
Journal of Mathematical Research with Applications

Jan., 2018, Vol. 38, No. 1, pp. 85–94

DOI:10.3770/j.issn:2095-2651.2018.01.008

Http://jmre.dlut.edu.cn

Lanne’s T-functor and Hypersurfaces

Wenhua ZHENG∗, Jizhu NAN

School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract Through discussing the transformation of the invariant ideals, we firstly prove

that the T-functor can only decrease the embedding dimension in the category of unstable

algebras over the Steenrod algebra. As a corollary we obtain that the T-functor preserves the

hypersurfaces in the category of unstable algebras. Then with the applications of these results

to invariant theory, we provide an alternative proof that if the invariant of a finite group is

a hypersurface, then so are its stabilizer subgroups. Moreover, by several counter-examples

we demonstrate that if the invariants of the stabilizer subgroups or Sylow p-subgroups are

hypersurfaces, the invariant of the group itself is not necessarily a hypersurface.
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1. Introduction

The T-functor is a remarkable functor, which takes an unstable module over the Steenrod

algebra to another object of the same type. It was first built in [1] by Lannes to study the

cohomology of function spaces. This functor has played important roles in many problems and

continue to yield exciting applications, such as the Sullivan conjecture [2] and the original proof

of the Landweber-Stong conjecture [3]. One of the strengths of T-functor lies in the fact that

it preserves many homological properties. For example, the polynomail algebra, the complete

intersection and the Cohen-Macaulay ring [3,4]. It is Dwyer and Wilkerson who realized the

significance of the T-functor for invariant theory [4] and gave a new proof of Steinberg’s [5]

and Nakajama’s [6] result. But their proof is confined in the prime field. Then the work of

Larry Smith constructed the T-functor for any finite field and provided more properties on the

generalized T-functor [3,7,8]. In this paper, we will make use of Smith’s reconstruction of the

T-functor for all finite fields and continue to study the T-functor and invariant rings. One of

our main results is that:

The T-functor preserves the hypersurfaces in the category of unstable algebras over the

Steenrod algebra.

Generally speaking, a functor does not always maintain this property, even the embed-

ding dimension is not inherited. However, we claim that the T-functor not only preserves the
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hypersurfaces but also does not increase the embedding dimension in the category of unstable

algebras. The detailed description about these could be found in Section 3. As corollaries of our

conclusions, we also get Gregor Kemper’s interesting results about the hypersurfaces [9].

Comparing with the other homological properties, there are many differences about the hy-

persurfaces. For instance, if the invariants of all the Sylow-p subgroups are Cohen-Macaulay, then

so is the invariant of the group itself [3]. However, the example 4.10 in this article demonstrates

that this is not true for the hypersurfaces. We also construct another example 4.7 to illustrate

that when the invariants of the stabilizer subgroups are hypersurfaces, it does not mean that the

invariant of the group itself is. In the non-modular case, Nakajima has studied those represen-

tations, for which their invariants are hypersurfaces [10,11]. For the modular case, the results

in [12–14] extend the work of Nakajima, discussing whether the invariants of certain subgroups

of the group with polynomial invariant are hypersurfaces. Another criterion for testing when

the invariants are hypersurfaces, in the case its Cohen-Macaulay, was provided in [3, Proposition

5.5.8]. And for the invariant rings of the modular reflection groups which are hypersurfaces could

be found in the calculation in [15].

The organization of the paper: Section 2 is devoted to list some basic conceptions and results

that are needed for this paper. In Section 3, we discuss several rules about the transformation of

the invariant ideals and prove that the T-functor does not increase the embedding dimension of

the unstable algebra. As a corollary, we claim that T-functor preserves the hypersurfaces in the

category of unstable algebras over the Steenrod algebra. Section 4 looks into the application of

the results in Section 3, which leads to an alternative proof of a known result in [9], that when

the invariant of a finite group is hypersurface, so are its stabilizer subgroups. At the same time,

we give several examples to explain that if the invariants of the stabilizer subgroups or Sylow

p-subgroups are hypersurfaces, the invariant of the group itself is not necessarily a hypersurface.

