
2n e− Y +) is a closed subset of X.

Thus ρ(n,U) is open in X. It is clear that if U ⊂ V , then ρ(n,U) ⊂ ρ(n, V ) for each n ∈ N.
Since ϕ(U) ≤ ψ(U), we have ρ(n,U) ⊂ F (n,U) and thus ρ(n,U) ⊂ F (n,U).

Let x ∈ X \ U . Then ψ(U)(x) = 0. For each n ∈ N, since ψ(U) is upper semi-continuous

and 1
2n e − Y + is a 0-neighborhood, by Lemma 2.1, there exists an open neighborhood Ox of x

such that

ψ(U)(Ox) ⊂ ψ(U)(x) +
1

2n
e− Y + − Y + =

1

2n
e− Y +.

Thus x ∈ int(ψ(U)−1( 1
2n e− Y +)) and so x /∈ F (n,U) ⊃ ρ(n,U). This implies that ρ(n,U) ⊂ U

for each n ∈ N. If x /∈
∪

n∈N ρ(n,U), then ϕ(U)(x) ≤ 1
2n e for each n ∈ N and thus ϕ(U)(x) = 0.

This implies that x ∈ X \ U and so U ⊂
∪

n∈N ρ(n,U).

By Definition 1.1, X is a stratifiable space. �

Lemma 3.3 ([10]) A space X is stratifiable if and only if there exists an operator Φ assigning to

each lower semi-continuous function f : X → [0, 1], a continuous function Φ(f) : X → [0, 1] with
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Φ(f) ≤ f such that Φ(f) ≤ Φ(f ′) whenever f ≤ f ′ and 0 < Φ(f)(x) < h(x) whenever f(x) > 0.

Remark 3.4 Let Φ be the operator in Lemma 3.3. It follows that if f(x) > 0, then Φ(f)(x) > 0

and so Φ(f)(x) > r for some r > 0. Put Ox = Φ(f)−1((r, 1]). Since Φ(f) is continuous, Ox is an

open neighborhood of x and Φ(f)(x′) > r for each x′ ∈ Ox.

Theorem 3.5 Let X be a topological space and Y an ordered topological vector space with a

positive interior point e of Y +. Then the following are equivalent.

(a) X is stratifiable.

(b) For each U ∈ TX , there is an increasing sequence {δnU ∈ C(X, [0, e]Y ) : n ∈ N} of maps

such that

(b1) ⟨δnU ⟩ weakly locally uniformly converges to χ
U
e on U and pointwise converges to χ

U
e

on X \ U ;

(b2) If U ⊂ V , then δnU ≤ δnV for each n ∈ N.
(c) For each U ∈ TX , there exist two increasing sequences {δnU ∈ L(X, [0, e]Y ) : n ∈ N}

and {ηnU ∈ U(X, [0, e]Y ) : n ∈ N} of maps such that

(c1) ⟨δnU ⟩ and ⟨ηnU ⟩ pointwise converge to χ
U
e on X;

(c2) If U ⊂ V , then δnU ≤ δnV for each n ∈ N;
(c3) For each U ∈ TX and n ∈ N, δnU ≤ ηnU .

Proof (a) ⇒ (b). Let Φ be the operator in Lemma 3.3. For each n ∈ N and U ∈ TX , let

ζnU = min{1, nΦ(χ
U
)} and δnU = ζnUe. Then {δnU ∈ C(X, [0, e]Y ) : n ∈ N} is an increasing

sequence of maps which satisfies (b2).

By Lemma 2.4, to show that ⟨δnU ⟩ weakly locally uniformly converges to χU e on U , it

suffices to show that ⟨ζnU ⟩ weakly locally uniformly converges to χ
U
on U . Let ε > 0. For each

x ∈ U , χ
U
(x) = 1. By Remark 3.4, there exist an open neighborhood Ox of x and m ∈ N such

that mΦ(χU )(y) > 1 for each y ∈ Ox. Let Ux = Ox ∩ U . Then Ux is an open neighborhood of

x in U . For each n ≥ m and y ∈ Ux, nΦ(χU
)(y) > 1 from which it follows that ζnU (y) = 1 and

thus |ζnU (y)−χU (y)| = 0 < ε. This implies that ⟨ζnU ⟩ weakly locally uniformly converges to χU

on U . If x ∈ X \ U , then Φ(χ
U
)(x) ≤ χ

U
(x) = 0. Thus δnU (x) = ζnU (x)e = 0 for each n ∈ N.

