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Abstract Let {X, Xn, n ≥ 1} be a sequence of i.i.d. random vectors with EX = (0, . . . , 0)m×1

and Cov(X,X) = σ2Im, and set Sn =
∑n

i=1 Xi, n ≥ 1. For every d > 0 and an =

o((log log n)−d), the article deals with the precise rates in the genenralized law of the iter-

ated logarithm for a kind of weighted infinite series of P(|Sn| ≥ (ε+ an)σ
√
n(log logn)d).
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1. Introduction and main results

Throughout this paper, let {X, Xn, n ≥ 1} be a sequence of i.i.d. random vectors with

EX = (0, . . . , 0)m×1 and Cov(X,X) = σ2Im, σ < ∞, and set Sn =
∑n

i=1 Xi, n ≥ 1, where Im is

unit m×m matrix, Cov(X1, X1) = (σuv)m×m is the covariance matrix of X1 = (X11, . . . , X1m),

σuv = E(X1uX1v). Let N be the standard m-dimensional normal random vector. We denote by

C a positive constant which may vary from line to line, and by
d→ convergence in distribution.

For t = (t1, . . . , tm) ∈ Rm, |t| = (
∑m

u=1 t
2
u)

1/2 denotes Euclidean norm. Let log x = ln(x ∨ e),

log log x = ln(ln(x ∨ ee)) and ⌊x⌋ = sup{ℓ, ℓ ≤ x, ℓ ∈ Z+}. The notation an = o(bn) means that

an/bn → 0 as n → ∞.

Gut and Spătaru [1] proved that when m = 1,

lim
ε↘0

ε2
∞∑

n=2

1

n log n
P{|Sn| ≥ ε

√
n log log n} = σ2.

Zhang [2] deduced that when m = 1,

lim
ε↘0

ε2b
∞∑

n=3

(log log n)b−1

n log n
P{|Sn| ≥ εσ

√
2n log log n} =

Γ(b+ 1/2)

b
√
π

,

holds for every b > 0. Xiao et al. [3] established that when m = 1,

lim
ε↘0

εb/d
∞∑

n=3

(log log n)b−1

n log n
P{|Sn| ≥ (ε+ an)σ

√
n(log log n)d} =

E|N |b/d

b
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holds for b, d > 0 and an = o((log log n)−d), if EX = 0 and EX2 = σ2. Furthermore, they also

obtained

lim
ε↘0

1

− log ε

∞∑
n=3

1

n log n log log n
P{|Sn| ≥ (ε+ an)σ

√
n(log log n)d} =

1

d
,

for d > 0, an = o((log log n)−d) and m = 1. The law of the iterated logarithm has been extended

by many authors, the interested reader could see Huang et al. [4], Jiang and Yang [5], Wu and

Wen [6].

It is natural to ask whether or not the results of Xiao et al. [3] still hold in higher dimensional

case. In this paper we try to give an affirmative answer to the question. The following are our

main results.

Theorem 1.1 For b, d > 0, and an = o((log log n)−d), we have

lim
ε↘0

εb/d
∞∑

n=3

(log log n)b−1

n logn
P{|Sn| ≥ (ε+ an)σ

√
n(log log n)d} =

2b/(2d)Γ(m/2 + b/(2d))

Γ(m/2)b
. (1)

Remark 1.2 In Theorem 1.1, if m = 1, an = 0, d = 1/2, put
√
2ζ = ε, then (1) reduces to

lim
ζ↘0

(ζ)2b
∞∑

n=3

(log log n)b−1

n log n
P{|Sn| ≥ (

√
2ζ)σ

√
n(log log n)1/2} =

Γ(1/2 + b)√
πb

,

which is consistent to the result in Zhang [2].

Theorem 1.3 For d > 0, an = o((log log n)−d), we have

lim
ε↘0

1

− log ε

∞∑
n=3

1

n log n log log n
P{|Sn| ≥ (ε+ an)σ

√
n(log log n)d} =

1

d
. (2)

The idea of the proof of our main results comes from that of Xiao et al. [3]. We need the following

lemma.

