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Abstract A connected graph G = (V,E) is called a quasi-tree graph, if there exists a vertex

v0 ∈ V (G) such that G − v0 is a tree. Liu and Lu [Linear Algebra Appl. 428 (2008) 2708-

2714] determined the maximal spectral radius together with the corresponding graph among

all quasi-tree graphs on n vertices. In this paper, we extend their result, and determine the

second to the fifth largest spectral radii together with the corresponding graphs among all

quasi-tree graphs on n vertices.
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1. Introduction

Let G = (V,E) be a simple undirected graph with vertex set V = V (G) = {v1, v2, . . . , vn}
and edge set E = E(G). As usual, A(G) denotes the adjacency matrix of a graph G and ρ(G)

denotes the largest eigenvalue of A(G) which is called spectral radius of G. If G is connected,

then A(G) is irreducible and by the Perron-Frobenius theorem, ρ(G) has multiplicity one and

there exists a unique positive unit eigenvector corresponding to ρ(G). We will refer to such an

eigenvector as the Perron vector of G.

The study of ordering graphs by their spectral radius was stared by Collatz and Sinogowitz

[1] in 1957. Cvetković [2] proposed twelve directions for further research in the theory of graph

spectra, one of which is “classifying and ordering graphs”. From then on, ordering graphs with

various properties by their spectra, specially by their largest eigenvalues, becomes an attractive

topic. There are many results on ordering graphs by their spectral radii [3–12].

A connected graph G = (V,E) is called a quasi-tree graph, if there exists a vertex v0 ∈ V (G)

such that G− v0 is a tree. Let Qn be the set of all quasi-tree graphs on n vertices. Liu and Lu

[12] determined the maximal spectral radius together with the corresponding graph among all

quasi-tree graphs in the set Qn. In this paper, we extend their result, and determine the second

to the fifth largest spectral radii together with the corresponding graphs among all quasi-tree
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graphs in the set Qn. The main result of this paper is as follows:

Theorem 1.1 Let n ≥ 32, G ∈ Qn \{G1
n, G

2
n, G

3
n, G

4
n, G

5
n}, where Gi

n (i = 1, 2, . . . , 5) is showed

in Figure 1. Then

ρ(G1
n) > ρ(G2

n) > ρ(G3
n) > ρ(G4

n) > ρ(G5
n) > ρ(G),

where ρ(Gi
n) (i = 1, 2, . . . , 5) is the largest root of the following polynomial fi(x),

f1(x) :=x3 − (2n− 3)x− 2(n− 2),

f2(x) :=x5 − (2n− 3)x3 − 2(n− 2)x2 + 3(n− 4)x+ 2(n− 4),

f3(x) :=x4 − 2(n− 2)x2 − 2(n− 3)x+ (n− 3),

f4(x) :=x5 − 2(n− 2)x3 − 2(n− 3)x2 + (2n− 7)x+ 2(n− 4),

f5(x) :=x5 − (2n− 3)x3 − 2(n− 2)x2 + 6(n− 5)x+ 4(n− 5).
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Figure 1 Gi
n (i = 1, 2, 3, 4, 5)

The rest of the paper is organized as follows. In Section 2, we recall some basic notions and

lemmas used further, and prove three new lemmas. In Section 3, we give a proof of Theorem 1.1.

2. Preliminaries

Denote by K1,n−1 and Pn the star and the path on n vertices, respectively. Let G−u denote

the graph that arises from G by deleting the vertex u ∈ V (G) and all the edges incident with u,

and G−uv denote the graph that arises from G by deleting the edge uv ∈ E(G). Similarly, G+uv

is the graph that arises from G by adding an edge uv /∈ E(G), where u, v ∈ V (G). For v ∈ V (G),

N(v) denotes the neighborhood of v in G and d(v) = |N(v)| denotes the degree of vertex v. The

diameter of a connected graph is the maximum distance between pairs of its vertices. A pendant

vertex of G is a vertex of degree 1. A pendant edge of G is an edge incident with a pendant

vertex. Let Sn(s, t) (s ≥ t ≥ 1, s+ t = n−2) be the graph on n vertices obtained from a path P2

by attaching s pendant edges and t pendant edges to each end vertex of P2, respectively. Denote

by Φ(G, x) the characteristic polynomial of a graph G, where Φ(G, x) = det(xEn −A(G)).