Therefore, ⟨δnU (x)⟩ converges to χU
(x)e = 0.

(b) ⇒ (c) is clear.

(c) ⇒ (a). For each n ∈ N and U ∈ TX , let

ρ(n,U) = X \ δ−1
nU (

1

2
e− Y +)

and

F (n,U) = X \ int(η−1
nU (

1

2
e− Y +)).

By Lemma 2.1, {ρ(n,U) : n ∈ N} is an increasing sequence of open subsets of X. From (c3) it

follows that ρ(n,U) ⊂ F (n,U) and so ρ(n,U) ⊂ F (n,U).

If U ⊂ V , then it follows from (c2) that ρ(n,U) ⊂ ρ(n, V ).
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If x /∈
∪

n∈N ρ(n,U), then δnU (x) ≤ 1
2e for each n ∈ N. By (c1) and Lemma 2.3, χU (x)e ≤ 1

2e

from which it follows that χ
U
(x) ≤ 1

2 . This implies that x /∈ U . Hence, U ⊂
∪

n∈N ρ(n,U). If

x /∈ U , then by (c1), ⟨ηnU (x)⟩ converges to χU (x)e = 0. Since 1
4e−Y

+ is a 0-neighborhood, there

exists m ∈ N such that ηnU (x) ∈ 1
4e− Y + for each n > m. Since ηnU is upper semi-continuous

and 1
4e−Y + is a 0-neighborhood, by Lemma 2.1, there exists a neighborhood Ox of x such that

ηnU (Ox) ⊂ ηnU (x) +
1

4
e− Y + ⊂ 1

2
e− Y +.

Thus x ∈ int(η−1
nU (

1
2e − Y +)) from which it follows that x /∈ F (n,U) ⊃ ρ(n,U) for each n > m.

This indicates that
∪

n∈N ρ(n,U) ⊂ U .

Consequently, X is a stratifiable space. �
Comparing with the above characterizations of stratifiable spaces, it is a natural question

that whether the real-valued functions in Lemma 3.3 can be generalized to maps with values into

ordered topological vector spaces. We pose it as a question as follows.

Question 3.6 Let X be a topological space and Y an ordered topological vector space with a

positive interior point of Y +. Are the following conditions equivalent?

(1) X is a stratifiable space.

(2) There exists an operator Φ assigning to each map f ∈ L(X, [0, e]Y ), a map Φ(f) ∈
C(X, [0, e]Y ) with Φ(f) ≤ f such that Φ(f) ≤ Φ(f ′) whenever f ≤ f ′, and 0 < Φ(f)(x) < f(x)

whenever f(x) > 0.

4. k-semi-stratifiable spaces

In this section, we prove some analogous results for k-semi-stratifiable spaces to those for

stratifiable spaces.

Theorem 4.1 Let X be a topological space and Y an ordered topological vector space with a

positive interior point e of Y +. Then X is a k-semi-stratifiable space if and only if there exists

a map φ : TX → U(X, [0, e]Y ) such that

(1) For each U ∈ TX , X \ U = φ(U)−1(0);

(2) If U ⊂ V , then φ(U) ≤ φ(V );

(3) For each compact K ⊂ X and U ∈ TX with K ⊂ U , there is r > 0 such that

φ(U)(x) ≥ re for each x ∈ K.

Proof Let ϱ be the map in Definition 1.2 which is increasing with respect to n. For each U ∈ TX ,

let

φ(U) =

∞∑
n=1

1

2n
χ

ϱ(n,U)
e.