Lemma 1.4 Suppose E|X|α < ∞, 1 < α ≤ 2. Then for x, y > 0,

P{|Sn| ≥ x} ≤ nmP{|X| > y}+ 2mnx/(
√
my)

( eE|X|α

nE|X|α + xyα−1/
√
m

)x/(√my)
. (3)

Proof By [3, Lemma 1] (see [7,8]), we have

P{|Sn| ≥ x} ≤
m∑
i=1

P
{
|Sn,i| ≥

x√
m

}
≤

m∑
i=1

[
nP{|X1i| > y}+ 2nx/(

√
my)

( eE|X1i|α

nE|X1i|α + xyα−1/
√
m

)x/(√my)]
≤ nmP{|X| > y}+ 2mnx/(

√
my)

( eE|X|α

nE|X|α + xyα−1/
√
m

)x/(√my)
,

where Sn,i =
∑n

j=1 Xji, Xj = (Xj1,...,jm) throughout this paper.

In the following two sections, for M ≥ 3 and 0 < ε < 1, set b(ε) = ⌊exp{exp{Mε−1/d}}⌋.
There is no loss of generality in assuming σ = 1 for the proof of the two theorems.
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2. Proof of Theorem 1.1

Proposition 2.1 For b, d > 0, we have

lim
ε↘0

εb/d
∞∑

n=3

(log log n)b−1

n log n
P{|N | ≥ ε(log log n)d} =

2b/(2d)Γ(m/2 + b/(2d))

Γ(m/2)b
. (4)

Proof By the monotonicity of (log log y)b−1

y log y

∫∞
ε2(log log y)2d

xm/2−1e−x/2

2m/2Γ(m/2)
dx for y large enough, we

have

lim
ε↘0

εb/d
∞∑

n=3

(log log n)b−1

n log n
P{|N | ≥ ε(log log n)d}

= lim
ε↘0

εb/d
∫ ∞

ee

(log log y)b−1

y log y
dy

∫ ∞

ε2(log log y)2d

xm/2−1e−x/2

2m/2Γ(m/2)
dx

= lim
ε↘0

1

2d

∫ ∞

ε2
tb/(2d)−1dt

∫ ∞

t

xm/2−1e−x/2

2m/2Γ(m/2)
dx

=
1

2d
lim
ε↘0

∫ ∞

ε2

xm/2−1e−x/2

2m/2Γ(m/2)
dx

∫ x

ε2
tb/(2d)−1dt

=
1

b
lim
ε↘0

∫ ∞

ε2

xm/2−1e−x/2

2m/2Γ(m/2)
xb/(2d)dx− 1

b
lim
ε↘0

εb/d
∫ ∞

ε2

xm/2−1e−x/2

2m/2Γ(m/2)
dx

=
1

b
lim
ε↘0

∫ ∞

ε2

xm/2−1e−x/2

2m/2Γ(m/2)
xb/(2d)dx

=
2b/(2d)Γ(m/2 + b/(2d))

Γ(m/2)b
.

Thus this completes the proof of Proposition 2.1. �

Proposition 2.2 For b, d > 0, we have

lim
ε↘0

εb/d
∑

n≤b(ε)

(log log n)b−1

n log n

∣∣P{|Sn| ≥ ε
√
n(log log n)d} − P{|N | ≥ ε(log log n)d}

∣∣ = 0. (5)

Proof Let

∆n = sup
x∈R

∣∣P{|Sn|/
√
n ≥ x} − P{|N | ≥ x}

∣∣ .
Then ∆n → 0 as n → ∞ since Sn/

√
n

d→ N (see [9, Theorem 29.5, p.398]). Application of The

Toeplitz lemma [3, Proposition 2.2, 10, Lemma 3.2.3, p.120] yields

εb/d
∑

n≤b(ε)

(log log n)b−1

n logn

∣∣P{|Sn| ≥ ε
√
n(log log n)d} − P{|N | ≥ ε(log log n)d}

∣∣
≤ εb/d

∑
n≤b(ε)

(log log n)b−1

n log n
∆n

≤ CM b

(log log b(ε))b

∑
n≤b(ε)

(log log n)b−1

n log n
∆n → 0, as ε → 0.

Thus the proof of this proposition is completed. �
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Proposition 2.3 For b, d > 0, we have

lim
M→∞

lim sup
ε↘0

εb/d
∑

n>b(ε)

(log log n)b−1

n log n
P{|N | ≥ ε(log log n)d} = 0.