Lemma 2.1 ([13]) Let G be a connected graph of order n and ρ(G) be the spectral radius of

A(G). Let u, v be two vertices of G. Suppose v1, v2, . . . , vs ∈ NG(v)\NG(u) (1 ≤ s ≤ dG(v)),

and x = (x1, x2, . . . , xn)
T is the Perron vector of A(G), where xi corresponds to the vertex
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vi (1 ≤ i ≤ n). Let G∗ be the graph obtained from G by deleting the edges vvi and adding the

edges uvi (1 ≤ i ≤ s). If xu ≥ xv, then ρ(G) < ρ(G∗).

Lemma 2.2 ([14]) Let C(u) be the set of all cycles containing u, where u ∈ V (G). Then

Φ(G;x) = xΦ(G− u;x)−
∑

v∈N(u)

Φ(G− u− v;x)− 2
∑

Z∈C(u)

Φ(G− V (Z);x).

Lemma 2.3 ([15]) Let G1 and G2 be two graphs. If Φ(G2, x) > Φ(G1, x) for x ≥ ρ(G2), then

ρ(G1) > ρ(G2).

Lemma 2.4 ([16]) Let G be a connected graph of order n, and H be a proper subgraph of G.

Then ρ(H) < ρ(G).

Lemma 2.5 ([17]) For a connected graph G, V (G) = {v1, v2, . . . , vn}, then

ρ(G) ≤ max{
√

dvi
mvi : 1 ≤ i ≤ n},

where mvi =
∑

vjvi∈E(G) dvj/dvi .

Let Qn,d0 be the graph obtained from a star K1, n−2 and an isolated vertex v0 by adding

an edge joining v0 to the center of K1,n−2 and d0 − 1 edges joining v0 to the pendant vertices of

K1,n−2, respectively. Let Q∗
n,d0

(2 ≤ d0 ≤ n − 2) be the graph obtained from a graph Qn−1,d0

by attaching a pendant edge to one vertex of degree 2 in Qn−1,d0 . For 1 ≤ d0 ≤ n − 1, let

Q(n, d0) := {G : G ∈ Qn with G− v0 being a tree and dG(v0) = d0}.

Lemma 2.6 ([12]) (i) Let n ≥ 4, 1 ≤ d0 ≤ n − 1, G ∈ Q(n, d0). Then ρ(G) ≤ ρ(Qn,d0) and

equality holds if and only if G ∼= Qn,d0 .

(ii) Let n ≥ 5, 2 ≤ d0 ≤ n− 2, G ∈ Q(n, d0)\{Qn,d0}. Then ρ(G) ≤ ρ(Q∗
n,d0

) and equality

holds if and only if G ∼= Q∗
n,d0

.

(iii) ρ(Qn,d0+1) > ρ(Qn,d0) for 1 ≤ d0 ≤ n− 2.

Lemma 2.7 Let n ≥ 7, Gi
n (i = 1, 2, 5) be showed in Figure 1, G ∈ Q(n, n− 1) \ {G1

n, G
2
n, G

5
n}.

Then ρ(G1
n) > ρ(G2

n) > ρ(G5
n) > ρ(G).

Proof Let G ∈ Q(n, n− 1) \ {G1
n}. By Lemma 2.6, we have ρ(G1

n) > ρ(G).

Let V (G) = {v0, v1, . . . , vn−1} and x = {x0, x1, . . . , xn−1}T be the Perron vector of A(G),

where xi corresponds to the vertex vi for 0 ≤ i ≤ n− 1. Assume, without loss of generality, that

G− v0 is a tree.

Step 1. Choose G ∈ Q(n, n − 1) \ {G1
n} such that ρ(G) is as large as possible, and prove

that G = G2
n. Since G ∈ Q(n, n− 1) \ {G1

n}, it follows that G− v0 ̸= K1,n−2.

Firstly, we show that the diameter d of G − v0 is 3. Otherwise, we suppose d > 3. Then

there are at least two nonpendant edges in G− v0. Assume that uv is one of them. If xu ≥ xv,

let

G∗ = G−
∑

w∈NG(v)\{u,v0}

vw +
∑

w∈NG(v)\{u,v0}

uw;
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if xu < xv, let

G∗ = G−
∑

w∈NG(u)\{v,v0}

uw +
∑

w∈NG(u)\{v,v0}

vw.

