Journal of Mathematical Research with Applications Jan., 2018, Vol. 38, No. 1, pp. 103–110 DOI:10.3770/j.issn:2095-2651.2018.01.010 Http://jmre.dlut.edu.cn

Precise Rates in the Generalized Law of the Iterated Logarithm in \mathbb{R}^m

Mingzhou XU*, Yunzheng DING, Yongzheng ZHOU

School of Information and Engineering, Jingdezhen Ceramic University, Jiangxi 333403, P. R. China

Abstract Let $\{X, X_n, n \ge 1\}$ be a sequence of i.i.d. random vectors with $\mathbb{E}X = (0, \ldots, 0)_{m \times 1}$ and $\operatorname{Cov}(X, X) = \sigma^2 I_m$, and set $S_n = \sum_{i=1}^n X_i$, $n \ge 1$. For every d > 0 and $a_n = o((\log \log n)^{-d})$, the article deals with the precise rates in the genenralized law of the iterated logarithm for a kind of weighted infinite series of $\mathbb{P}(|S_n| \ge (\varepsilon + a_n)\sigma\sqrt{n}(\log \log n)^d)$.

Keywords precise rates; law of iterated logarithm; complete convergence; i.i.d. random vectors

MR(2010) Subject Classification 60F15; 60G50

1. Introduction and main results

Throughout this paper, let $\{X, X_n, n \ge 1\}$ be a sequence of i.i.d. random vectors with $\mathbb{E}X = (0, \ldots, 0)_{m \times 1}$ and $\operatorname{Cov}(X, X) = \sigma^2 I_m, \sigma < \infty$, and set $S_n = \sum_{i=1}^n X_i, n \ge 1$, where I_m is unit $m \times m$ matrix, $\operatorname{Cov}(X_1, X_1) = (\sigma_{uv})_{m \times m}$ is the covariance matrix of $X_1 = (X_{11}, \ldots, X_{1m}), \sigma_{uv} = \mathbb{E}(X_{1u}X_{1v})$. Let N be the standard m-dimensional normal random vector. We denote by C a positive constant which may vary from line to line, and by $\stackrel{d}{\to}$ convergence in distribution. For $t = (t_1, \ldots, t_m) \in \mathbb{R}^m$, $|t| = (\sum_{u=1}^m t_u^2)^{1/2}$ denotes Euclidean norm. Let $\log x = \ln(x \vee e), \log \log x = \ln(\ln(x \vee e^e))$ and $\lfloor x \rfloor = \sup\{\ell, \ell \le x, \ell \in \mathbb{Z}^+\}$. The notation $a_n = o(b_n)$ means that $a_n/b_n \to 0$ as $n \to \infty$.

Gut and Spătaru [1] proved that when m = 1,

$$\lim_{\varepsilon \searrow 0} \varepsilon^2 \sum_{n=2}^{\infty} \frac{1}{n \log n} \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n \log \log n}\} = \sigma^2.$$

Zhang [2] deduced that when m = 1,

$$\lim_{\varepsilon \searrow 0} \varepsilon^{2b} \sum_{n=3}^{\infty} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|S_n| \ge \varepsilon \sigma \sqrt{2n \log \log n}\} = \frac{\Gamma(b+1/2)}{b \sqrt{\pi}},$$

holds for every b > 0. Xiao et al. [3] established that when m = 1,

$$\lim_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n=3}^{\infty} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|S_n| \ge (\varepsilon + a_n) \sigma \sqrt{n} (\log \log n)^d\} = \frac{\mathbb{E}|N|^{b/d}}{b}$$

Received February 6, 2017; Accepted August 4, 2017

Supported by the National Natural Science Foundation of China (Grant No. 61662037) and the Scientific Program of Department of Education of Jiangxi Province (Grant Nos. GJJ150894; GJJ150905).