Proof We could obtain

lim sup
ε↘0

εb/d
∑

n>b(ε)

(log log n)b−1

n log n
P{|N | ≥ ε(log log n)d}

≤ C lim sup
ε↘0

εb/d
∫ ∞

b(ε)

(log log y)b−1

y log y
dy

∫ ∞

ε2(log log y)2d

xm/2−1e−x/2

2m/2Γ(m/2)
dx

≤ C

∫ ∞

M2d

tb/(2d)−1dt

∫ ∞

t

xm/2−1e−x/2

2m/2Γ(m/2)
dx → 0 as M → ∞,

since ∫ ∞

1

tb/(2d)−1dt

∫ ∞

t

xm/2−1e−x/2

2m/2Γ(m/2)
dx =

∫ ∞

1

xm/2−1e−x/2

2m/2Γ(m/2)
dx

∫ x

1

tb/(2d)−1dt

≤ C

∫ ∞

1

xm/2+b/(2d)−1e−x/2

2m/2Γ(m/2)
dx+ C

∫ ∞

1

xm/2−1e−x/2

2m/2Γ(m/2)
dx < ∞,

where the above equality comes from Fubini’s theorem. Proposition 2.3 is established. �

Proposition 2.4 For b, d > 0, we have

lim
M→∞

lim sup
ε↘0

εb/d
∑

n>b(ε)

(log log n)b−1

n log n
P{|Sn| ≥ ε

√
n(log log n)d} = 0. (6)

Proof When 0 < b < 2d, we conclude by Markov’s inequality that

lim sup
ε↘0

εb/d
∑

n>b(ε)

(log log n)b−1

n log n
P{|Sn| ≥ ε

√
n(log log n)d}

≤ C lim sup
ε↘0

εb/d−2
∑

n>b(ε)

(log log n)b−1−2d

n2 logn

m∑
i=1

E[|Sn,i|2]

= C lim sup
ε↘0

εb/d−2
∑

n>b(ε)

(log log n)b−1−2d

n log n
m

≤ C lim sup
ε↘0

εb/d−2(log log b(ε))b−2d

≤ CM b−2d → 0, as M → ∞.

For b ≥ 2d, by Lemma 1.4, we see that∑
n>b(ε)

(log log n)b−1

n log n
P{|Sn| ≥ ε

√
n(log log n)d}

≤
∑

n>b(ε)

(log log n)b−1

log n
mP{|X| > ε

√
n(log log n)d/T}+

C
∑

n>b(ε)

(log log n)b−1

n log n

1

(log log n)2dT/
√
mε2T/

√
m

:= L1 + L2,
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where T is a positive constant to be specified later. On the one hand, we have

lim sup
ε↘0

εb/dL2 ≤ lim sup
ε↘0

Cεb/d−2T/
√
m

∑
n>b(ε)

(log log n)b−1−2dT/
√
m

n log n

≤ lim sup
ε↘0

Cεb/d−2T/
√
m(log log b(ε))b−2dT/

√
m

≤ CM b−2dT/
√
m → 0, as M → ∞

for any T >
√
mb/(2d). On the other hand, for L1, without loss of generality assume T = 1. It

is obtained that

L1 =
∑

n>b(ε)

(log log n)b−1

log n
mE{I{|X| ≥ ε

√
n(log log n)d}}

=
∑

n>b(ε)

(log log n)b−1

log n
m

∞∑
j=n

E{I{ε
√
j(log log j)d ≤ |X| < ε

√
j + 1(log log(j + 1))d}}

=
∑

j>b(ε)

E{I{ε
√
j(log log j)d ≤ |X| < ε

√
j + 1(log log(j + 1))d}}

j∑
n>b(ε)

(log log n)b−1

log n
.

From (log log n)b−1(log n)−1 → 0, as n > b(ε) → ∞, it follows that

L1 ≤ C
∑

j>b(ε)

jE{I{ε
√

j(log log j)d ≤ |X| < ε
√
j + 1(log log(j + 1))d}}

≤ Cε−2
∑

j>b(ε)

E{|X|2I{ε
√
j(log log j)d ≤ |X| < ε

√
j + 1(log log(j + 1))d}}

≤ Cε−2E{|X|2I{|X| ≥ ε
√

b(ε)(log log b(ε))d}}.