2. Preliminaries

We suppose that the readers are familiar with the basic facts concerning the Steenrod

algebra of a Galois field. However, we will briefly describe the work of Larry Smith about the

reconstruction of the T-functor for any finite group [1], because it is indispensable for this article.

More details concerning the Steenrod algebra and the T-functor could be found in [2,3,19–21]

and the other knowledge on the Homological algebra and the Representation theory in [17,18].

Let ρ : G ↪→ GL(n, Fq) be a faithful representation of a finite group G over the field Fq,

where Fq is a Galois field with CharFq = p and |Fq| = pν , where p is a positive fixed prime

number. Then, via ρ, G acts on the left of the vector space V = Fn
q . There is an induced action

on the symmetric algebra Fq[V ] := S(V ∗) given by g(f) = f ◦ g−1 for g ∈ G and f ∈ Fq[V ]. By

definition, the ring, or algebra, of invariants, is the fixed subalgebra as follows:

Fq[V ]G = {f ∈ Fq[V ] | g ◦ f = f, ∀ g ∈ G}.

Theorem 2.1 ([3]) Let ρ : G ↪→ GL(n, F ) be a faithful representation of a finite group

G over the field F . Suppose F [V ]G contains a system of parameters f1, . . . , fn, such that
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deg(f1) · · ·deg(fn) = |G|. Then F [V ]G = F [f1, . . . , fn].

Definition 2.2 ([3]) A graded commutative algebra H over Fq is called an algebra over the

Steenrod algebra if it is a left P∗-module satisfying the Cartan formula, where the P∗ denotes

the Steenrod algebra of Fq. If, in addition, the unstability condition holds, then we say that H

is an unstable algebra over the Steenrod algebra, or simply an unstable algebra.

The Steenrod operations acting on H satisfy unstability condition means:

Pi(f) =

{
fq if i = deg(f),

0 if i > deg(f),
∀f ∈ H.

And the formula

Pk(f ′f ′′) =
∑

i+j=k

Pi(f ′)Pj(f ′′), ∀f ′, f ′′ ∈ H

is called the Cartan formula for the Steenrod operations.

Let K denote the category of unstable algebra of Fq. Here we point out the facts that the

algebra Fq[V ] and the algebra invariant Fq[V ]G are both in the category of K .

The category of unstable modules over the Steenrod algebra of Fq is denoted by U . If U

is a finite-dimensional Fq-vector space, then based on the adjoint functor theorem, the functor

U  U , M  Fq[U ]⊗Fq M has a left adjoint denoted by

TU : U  U ,

which is characterized by

HomU (M,Fq[U ]⊗Fq N) ∼= HomU (TU (M), N).

At the same time, as described in [3, Section 10.1], the TU could also denote the functor from K

to K , because computing TU (H) as an object of K or U , H in both K and U , the result is

the same. So without conflict, we refer to the functors TU for U = Fm
q , m in the set of positive

integer Z+, as T-functor.

Proposition 2.3 ([2]) Let M be a locally finite unstable P∗-module, which means that if each

x ∈ M lies in a finite P∗-submodule of M . Then TU (M) is isomorphic to M .

From the adjointness relation HomK (H,Fq[U ]) ∼= HomK (TU (H), Fq), we could separate

TU (H) into components. For a map φ ∈ HomK (H,Fq[U ]), there is a corresponding map φ̃ :

TU (H) → Fq, which amounts to a homomorphism φ̃ : TU (H)0 → Fq. Then we define the

component of φ in TU (H) by TU,φ(H) = TU (H)⊗TU (H)0 Fq. Because the component functors

TU,φ preserve connectedness, they behave better algebraically than TU .

Definition 2.4 ([3]) An object M that is both an unstable P∗-module and a module over an

unstable P∗-algebra H such that the Cartan formula

Pk(h · x) =
∑

i+j=k

Pi(h)Pj(x), ∀h ∈ H,x ∈ M

is satisfied is called an unstable H ⊙ P∗-module.
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We use UH to denote the category whose objects are unstable H ⊙ P∗-modules and mor-

phisms are both H- and P∗-module homomorphisms. Because TU preserves tensor products,

we have

TU,φ(M) = TU (M)⊗TU (H)0 Fq
∼= TU (M)⊗TU (H) TU,φ(H).