Then in either case, G∗ ∈ Q(n, n − 1) \ {G1
n}. By Lemma 2.1, we have ρ(G∗) > ρ(G), a

contradiction. Therefore the diameter d of G− v0 is 3, G− v0 = Sn−1(s, t) (s ≥ t ≥ 1).

Secondly, we show that G − v0 = Sn−1(n − 4, 1). Otherwise, we suppose t > 1. Let uv be

the unique nonpendant edge in G− v0, and ua, vb be two pendant edges in G− v0. If xu ≥ xv,

let

G∗ = G−
∑

w∈NG(v)\{u,v0,b}

vw +
∑

w∈NG(v)\{u,v0,b}

uw;

if xu < xv, let

G∗ = G−
∑

w∈NG(u)\{v,v0,a}

uw +
∑

w∈NG(u)\{v,v0,a}

vw.

Then in either case, G∗ ∈ Q(n, n − 1) \ {G1
n}. By Lemma 2.1, we have ρ(G∗) > ρ(G), a

contradiction. Therefore, G− v0 = Sn−1(n− 4, 1). Namely, G = G2
n.

Step 2. Choose G ∈ Q(n, n − 1) \ {G1
n, G

2
n} such that ρ(G) is as large as possible, and

show that G = G5
n. Since G ∈ Q(n, n − 1) \ {G1

n, G
2
n}, it follows that G − v0 ̸= K1,n−2,

G− v0 ̸= Sn−1(n− 4, 1).

Similarly, we can show that G− v0 = Sn−1(s, t) (s ≥ t ≥ 2). Next we show that G− v0 =

Sn−1(n− 5, 2). Otherwise, we suppose t ≥ 3. Let uv be the unique nonpendant edge in G− v0,

and ua, ub, vc, vd be four pendant edges in G− v0. If xu ≥ xv, let

G∗ = G−
∑

w∈NG(v)\{u,v0,c,d}

vw +
∑

w∈NG(v)\{u,v0,c,d}

uw;

if xu < xv, let

G∗ = G−
∑

w∈NG(u)\{v,v0,a,b}

uw +
∑

w∈NG(u)\{v,v0,a,b}

vw.

Then in either case, G∗ ∈ Q(n, n − 1) \ {G1
n, G

2
n}. By Lemma 2.1, we have ρ(G∗) > ρ(G), a

contradiction. Therefore, G− v0 = Sn−1(n− 5, 2). Namely, G = G5
n. �

Lemma 2.8 Let n ≥ 10, G3
n, G

4
n and Fi (i = 1, 2, . . . , 7) be showed in Figures 1 and 2, respec-

tively, G ∈ Q(n, n− 2) \ {G3
n, G

4
n, F2}. Then ρ(G3

n) > ρ(G4
n) > ρ(F2) > ρ(G).
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Figure 2 Fi (i = 1, 2, 3, 4, 5, 6, 7), H1

Proof By Lemma 2.6, we have ρ(G3
n) > ρ(G4

n) > ρ(G).

Choose G ∈ Q(n, n − 2) \ {G3
n, G

4
n} such that ρ(G) is as large as possible. We will prove

that G = F2. Let V (G) = {v0, v1, . . . , vn−1} and x = {x0, x1, . . . , xn−1}T be the Perron vector

of A(G), where xi corresponds to the vertex vi for 0 ≤ i ≤ n − 1. Assume, without loss of

generality, that G− v0 is a tree.

Firstly, we claim that G − v0 = K1, n−2 or G − v0 = Sn−1(s, t) (s ≥ t ≥ 1). Otherwise, we

suppose that the diameter d of G − v0 is more than 3, then there are at least two nonpendant

edges in G− v0. It is not difficult to see that there must exist a nonpendant edge uv in G− v0

such that xu ≥ xv and

G∗ = G−
∑

w∈NG(v)\{u,v0}

vw +
∑

w∈NG(v)\{u,v0}

uw ∈ Q(n, n− 2) \ {G3
n, G

4
n}.

By Lemma 2.1, we have ρ(G∗) > ρ(G), a contradiction. Therefore, the diameter d of G − v0 is

not more than 3, then G− v0 = K1, n−2 or G− v0 = Sn−1(s, t) (s ≥ t ≥ 1).