* Corresponding author

E-mail address: mingzhouxu@whu.edu.cn (Mingzhou XU); zhyzh_ty@163.com (Yongzheng ZHOU)

holds for b, d > 0 and $a_n = o((\log \log n)^{-d})$, if $\mathbb{E}X = 0$ and $\mathbb{E}X^2 = \sigma^2$. Furthermore, they also obtained

$$\lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \sum_{n=3}^{\infty} \frac{1}{n \log n \log \log n} \mathbb{P}\{|S_n| \ge (\varepsilon + a_n) \sigma \sqrt{n} (\log \log n)^d\} = \frac{1}{d},$$

for d > 0, $a_n = o((\log \log n)^{-d})$ and m = 1. The law of the iterated logarithm has been extended by many authors, the interested reader could see Huang et al. [4], Jiang and Yang [5], Wu and Wen [6].

It is natural to ask whether or not the results of Xiao et al. [3] still hold in higher dimensional case. In this paper we try to give an affirmative answer to the question. The following are our main results.

Theorem 1.1 For b, d > 0, and $a_n = o((\log \log n)^{-d})$, we have

$$\lim_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n=3}^{\infty} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|S_n| \ge (\varepsilon + a_n) \sigma \sqrt{n} (\log \log n)^d\} = \frac{2^{b/(2d)} \Gamma(m/2 + b/(2d))}{\Gamma(m/2)b}.$$
 (1)

Remark 1.2 In Theorem 1.1, if m = 1, $a_n = 0$, d = 1/2, put $\sqrt{2}\zeta = \varepsilon$, then (1) reduces to

$$\lim_{\zeta \searrow 0} (\zeta)^{2b} \sum_{n=3}^{\infty} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|S_n| \ge (\sqrt{2}\zeta) \sigma \sqrt{n} (\log \log n)^{1/2}\} = \frac{\Gamma(1/2+b)}{\sqrt{\pi}b},$$

which is consistent to the result in Zhang [2].

Theorem 1.3 For d > 0, $a_n = o((\log \log n)^{-d})$, we have

$$\lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \sum_{n=3}^{\infty} \frac{1}{n \log n \log \log n} \mathbb{P}\{|S_n| \ge (\varepsilon + a_n) \sigma \sqrt{n} (\log \log n)^d\} = \frac{1}{d}.$$
 (2)

The idea of the proof of our main results comes from that of Xiao et al. [3]. We need the following lemma.

Lemma 1.4 Suppose $\mathbb{E}|X|^{\alpha} < \infty$, $1 < \alpha \leq 2$. Then for x, y > 0,

$$\mathbb{P}\{|S_n| \ge x\} \le nm \mathbb{P}\{|X| > y\} + 2mn^{x/(\sqrt{m}y)} \left(\frac{e\mathbb{E}|X|^{\alpha}}{n\mathbb{E}|X|^{\alpha} + xy^{\alpha-1}/\sqrt{m}}\right)^{x/(\sqrt{m}y)}.$$
(3)

Proof By [3, Lemma 1] (see [7,8]), we have

$$\begin{aligned} &\mathbb{P}\{|S_n| \ge x\} \le \sum_{i=1}^m \mathbb{P}\{|S_{n,i}| \ge \frac{x}{\sqrt{m}}\} \\ &\le \sum_{i=1}^m \left[n\mathbb{P}\{|X_{1i}| > y\} + 2n^{x/(\sqrt{m}y)} \left(\frac{e\mathbb{E}|X_{1i}|^{\alpha}}{n\mathbb{E}|X_{1i}|^{\alpha} + xy^{\alpha-1}/\sqrt{m}}\right)^{x/(\sqrt{m}y)}\right] \\ &\le nm\mathbb{P}\{|X| > y\} + 2mn^{x/(\sqrt{m}y)} \left(\frac{e\mathbb{E}|X|^{\alpha}}{n\mathbb{E}|X|^{\alpha} + xy^{\alpha-1}/\sqrt{m}}\right)^{x/(\sqrt{m}y)}, \end{aligned}$$

where $S_{n,i} = \sum_{j=1}^{n} X_{ji}$, $X_j = (X_{j1,\dots,jm})$ throughout this paper.

In the following two sections, for $M \ge 3$ and $0 < \varepsilon < 1$, set $b(\varepsilon) = \lfloor \exp\{\exp\{M\varepsilon^{-1/d}\}\}\rfloor$. There is no loss of generality in assuming $\sigma = 1$ for the proof of the two theorems.