These TU,φ are called the components of TU (M) for M regarded as an H-module. In the next

parts of this article, we will discuss the functor

TU,φ : UH  UTU,φ(H).

Definition 2.5 ([3]) Let H be an unstable algebra over the Steenrod algebra. An ideal I ⊆ H

is called P∗-invariant ideal or just invariant ideal if it is closed under the action of the Steenrod

algebra, i.e., P (f) ∈ I, ∀f ∈ I, P ∈ P∗.

It is apparent that the invariant ideals I ⊆ H are equipped with the structure of H ⊙ P∗-

module.

3. Lanne’s T-functor and hypersurfaces

In this section, the claims that T-functor does not increase the embedding dimension of

the unstable algebra and the T-functor preserves the hypersurfaces are proved. These facts

do not hold for general functors. For example, we could define a functor F [−] : K  K as

F [−] = Fq[x] ⊗Fq −, where x is an indeterminate. Choose an object Fq[y] in K , where y is

another indeterminate. The embedding dimension of Fq[y] is obviously one. But the embedding

dimension of Fq[x]⊗Fq Fq[y] = Fq[x, y] is two. Here we firstly cite several conclusions as follows.

Proposition 3.1 ([19]) Let us suppose that φ : H → Fq[U ] is a K ∗-map. Then the functor

TU,φ(−) is exact and preserves tensor products in the sense that if M and N are objects of UH ,

there is a natural isomorphism

TU,φ(M ⊗H N) ∼= TU,φ(M)⊗TU,φ(H) TU,φ(N).

Proposition 3.2 ([3]) Let H be a connected unstable integral domain over P∗. Suppose that

H is Noetherian and that φ : H → Fq[U ] is a morphism in K , where U = Fm
q is a finite-

dimensional vector space over Fq. Then dim(TU,φ(H)) = dim(H).

Proposition 3.3 ([3]) Let H be an unstable P∗-algebra, φ : H → Fq[U ] a map of P∗-algebra,

and M an H ⊙ P∗-module that is free as an H-module. Then TU,φ(M) is free as a TU,φ(H)-

module.

Then, discussing the transformation of the invariant ideals leads to the next lemma.

Lemma 3.4 Let H denote a graded connected commutative algebra over Fq and I, I1, I2 are

invariant ideals of H. If φ : H → Fq[U ] is a map of unstable algebras, then

(1) TU,φ(I) is an invariant ideal of TU,φ(H);

(2) TU,φ(I1 ∩ I2) ⊆ TU,φ(I1) ∩ TU,φ(I2);

(3) TU,φ(I1 · I2) ∼= TU,φ(I1) · TU,φ(I2);
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(4) If I is a principal ideal of H, then TU,φ(I) is a principal ideal of TU,φ(H);

(5) If I is the augmentation ideal of H, then TU,φ(I) is the augmentation ideal of TU,φ(H);

(6) If I2 ⊆ I1, then TU,φ(I1/I2) ∼= TU,φ(I1)/TU,φ(I2).

Proof (1) and (2) are directly from the exactness of the functor.

(3) Since I1 · I2 ∼= I1 ⊗H I2, the equation follows from Proposition 3.1.

(4) Because I is a principal ideal, it is free as H⊙P∗-module. Consequently, by Proposition

3.3, TU,φ(I) is a free TU,φ(H) ⊙ P∗-module. Since TU,φ(I) is a submodule of TU,φ(H), it must

have rank one. So as an ideal in TU,φ(H) it is also principal.

(5) Let I denote the unique maximal ideal of H. We have the H ⊙ P∗-module exact

sequence

0 → I → H → Fq → 0.

Because of the exactness of TU,φ, we obtain the next exact sequence

0 → TU,φ(I) → TU,φ(H) → TU,φ(Fq) → 0.

Based on Proposition 2.3 and the definition of the component of the T-functor TU,φ(Fq) ∼= Fq,

therefore, TU,φ(H)/TU,φ(I) ∼= Fq. So TU,φ(I) is also the unique maximal ideal of TU,φ(H).

(6) We are familiar with the exact sequence as follows:

0 → I2 → I1 → I1/I2 → 0.