Then φ(U) ∈ U(X, [0, e]Y ) and it is easy to verify that X \ U = φ(U)−1(0) and φ(U) ≤ φ(V )

whenever U ⊂ V .

Let K be a compact subset of X and U ∈ TX with K ⊂ U . By (c) of Definition 1.2, there



Maps to ordered topological vector spaces and stratifiable spaces 83

exists n ∈ N such that K ⊂ ϱ(n,U). Let m = min{n ∈ N : K ⊂ ϱ(n,U)}. Then for each x ∈ K,

φ(U)(x) =

∞∑
n=1

1

2n
χ

ϱ(n,U)
(x)e ≥

∞∑
n=m

1

2n
χ

ϱ(n,U)
(x)e =

∞∑
n=m

1

2n
e =

1

2m−1
e.

Conversely, for each U ∈ TX and n ∈ N, let

ϱ(n,U) = X \ int(φ(U)−1(
1

2n
e− Y +)).

By (2), it is clear that if U ⊂ V , then ϱ(n,U) ⊂ ϱ(n, V ) for each n ∈ N.
Let x ∈ X \ U . Then φ(U)(x) = 0. For each n ∈ N, since φ(U) is upper semi-continuous

and 1
2n e− Y + is a 0-neighborhood, there exists an open neighborhood Ox of x such that

φ(U)(Ox) ⊂ φ(U)(x) +
1

2n
e− Y + − Y + =

1

2n
e− Y +.

Thus x ∈ int(φ(U)−1( 1
2n e − Y +)) and so x /∈ ϱ(n,U). This implies that

∪
n∈N ρ(n,U) ⊂ U .

If x /∈
∪

n∈N ϱ(n,U), then φ(U)(x) ∈ 1
2n e − Y + for each n ∈ N from which it follows that

φ(U)(x) = 0. Thus x ∈ X \ U . This implies that U ⊂
∪

n∈N ϱ(n,U).

Now, let K be a compact subset of X and U ∈ TX with K ⊂ U . By (3), there exists n ∈ N
such that φ(U)(x) ≥ 1

2n−1 e for each x ∈ K. Thus x /∈ φ(U)−1( 1
2n e− Y +)) from which it follows

that

x ∈ X \ int(φ(U)−1(
1

2n
e− Y +)) = ϱ(n,U).

Therefore, K ⊂ ϱ(n,U). By Definition 1.2, X is a k-semi-stratifiable space. �

Proposition 4.2 Let X be a topological space and Y an ordered topological vector space with

a positive interior point e of Y +. Then X is a k-semi-stratifiable space if and only if for each

U ∈ TX , there is an increasing sequence {δnU ∈ U(X, [0, e]Y ) : n ∈ N} of maps such that

(1) ⟨δnU ⟩ pointwise converges to χU e on X;

(2) If U ⊂ V , then δnU ≤ δnV for each n ∈ N;
(3) For each compact K ⊂ X and U ∈ TX with K ⊂ U , there is n ∈ N such that δnU (x) = e

for each x ∈ K.

Proof Let ϱ be the map in Definition 1.2 and assume that ϱ is increasing with respect to n. For

each n ∈ N and U ∈ TX , let δnU = χ
ϱ(n,U)

e. Then {δnU ∈ U(X, [0, e]Y ) : n ∈ N} is an increasing

sequence of maps as required.

Conversely, for each n ∈ N and U ∈ TX , let ϱ(n,U) = X \ int(δ−1
nU (

1
2e − Y +)). Then with

a similar argument as that in the proof of (c) ⇒ (a) in Theorem 3.5, one readily shows that∪
n∈N ϱ(n,U) = U and ϱ(n,U) ⊂ ϱ(n, V ) for each n ∈ N whenever U ⊂ V .

Now, let K be a compact subset of X and U ∈ TX with K ⊂ U . By (3), there exists n ∈ N
such that δnU (x) = e for each x ∈ K. Thus x ∈ ϱ(n,U) from which it follows that K ⊂ ϱ(n,U).

Consequently, X is a k-semi-stratifiable space. �
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