Consequently, for b ≥ 2d, we have

lim sup
ε↘0

εb/dL1 ≤ lim sup
ε↘0

Cεb/d−2E{|X|2I{|X| ≥ Md
√
b(ε)/2}} = 0.

Therefore (6) holds for every b, d > 0.

Proposition 2.5 For b, d > 0, and an = o((log log n)−d), we have

lim sup
ε↘0

εb/d
∞∑

n=3

(log log n)b−1

n log n
×∣∣P{|Sn| ≥ (ε+ an)

√
n(log log n)d} − P{|Sn| ≥ ε

√
n(log log n)d}

∣∣ = 0. (7)

Proof Choose n1 large enough such that Md/3 ≥ |an|(log log n)d for all n ≥ n1. If ε is so small

that b(ε) ≥ n1, then

Md/3 ≥ |an|(log log n)d ≥ |an|(log log b(ε))d ≥ 2

3
|an|Mdε−1, n > b(ε)

whence −|an| ≥ −ε/2, n > b(ε). It follows that∑
n>b(ε)

(log log n)b−1

n log n
P{|Sn| ≥ (ε+ an)

√
n(log log n)d}
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≤
∑

n>b(ε)

(log log n)b−1

n log n
P{|Sn| ≥ (ε− |an|)

√
n(log log n)d}

≤
∑

n>b(ε)

(log log n)b−1

n log n
P{|Sn| ≥ (ε/2)

√
n(log log n)d}.

Then from Proposition 2.4, it suffices to get

lim
M→∞

lim sup
ε↘0

εb/d
∑

n≤b(ε)

(log log n)b−1

n logn
×

∣∣P{|Sn| ≥ (ε+ an)
√
n(log log n)d} − P{|Sn| ≥ ε

√
n(log log n)d}

∣∣ = 0.

By a similar argument of Proposition 2.2, we have

lim sup
ε↘0

εb/d
∑

n≤b(ε)

(log log n)b−1

n log n
×

∣∣P{|Sn| ≥ (ε+ an)
√
n(log log n)d} − P{|N | ≥ (ε+ an)(log log n)

d}
∣∣ = 0.

Hence, it remains to get

lim sup
ε↘0

εb/d
∑

n≤b(ε)

(log log n)b−1

n logn

∣∣P{|N | ≥ (ε+ an)(log log n)
d} − P{|N | ≥ ε(log log n)d}

∣∣ = 0

or an even stronger result

lim sup
ε↘0

εb/d
∑

n≤b(ε)

(log log n)b−1

n log n
P{(ε− |an|)(log log n)d ≤ |N | ≤ (ε+ |an|)(log log n)d} = 0.

But the left hand side of the above equality is no more than

lim sup
ε↘0

εb/d
∑

n≤b(ε)

(log log n)b−1

n log n

∫ (ε+|an|)2(log log n)2d

(ε−|an|)2(log logn)2d

xm/2−1e−x/2

2m/2Γ(m/2)
dx

≤ C lim sup
ε↘0

εb/d
∑

n≤b(ε)

(log log n)b−1

n log n

∫ (ε+|an|)(log logn)d

(ε−|an|)(log logn)d

xm−1e−x2/2

2m/2Γ(m/2)
2dx

≤ C lim sup
ε↘0

εb/d
∑

n≤b(ε)

(log log n)b−1

n log n
|an|(log log n)d

≤ C lim sup
ε↘0

M b

(log log b(ε))b

∑
n≤b(ε)

(log log n)b−1

n log n
|an|(log log n)d

= 0,

by the Toeplitz lemma since |an|(log log n)d → 0 as n → ∞. Therefore we have the desired

result.