Precise rates in the generalized law of the iterated logarithm in \mathbb{R}^m

2. Proof of Theorem 1.1

Proposition 2.1 For b, d > 0, we have

$$\lim_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n=3}^{\infty} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\} = \frac{2^{b/(2d)} \Gamma(m/2 + b/(2d))}{\Gamma(m/2)b}.$$
 (4)

Proof By the monotonicity of $\frac{(\log \log y)^{b-1}}{y \log y} \int_{\varepsilon^2 (\log \log y)^{2d}}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx$ for y large enough, we have

$$\begin{split} \lim_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n=3}^{\infty} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\} \\ &= \lim_{\varepsilon \searrow 0} \varepsilon^{b/d} \int_{e^e}^{\infty} \frac{(\log \log y)^{b-1}}{y \log y} dy \int_{\varepsilon^2 (\log \log y)^{2d}}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \\ &= \lim_{\varepsilon \searrow 0} \frac{1}{2d} \int_{\varepsilon^2}^{\infty} t^{b/(2d)-1} dt \int_{t}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \\ &= \frac{1}{2d} \lim_{\varepsilon \searrow 0} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \int_{\varepsilon^2}^{x} t^{b/(2d)-1} dt \\ &= \frac{1}{b} \lim_{\varepsilon \searrow 0} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} x^{b/(2d)} dx - \frac{1}{b} \lim_{\varepsilon \searrow 0} \varepsilon^{b/d} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \\ &= \frac{1}{b} \lim_{\varepsilon \searrow 0} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} x^{b/(2d)} dx - \frac{1}{b} \lim_{\varepsilon \searrow 0} \varepsilon^{b/d} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \\ &= \frac{1}{b} \lim_{\varepsilon \searrow 0} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} x^{b/(2d)} dx \\ &= \frac{1}{b} \lim_{\varepsilon \searrow 0} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} x^{b/(2d)} dx \\ &= \frac{2^{b/(2d)} \Gamma(m/2 + b/(2d))}{\Gamma(m/2)b}. \end{split}$$

Thus this completes the proof of Proposition 2.1. \Box

Proposition 2.2 For b, d > 0, we have

$$\lim_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \left| \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n} (\log \log n)^d\} - \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\} \right| = 0.$$
(5)

 $\mathbf{Proof} \ \ \mathrm{Let}$

$$\Delta_n = \sup_{x \in \mathbb{R}} \left| \mathbb{P}\{|S_n| / \sqrt{n} \ge x\} - \mathbb{P}\{|N| \ge x\} \right|.$$

Then $\Delta_n \to 0$ as $n \to \infty$ since $S_n/\sqrt{n} \stackrel{d}{\to} N$ (see [9, Theorem 29.5, p.398]). Application of The Toeplitz lemma [3, Proposition 2.2, 10, Lemma 3.2.3, p.120] yields

$$\varepsilon^{b/d} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \left| \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n} (\log \log n)^d\} - \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\}$$
$$\le \varepsilon^{b/d} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \Delta_n$$
$$\le \frac{CM^b}{(\log \log b(\varepsilon))^b} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \Delta_n \to 0, \text{ as } \varepsilon \to 0.$$

Thus the proof of this proposition is completed. \Box

Proposition 2.3 For b, d > 0, we have

$$\lim_{M \to \infty} \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\} = 0.$$

 $\mathbf{Proof} \ \ \mathrm{We} \ \mathrm{could} \ \mathrm{obtain}$

$$\begin{split} &\limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\} \\ &\le C \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \int_{b(\varepsilon)}^{\infty} \frac{(\log \log y)^{b-1}}{y \log y} \mathrm{d}y \int_{\varepsilon^2 (\log \log y)^{2d}}^{\infty} \frac{x^{m/2-1} \mathrm{e}^{-x/2}}{2^{m/2} \Gamma(m/2)} \mathrm{d}x \\ &\le C \int_{M^{2d}}^{\infty} t^{b/(2d)-1} \mathrm{d}t \int_{t}^{\infty} \frac{x^{m/2-1} \mathrm{e}^{-x/2}}{2^{m/2} \Gamma(m/2)} \mathrm{d}x \to 0 \text{ as } M \to \infty, \end{split}$$