By Proposition 3.1, under the transformation of TU,φ(−), the sequence

0 → TU,φ(I2) → TU,φ(I1) → TU,φ(I1/I2) → 0

is still exact. So TU,φ(I1/I2) ∼= TU,φ(I1)/TU,φ(I2). �

Corollary 3.5 If the graded commutative connected algebraH = Fq[h], where h is a linear form

or a monomial. Then the form of TU,φ(Fq[h]) could be taken as Fq[h
′] for some h′ ∈ TU,φ(Fq[h]).

Proof According to the (4) and (5), we could draw the conclusion that the form of TU,φ(Fq[h])

is Fq[h
′] for some h′ ∈ TU,φ(Fq[h]). �

Definition 3.6 ([17]) Let H be a commutative Noetherian graded connected ring over Fq with

maximal ideal H̄. Then the embedding dimension of H is edim(H) := dimH/H̄(H̄/(H̄)2).

Theorem 3.7 Let H be a graded connected commutative algebra over Fq with edim(H) =

m (m ∈ Z+). If φ : H → Fq[U ] is a map of unstable algebras, then edim(TU,φ(H)) ≤ m.

Proof Suppose that the maximal ideal of H is H̄.

Then due to the results (3), (5) and (6) of Lemma 3.4, we obtain

TU,φ(H̄/H̄2) ∼= TU,φ(H̄)/(TU,φ(H̄)2.

Because of edim(H) = m, we could say that as an Fq vector space, dim(H̄/H̄2) = m.

Meanwhile, TU (H̄/H̄2) ∼= H̄/(H̄2) by Proposition 2.1. And the definition of TU,φ(−) tells

us that as Fq vector spaces, dimFq (TU (H̄/H̄2)) ≤ dim(TU,φ(H̄/H̄2)).
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As a result, we say that edim(TU,φ(H)) ≤ m.

Definition 3.8 ([16]) A commutative Noetherian graded connected ring H over Fq is called a

hypersurface ring or just a hypersurface if edim(H) ≤ dim(H) + 1, where dim(H) denotes the

Krull dimension.

It is known that the embedding dimension of a finitely generated Fq-algebra H is equal to

the Krull dimension of H if and only if H is a polynomial ring. So in the next part of this paper,

we will only take the case edim(H) = dim(H) + 1 into consideration.

Corollary 3.9 Let H be a graded connected commutative algebra that is a hypersurface over

Fq with dim(H) = n. If φ : H → Fq[U ] is a map of unstable algebras, then TU,φ(H) is also a

hypersurface over Fq.

Proof Combining Proposition 3.2 and Theorem 3.7, we have

n ≤ edim(TU,φ(H)) ≤ n+ 1,

which means it is also a hypersurface. �

4. Invariants of stabilizer subgroups

Next, we will apply the results on the unstable algebra to the invariant theory and discuss

when the invariants of finite group are hypersurfaces.

Definition 4.1 ([3]) Let GU denote the pointwise stabilizer subgroup of U in G, which is defined

by

GU = {g ∈ G|g(u) = u, ∀u ∈ U, U is a linear subspace of V }.

Proposition 4.2 ([3]) Let ρ : G ↪→ GL(n, Fq) be a representation of a finite group G over the

Galois field Fq and i : U ↪→ V = Fn
q a linear subspace. Let α : Fq[V ]G ↪→ Fq[V ]

i∗−→ Fq[U ] be

the composition of i∗ with the canonical inclusion λ : Fq[V ]G ↪→ Fq[V ]. Then TU,α(Fq[V ]G) ∼=
Fq[V ]GU .

Theorem 4.3 Let ρ : G ↪→ GL(n, Fq) be a faithful representation of a finite group G over the

field Fq and i : U ≤ V = Fn
q a linear subspace. If edim(Fq[V ]G) = m, then edim(Fq[V ]GU ) ≤ m,

where GU is the pointwise stabilizer of U in G.