Now by Propositions 2.1–2.5 and the triangle inequality, we obtain the proof of Theorem

1.1. �

3. Proof of Theorem 1.3
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Proposition 3.1 For d > 0, we have

lim
ε↘0

1

− log ε

∞∑
n=3

1

n log n log log n
P{|N | ≥ ε(log log n)d} =

1

d
. (8)

Proof We obtain

lim
ε↘0

1

− log ε

∞∑
n=3

1

n log n log log n
P{|N | ≥ ε(log log n)d}

= lim
ε↘0

1

− log ε

∫ ∞

ee

1

y log y log log y
dy

∫ ∞

ε2(log log y)2d

xm/2−1e−x/2

2m/2Γ(m/2)
dx

=
1

2d
lim
ε↘0

1

− log ε

∫ ∞

ε2

1

t
dt

∫ ∞

t

xm/2−1e−x/2

2m/2Γ(m/2)
dx

=
1

2d
lim
ε↘0

1

− log ε

∫ ∞

ε2

xm/2−1e−x/2

2m/2Γ(m/2)
dx

∫ x

ε2

1

t
dt

=
1

2d
lim
ε↘0

1

− log ε

∫ ∞

ε2

xm/2−1e−x/2

2m/2Γ(m/2)
log xdx+ lim

ε↘0

1

d

∫ ∞

ε2

xm/2−1e−x/2

2m/2Γ(m/2)
dx

=
1

d
+

1

2d
lim
ε↘0

1

− log ε

∫ ∞

ε2

xm/2−1e−x/2

2m/2Γ(m/2)
log xdx

=
1

d
.

Indeed, since∫ 1

ε2

xm/2−1

2m/2Γ(m/2)
log xdx ≤

∫ 1

ε2

xm/2−1e−x/2

2m/2Γ(m/2)
log xdx ≤ e−1/2

2m/2Γ(m/2)

∫ 1

ε2
xm/2−1 log xdx,

lim
ε↘0

∫ 1

ε2
xm/2−1 log xdx = lim

ε↘0

∫ 1

ε2

2

m
log xdxm/2 = −(2/m)2,

and so

lim
ε↘0

1

− log ε

∫ ∞

ε2

xm/2−1e−x/2

2m/2Γ(m/2)
log xdx = 0.

This establishes (8). �

Proposition 3.2 For d > 0, we have

lim
ε↘0

1

− log ε

∑
n≤b(ε)

1

n log n log log n

∣∣P{|Sn| ≥ ε
√
n(log log n)d} − P{|N | ≥ ε(log log n)d}

∣∣ = 0.

Proof The proof of this proposition is similar to that of [3, Proposition 3.2], so the proof is

omitted. �

Proposition 3.3 For d > 0, we have

lim
ε↘0

1

− log ε

∑
n>b(ε)

1

n log n log log n
P{|N | ≥ ε(log log n)d} = 0.

Proof From the proof of Proposition 3.1, we deduce that

lim
ε↘0

1

− log ε

∑
n>b(ε)

1

n log n log log n
P{|N | ≥ ε(log log n)d}
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≤ C lim
ε↘0

1

− log ε

∫ ∞

b(ε)

1

y log y log log y
dy

∫ ∞

ε2(log log y)2d

xm/2−1e−x/2

2m/2Γ(m/2)
dx

≤ C lim
ε↘0

1

− log ε

∫ ∞

M2d

1

t
dt

∫ ∞

t

xm/2−1e−x/2

2m/2Γ(m/2)
dx = 0,

since ∫ ∞

M2d

1

t
dt

∫ ∞

t

xm/2−1e−x/2

2m/2Γ(m/2)
dx

is integrable. Thus this proves Proposition 3.3. �

Proposition 3.4 For d > 0, one has

lim
ε↘0

1

− log ε

∑
n>b(ε)

1

n log n log log n
P{|Sn| ≥ ε

√
n(log log n)d} = 0.

Proof The proof of this proposition is similar to that of [3, Proposition 3.4], so the proof is

omitted. �

Proposition 3.5 For b, d > 0, and an = o((log log n)−d), one has

lim sup
ε↘0

1

− log ε

∞∑
n=3

1

n log n log log n
×∣∣P{|Sn| ≥ (ε+ an)

√
n(log log n)d} − P{|Sn| ≥ ε

√
n(log log n)d}

∣∣ = 0.

Proof The proof of this proposition is similar to that of [3, Proposition 3.5], so the proof is

omitted. �
Finally, by the triangle inequality and Propositions 3.1–3.5, we obtain the proof of Theorem

1.3.
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