since \mathbf{s}

$$\begin{split} &\int_{1}^{\infty} t^{b/(2d)-1} \mathrm{d}t \int_{t}^{\infty} \frac{x^{m/2-1} \mathrm{e}^{-x/2}}{2^{m/2} \Gamma(m/2)} \mathrm{d}x = \int_{1}^{\infty} \frac{x^{m/2-1} \mathrm{e}^{-x/2}}{2^{m/2} \Gamma(m/2)} \mathrm{d}x \int_{1}^{x} t^{b/(2d)-1} \mathrm{d}t \\ &\leq C \int_{1}^{\infty} \frac{x^{m/2+b/(2d)-1} \mathrm{e}^{-x/2}}{2^{m/2} \Gamma(m/2)} \mathrm{d}x + C \int_{1}^{\infty} \frac{x^{m/2-1} \mathrm{e}^{-x/2}}{2^{m/2} \Gamma(m/2)} \mathrm{d}x < \infty, \end{split}$$

where the above equality comes from Fubini's theorem. Proposition 2.3 is established. \Box

Proposition 2.4 For b, d > 0, we have

$$\lim_{M \to \infty} \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n} (\log \log n)^d\} = 0.$$
(6)

Proof When 0 < b < 2d, we conclude by Markov's inequality that

$$\begin{split} \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n} (\log \log n)^d\} \\ \le C \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d-2} \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b-1-2d}}{n^2 \log n} \sum_{i=1}^m \mathbb{E}[|S_{n,i}|^2] \\ = C \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d-2} \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b-1-2d}}{n \log n} m \\ \le C \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d-2} (\log \log b(\varepsilon))^{b-2d} \\ \le CM^{b-2d} \to 0, \text{ as } M \to \infty. \end{split}$$

For $b \geq 2d$, by Lemma 1.4, we see that

$$\sum_{n>b(\varepsilon)} \frac{(\log\log n)^{b-1}}{n\log n} \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n} (\log\log n)^d\}$$
$$\le \sum_{n>b(\varepsilon)} \frac{(\log\log n)^{b-1}}{\log n} m \mathbb{P}\{|X| > \varepsilon \sqrt{n} (\log\log n)^d / T\} + C\sum_{n>b(\varepsilon)} \frac{(\log\log n)^{b-1}}{n\log n} \frac{1}{(\log\log n)^{2dT} / \sqrt{m}\varepsilon^{2T} / \sqrt{m}} := L_1 + L_2,$$

where T is a positive constant to be specified later. On the one hand, we have

$$\limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} L_2 \le \limsup_{\varepsilon \searrow 0} C \varepsilon^{b/d - 2T/\sqrt{m}} \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b - 1 - 2dT/\sqrt{m}}}{n \log n}$$
$$\le \limsup_{\varepsilon \searrow 0} C \varepsilon^{b/d - 2T/\sqrt{m}} (\log \log b(\varepsilon))^{b - 2dT/\sqrt{m}}$$
$$\le C M^{b - 2dT/\sqrt{m}} \to 0, \text{ as } M \to \infty$$

for any $T > \sqrt{mb}/(2d)$. On the other hand, for L_1 , without loss of generality assume T = 1. It is obtained that

$$L_{1} = \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b-1}}{\log n} m \mathbb{E}\{I\{|X| \ge \varepsilon \sqrt{n} (\log \log n)^{d}\}\}$$
$$= \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b-1}}{\log n} m \sum_{j=n}^{\infty} \mathbb{E}\{I\{\varepsilon \sqrt{j} (\log \log j)^{d} \le |X| < \varepsilon \sqrt{j+1} (\log \log (j+1))^{d}\}\}$$
$$= \sum_{j > b(\varepsilon)} \mathbb{E}\{I\{\varepsilon \sqrt{j} (\log \log j)^{d} \le |X| < \varepsilon \sqrt{j+1} (\log \log (j+1))^{d}\}\} \sum_{n > b(\varepsilon)}^{j} \frac{(\log \log n)^{b-1}}{\log n}.$$