Proof Let α : Fq[V ]G → Fq[U ] be the composition of i∗ with the canonical inclusion Fq[V ]G ↪→
Fq[V ]. By Theorem 3.7, the T-functor can only decrease the embedding dimension. By Propo-

sition 4.2, TU,α(Fq[V ]G) ∼= Fq[V ]GU . Then we get the result as desired. �

Theorem 4.4 Let ρ : G ↪→ GL(n, Fq) be a faithful representation of a finite group G over the

field Fq and i : U ≤ V = Fn
q a linear subspace. If Fq[V ]G is a hypersurface, then so is Fq[V ]GU ,

where GU is the pointwise stabilizer of U in G.

Proof This result comes from Theorem 4.2 and Corollary 3.9. �
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Remark 4.5 As corollaries of our results in the last section, Theorems 4.3 and 4.4 are two

special cases of the beautiful work of Gregor Kemper in [9].

The following example is concerning the calculating and comparing of the invariant of a

finite group and its stabilizer subgroups.

Example 4.6 Let Fp be the prime field of characteristic p and consider the group G which

is isomorphic to C3
p in GL4(Fp), where Cp is the cyclic group of order p. It is generated by the

three elements α, β, γ, where

α−1 :=


1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1

 , β−1 :=


1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

 , γ−1 :=


1 0 0 0

0 1 0 0

1 1 1 0

1 1 0 1


Let {x1, x2, x3, x4} denote the basis of V ∗ dual to the canonical basis {e1, e2, e3, e4} of V .

The act of C3 on V ∗ is consistent with the definition at the beginning of Section 2. Quoting

[16, Example 10.0.11], it is known that

Fp[V ]G = Fp[x1, x2, f1, f2, h],

f1 = (xp
3 − xp−1

1 x3)(x
p
3 − (x1 + x2)

p−1x3),

f2 = (xp
4 − xp−1

2 x4)(x
p
4 − (x1 + x2)

p−1x4),

h = x2(x
p
4 − xp−1

2 x4) + x1(x
p
3 − xp−1

1 x3).

It is a hypersurface, but not a polynomial algebra. Then we discuss the invariants of the stabilizer

subgroups of G.

Let VJ = SpanFp
{ej |j ∈ J} denote the subspace of V , where I = {1, 2, 3, 4} and J ⊆ I. We

have the facts that GV{3,4} = GV{2,3,4} = GV{1,3,4} = GV{1,2,3,4} = 1, GV{4} = GV{1,4} = GV{2,4} =

GV{1,2,4} = ⟨α⟩, GV{3} = GV{1,3} = GV{2,3} = GV{1,2,3} = ⟨β⟩, GV{1} = GV{2} = GV{1,2} = G.

Through calculating the top Chern Orbit Classes and using Theorem 2.1, it is easy to gain that

Fp[V ]⟨α⟩ = Fp[x1, x2, x
p
3 − xp−1

1 x3, x4],

Fp[V ]⟨β⟩ = Fp[x1, x2, x3, x
p
4 − xp−1

2 x4].

They are polynomial algebra, of course, they are hypersurfaces.

Remark 4.7 It is natural to ask whether Fq[V ]G is a hypersurface, provided the invariants of

every pointwise stabilizer subgroup is. The answer is negative, as demonstrated by the following

example.

Example 4.8 Let A3 and C3 denote alternating group and cyclic group of order 3. The ground

field is F3 of characteristic 3. We consider the group as follows:

G = A3 ⊕ C3 = {g =

(
σ 0

0 τ

)
| σ ∈ A3, τ ∈ C3}.

V ∗ denotes the dual space of V = F 6
3 = X ⊕ Y with basis {x1, x2, x3, y1, y2, y3}. Suppose the
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action of σ is determined by the tautological representation of A3 and τ on Y by the matrix

τ =

 1 0 0

1 1 0

0 1 1

 .

Because A3, C3 are both simple groups, the only non-trivial subgroups of G are I⊕C3 and A3⊕I,

where I is the identity matrix. We can check the stabilizer subgroups of G are GSpanF3{y1} =

I ⊕C3 and GSpanF3
{x1+x2+x3} = A3 ⊕ I. According to the calculation of the invariant of C3 and

A3 (see [16, Sections 4.4 and 4.10]), we get

F3[X ⊕ Y ]I⊕C3 = F3[X]I ⊗ F3[Y ]C3 = F3[x1, x2, x3, y1, f1, f2, f3].

f1 = y32 − y21y2,

f2 = y33 − y22y3,

f3 = y22 − 2y1y3 − y1y2.