From $(\log \log n)^{b-1} (\log n)^{-1} \to 0$, as $n > b(\varepsilon) \to \infty$, it follows that

$$\begin{split} L_1 &\leq C \sum_{j > b(\varepsilon)} j \mathbb{E} \{ I\{ \varepsilon \sqrt{j} (\log \log j)^d \leq |X| < \varepsilon \sqrt{j+1} (\log \log (j+1))^d \} \} \\ &\leq C \varepsilon^{-2} \sum_{j > b(\varepsilon)} \mathbb{E} \{ |X|^2 I\{ \varepsilon \sqrt{j} (\log \log j)^d \leq |X| < \varepsilon \sqrt{j+1} (\log \log (j+1))^d \} \} \\ &\leq C \varepsilon^{-2} \mathbb{E} \{ |X|^2 I\{ |X| \geq \varepsilon \sqrt{b(\varepsilon)} (\log \log b(\varepsilon))^d \} \}. \end{split}$$

Consequently, for $b \geq 2d$, we have

$$\limsup_{\varepsilon\searrow 0}\varepsilon^{b/d}L_1 \leq \limsup_{\varepsilon\searrow 0}C\varepsilon^{b/d-2}\mathbb{E}\{|X|^2I\{|X|\geq M^d\sqrt{b(\varepsilon)}/2\}\} = 0$$

Therefore (6) holds for every b, d > 0.

Proposition 2.5 For b, d > 0, and $a_n = o((\log \log n)^{-d})$, we have

$$\limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n=3}^{\infty} \frac{(\log \log n)^{b-1}}{n \log n} \times \left| \mathbb{P}\{|S_n| \ge (\varepsilon + a_n) \sqrt{n} (\log \log n)^d\} - \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n} (\log \log n)^d\} \right| = 0.$$
(7)

Proof Choose n_1 large enough such that $M^d/3 \ge |a_n| (\log \log n)^d$ for all $n \ge n_1$. If ε is so small that $b(\varepsilon) \ge n_1$, then

$$M^d/3 \ge |a_n|(\log\log n)^d \ge |a_n|(\log\log b(\varepsilon))^d \ge \frac{2}{3}|a_n|M^d\varepsilon^{-1}, n > b(\varepsilon)$$

whence $-|a_n| \ge -\varepsilon/2$, $n > b(\varepsilon)$. It follows that

$$\sum_{n>b(\varepsilon)} \frac{(\log\log n)^{b-1}}{n\log n} \mathbb{P}\{|S_n| \ge (\varepsilon + a_n)\sqrt{n}(\log\log n)^d\}$$

Mingzhou XU, Yunzheng DING and Yongzheng ZHOU

$$\leq \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|S_n| \geq (\varepsilon - |a_n|) \sqrt{n} (\log \log n)^d\}$$
$$\leq \sum_{n > b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{|S_n| \geq (\varepsilon/2) \sqrt{n} (\log \log n)^d\}.$$

Then from Proposition 2.4, it suffices to get

$$\lim_{M \to \infty} \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \times |\mathbb{P}\{|S_n| \ge (\varepsilon + a_n) \sqrt{n} (\log \log n)^d\} - \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n} (\log \log n)^d\}| = 0.$$

By a similar argument of Proposition 2.2, we have

$$\limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \times \left| \mathbb{P}\{|S_n| \ge (\varepsilon + a_n)\sqrt{n} (\log \log n)^d\} - \mathbb{P}\{|N| \ge (\varepsilon + a_n) (\log \log n)^d\} \right| = 0.$$

Hence, it remains to get

$$\limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \left| \mathbb{P}\{|N| \ge (\varepsilon + a_n)(\log \log n)^d\} - \mathbb{P}\{|N| \ge \varepsilon(\log \log n)^d\} \right| = 0$$

or an even stronger result

$$\limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \mathbb{P}\{(\varepsilon - |a_n|)(\log \log n)^d \le |N| \le (\varepsilon + |a_n|)(\log \log n)^d\} = 0.$$

But the left hand side of the above equality is no more than

$$\begin{split} \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \int_{(\varepsilon - |a_n|)^2 (\log \log n)^{2d}}^{(\varepsilon + |a_n|)^2 (\log \log n)^{2d}} \frac{x^{m/2 - 1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \\ \le C \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} \int_{(\varepsilon - |a_n|) (\log \log n)^d}^{(\varepsilon + |a_n|) (\log \log n)^d} \frac{x^{m-1} e^{-x^2/2}}{2^{m/2} \Gamma(m/2)} 2 dx \\ \le C \limsup_{\varepsilon \searrow 0} \varepsilon^{b/d} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} |a_n| (\log \log n)^d \\ \le C \limsup_{\varepsilon \searrow 0} \frac{M^b}{(\log \log b(\varepsilon))^b} \sum_{n \le b(\varepsilon)} \frac{(\log \log n)^{b-1}}{n \log n} |a_n| (\log \log n)^d \\ = 0, \end{split}$$

by the Toeplitz lemma since $|a_n|(\log \log n)^d \to 0$ as $n \to \infty$. Therefore we have the desired result.

Now by Propositions 2.1–2.5 and the triangle inequality, we obtain the proof of Theorem 1.1. \Box

3. Proof of Theorem 1.3

Proposition 3.1 For d > 0, we have

$$\lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \sum_{n=3}^{\infty} \frac{1}{n \log n \log \log n} \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\} = \frac{1}{d}.$$
 (8)

 $\mathbf{Proof} \ \ \mathbf{We} \ \mathbf{obtain}$

$$\begin{split} \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \sum_{n=3}^{\infty} \frac{1}{n \log n \log \log n} \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\} \\ &= \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{e^\varepsilon}^{\infty} \frac{1}{y \log y \log \log y} dy \int_{\varepsilon^2 (\log \log y)^{2d}}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \\ &= \frac{1}{2d} \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{\varepsilon^2}^{\infty} \frac{1}{t} dt \int_{t}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \\ &= \frac{1}{2d} \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \int_{\varepsilon^2}^{x} \frac{1}{t} dt \\ &= \frac{1}{2d} \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} \log x dx + \lim_{\varepsilon \searrow 0} \frac{1}{d} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \\ &= \frac{1}{d} + \frac{1}{2d} \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} \log x dx + \lim_{\varepsilon \searrow 0} \frac{1}{d} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} dx \\ &= \frac{1}{d} - \frac{1}{2d} \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} \log x dx \\ &= \frac{1}{d} - \frac{1}{2d} \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} \log x dx \\ &= \frac{1}{d} - \frac{1}{2d} \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} \log x dx \\ &= \frac{1}{d} - \frac{1}{2d} \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} \log x dx \\ &= \frac{1}{d}. \end{split}$$

Indeed, since

$$\int_{\varepsilon^{2}}^{1} \frac{x^{m/2-1}}{2^{m/2}\Gamma(m/2)} \log x dx \le \int_{\varepsilon^{2}}^{1} \frac{x^{m/2-1}e^{-x/2}}{2^{m/2}\Gamma(m/2)} \log x dx \le \frac{e^{-1/2}}{2^{m/2}\Gamma(m/2)} \int_{\varepsilon^{2}}^{1} x^{m/2-1} \log x dx,$$
$$\lim_{\varepsilon \searrow 0} \int_{\varepsilon^{2}}^{1} x^{m/2-1} \log x dx = \lim_{\varepsilon \searrow 0} \int_{\varepsilon^{2}}^{1} \frac{2}{m} \log x dx^{m/2} = -(2/m)^{2},$$
so
$$1 = \int_{\varepsilon^{2}}^{\infty} x^{m/2-1}e^{-x/2}$$

and so

$$\lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{\varepsilon^2}^{\infty} \frac{x^{m/2-1} e^{-x/2}}{2^{m/2} \Gamma(m/2)} \log x dx = 0.$$

This establishes (8). \Box

Proposition 3.2 For d > 0, we have

$$\lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \sum_{n \le b(\varepsilon)} \frac{1}{n \log n \log \log n} \left| \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n} (\log \log n)^d\} - \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\} \right| = 0.$$

Proof The proof of this proposition is similar to that of [3, Proposition 3.2], so the proof is omitted. \Box

Proposition 3.3 For d > 0, we have

-1

$$\lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \sum_{n > b(\varepsilon)} \frac{1}{n \log n \log \log n} \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\} = 0.$$

Proof From the proof of Proposition 3.1, we deduce that

$$\lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \sum_{n > b(\varepsilon)} \frac{1}{n \log n \log \log n} \mathbb{P}\{|N| \ge \varepsilon (\log \log n)^d\}$$