F3[X ⊕ Y ]A3⊕I = F3[X]A3 ⊗ F3[Y ]I = F3[h1, h2, h3, h4, y1, y2, y3].

h1 = x1 + x2 + x3,

h2 = x1x2 + x2x3 + x1x3,

h3 = x1x2x3,

h4 = x2
3x2 + x1x

2
2 − x2

2x3 − x1x
2
3 − x2

1x2 + x2
1x3.

They are both hypersurfaces. Meanwhile,

F3[X ⊕ Y ]A3⊕C3 = F3[X]A3 ⊗ F3[Y ]C3 = F3[h1, h2, h3, h4, y1, f1, f2, f3].

Because f2
2 ∈ F3[y1, f3, f4] and h2

4 ∈ F3[h1, h2, h3], there are two relations among the generators.

So the number of generators minus the number of relations is equal to the Krull dimension, i.e.,

F3[X ⊕ Y ]A3⊕C3 is a complete intersection, but not a hypersurface.

Remark 4.9 It is known that if the invariants of all the Sylow-p subgroups are Cohen-Macaulay,

then so is the invariant of the group itself. Nevertheless, another example could be provided to

explain that when the invariants of Sylow-p subgroups are all hypersurfaces, it is not necessary

for the invariants of the group itself to be hypersurface.

Example 4.10 Let C3 still denote cyclic group of order 3 and C2 the cyclic group of order 2.

The ground field is F3 of characteristic 3. We consider the group as follows:

G = C2 ⊕ C3 = {g =

(
σ 0

0 τ

)
| σ ∈ C2, τ ∈ C3}.

The V ∗ denotes the of V = F 5
3 = X ⊕ Y with basis {x1, x2, y1, y2, y3}. Suppose the action of σ
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and τ on X and Y are respectively determined by the matrices

σ =

(
−1 0

0 −1

)
, τ =

 1 0 0

1 1 0

0 1 1

 .

Because the order of the group G is 6, the sylow-p subgroups of G is just I ⊕C3, where I is the

identity matrix. Taking the same method as Example 4.7, we obtain

F3[X ⊕ Y ]I⊕C3 = F3[X]I ⊗ F3[Y ]C3 = F3[x1, x2, x3, y1, f1, f2, f3],

f1 = y32 − y21y2,

f2 = y33 − y22y3,

f3 = y22 − 2y1y3 − y1y2.

It is a hypersurface. Meanwhile, the invariant of C2 ⊕ I is easy to calculate

F3[X ⊕ Y ]C2⊕I = F3[X]C2 ⊗ F3[Y ]I = F3[x
2
1, x

2
2, x1x2, y1, y2, y3].

So we gain the equations as follows

F3[X ⊕ Y ]C2⊕C3 = F3[X]C2 ⊗ F3[Y ]C3 = F3[x
2
1, x

2
2, x1x2, y1, f1, f2, f3].

This means the invariant of the group G is complete intersection, but not a hypersurface. How-

ever, the invariants of the sylow-p subgroups are hypersurfaces.

Go on with the way of the examples above, we point out the obvious method to construct

groups whose invariants are hypersurfaces.

Proposition 4.11 Suppose the group G(G1, G2) is a direct sum defined as follows:

G(G1, G2) = {g =

(
A 0

0 B

)
|A ∈ G1, B ∈ G2} ∼= (G1 ⊕G2),

where G1 < GLr(Fq), G2 < GLn−r(Fq). Let V = Fn
q and the dual space V ∗ = X ⊕ Y , where

X = SpanFq
{x1, . . . , xr}, Y = SpanFq

{xr+1, . . . , xn} are the dual space of V1 and V2. If Fq[V1]
G1

is a hypersurface and Fq[V2]
G2 is a polynomial. Then Fq[V ]G1⊕G2 is a hypersurface.

Proof The conclusion is apparent from the fact that

Fq[V ]G1⊕G2 = Fq[V1 ⊕ V2]
G2⊕G2 = Fq[V1]

G1 ⊗ Fq[V2]
G2 . �
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