Mingzhou XU, Yunzheng DING and Yongzheng ZHOU

$$\leq C \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{b(\varepsilon)}^{\infty} \frac{1}{y \log y \log \log y} \mathrm{d}y \int_{\varepsilon^2 (\log \log y)^{2d}}^{\infty} \frac{x^{m/2-1} \mathrm{e}^{-x/2}}{2^{m/2} \Gamma(m/2)} \mathrm{d}x$$

$$\leq C \lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \int_{M^{2d}}^{\infty} \frac{1}{t} \mathrm{d}t \int_{t}^{\infty} \frac{x^{m/2-1} \mathrm{e}^{-x/2}}{2^{m/2} \Gamma(m/2)} \mathrm{d}x = 0,$$

$$\int_{0}^{\infty} \frac{1}{-\mathrm{d}t} \int_{0}^{\infty} \frac{x^{m/2-1} \mathrm{e}^{-x/2}}{2^{m/2} \Gamma(m/2)} \mathrm{d}x = 0,$$

since

$$\int_{M^{2d}}^{\infty} \frac{1}{t} \mathrm{d}t \int_{t}^{\infty} \frac{x^{m/2-1} \mathrm{e}^{-x/2}}{2^{m/2} \Gamma(m/2)} \mathrm{d}x$$

is integrable. Thus this proves Proposition 3.3. \Box

Proposition 3.4 For d > 0, one has

$$\lim_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \sum_{n > b(\varepsilon)} \frac{1}{n \log n \log \log n} \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n} (\log \log n)^d\} = 0.$$

Proof The proof of this proposition is similar to that of [3, Proposition 3.4], so the proof is omitted. \Box

Proposition 3.5 For b, d > 0, and $a_n = o((\log \log n)^{-d})$, one has

$$\limsup_{\varepsilon \searrow 0} \frac{1}{-\log \varepsilon} \sum_{n=3}^{\infty} \frac{1}{n \log n \log \log n} \times \left| \mathbb{P}\{|S_n| \ge (\varepsilon + a_n) \sqrt{n} (\log \log n)^d\} - \mathbb{P}\{|S_n| \ge \varepsilon \sqrt{n} (\log \log n)^d\} \right| = 0.$$

Proof The proof of this proposition is similar to that of [3, Proposition 3.5], so the proof is omitted. \Box

Finally, by the triangle inequality and Propositions 3.1–3.5, we obtain the proof of Theorem 1.3.

Acknowledgements We are very grateful to the anonymous referees, whose comments not only helped to correct some mistakes, but also led to improve the quality of the paper.

References

- A. GUT, A. SPĂTARU. Precise asymptotics in the law of the iterated logarithm. Ann. Probab., 2000, 28(4): 1870–1883.
- [2] Lixin ZHANG. Precise rates in the law of the iterated logarithm. Preprint http://arxiv.org/abs/math.PR/0610519, 2006.
- Xiaoyong XIAO, Lixin ZHANG, Hongwei YIN. Precise rates in the generalized law of the iterated logarithm. Statist. Probab. Lett., 2013, 83(83): 616–623.
- [4] Wei HUANG, Lixin ZHANG, Ye JIANG. Precise rate in the law of iterated logarithm for ρ-mixing sequence. Appl. Math. J. Chinese Univ. Ser. B, 2003, 18(4): 482–488.
- [5] Chaowei JIANG, Xiaorong YANG. Precise asymptotics in self-normalized sums of iterated logarithm for multidimensionally indexed random variables. Appl. Math. J. Chinese Univ. Ser. B, 2007, 22(1): 87–194.
- [6] Hongmei WU, Jiwei WEN. Precise rates in the law of iterated logarithm for R/S statistics. Appl. Math. J. Chinese Univ. Ser. B, 2006, 21(4): 461–466.
- [7] A. SPĂTARU. Precise asymptotics in Spitzer'law of large number. J. Theoret. Probab., 1999, 12(3): 811–819.
- [8] D. H. FUK, S. V. NAGAEV. Probability inequalities for sums of independent random variables. Theor. Probab. Appl., 1971, 16(4): 643–660.
- [9] P. BILLINGSLEY. Probability and Measure. John Wiley & Sons, Inc., New York, 1986.
- [10] W. F. STOUT. Almost Sure Convergence. Academic, New York, 1995.