Secondly, for the case ofG−v0 = Sn−1(s, t) (s ≥ t ≥ 1), we claim thatG−v0 = Sn−1(n−4, 1)

or G − v0 = Sn−1(n − 5, 2). Otherwise, we suppose t ≥ 3. Let uv be the unique nonpendant

edge in G − v0. If v0u, v0v ∈ E(G), then there exists a vertex vi ∈ V (G) \ {v0, u, v} such that

v0vi /∈ E(G). Without loss of generality, we may assume that xu ≥ xv and vvj is a pendant edge

in G− v0 such that vj ̸= vi. Let

G∗ = G−
∑

w∈NG(v)\{u,v0,vj}

vw +
∑

w∈NG(v)\{u,v0,vj}

uw.

Then G∗ ∈ Q(n, n − 2) \ {G3
n, G

4
n}, by Lemma 2.1, we have ρ(G∗) > ρ(G), a contradiction. If

v0u /∈ E(G), then let ua, vb be two pendant edges in G− v0. If xu ≥ xv, let

G∗ = G−
∑

w∈NG(v)\{u,v0,b}

vw +
∑

w∈NG(v)\{u,v0,b}

uw;

if xu < xv, let

G∗ = G−
∑

w∈NG(u)\{v,a}

uw +
∑

w∈NG(u)\{v,a}

vw.

Then in either case, G∗ ∈ Q(n, n − 2) \ {G3
n, G

4
n}. By Lemma 2.1, we have ρ(G∗) > ρ(G), a

contradiction. If v0v /∈ E(G), similarly, we can also get a contradiction. Therefore, G − v0 =

Sn−1(n− 4, 1) or G− v0 = Sn−1(n− 5, 2).
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Thirdly, when G− v0 = K1, n−2, it is easy to see that G = K2, n−2.

Fourthly, for the case of G− v0 = Sn−1(n− 4, 1), we claim that G = F2. In this case, G ∈
{F1, F2, F3}. For F1, if x2 ≥ x4, let G

∗ = F1− v4v0+ v2v0; if x2 < x4, let G
∗ = F1− v2v3+ v4v3.

Then in either case, G∗ ∼= F2 ∈ Q(n, n− 2) \ {G3
n, G

4
n}. By Lemma 2.1, we have ρ(F2) > ρ(F1).

This implies that G ̸= F1. For F3, if x1 ≥ x4, let G
∗ = F3 − v4v0 + v1v0; if x1 < x4, let

G∗ = F3 −
∑

u∈NF3
(v1)\{v4}

v1u+
∑

u∈NF3
(v1)\{v4}

v4u.

Then in either case, G∗ ∼= F2 ∈ Q(n, n− 2) \ {G3
n, G

4
n}. By Lemma 2.1, we have ρ(F2) > ρ(F3).

This implies that G ̸= F3. From the above arguments, we have G = F2.

Fifthly, for the case of G − v0 = Sn−1(n − 5, 2), we claim that G = F4. In this case,

G ∈ {F4, F5, F6, F7}. For F6, if x1 ≥ x5, let G
∗ = F6 − v5v0 + v1v0; if x1 < x5, let

G∗ = F6 −
∑

u∈NF6
(v1)\{v5}

v1u+
∑

u∈NF6
(v1)\{v5}

v5u.

Then in either case, G∗ ∼= F5 ∈ Q(n, n− 2) \ {G3
n, G

4
n}. By Lemma 2.1, we have ρ(F5) > ρ(F6).

This implies that G ̸= F6. For F7, if x2 ≥ x3, let G
∗ = F7 − v3v0 + v2v0; if x2 < x3, let

G∗ = F7 −
∑

u∈NF7 (v2)\{v3}

v2u+
∑

u∈NF7 (v2)\{v3}

v3u.

Then in either case, G∗ ∼= F4 ∈ Q(n, n− 2) \ {G3
n, G

4
n}. By Lemma 2.1, we have ρ(F4) > ρ(F7).

This implies that G ̸= F7. For F5, by Lemma 2.2, we have

Φ(F4;x) =xn−6[x6 − 2(n− 2)x4 − 2(n− 3)x3 + (5n− 18)x2 + 4(n− 5)x− (n− 5)],

Φ(F5;x) =xn−6[x6 − 2(n− 2)x4 − 2(n− 3)x3 + (7n− 37)x2 + 4(n− 5)x− 2(n− 6)].

Noting thatK2, n−5 is a subgraph of F5, by Lemma 2.4, we have ρ(F5) > ρ(K2,n−5) =
√
2(n− 5).

It follows that

Φ(F5;x)− Φ(F4;x) = xn−6[(2n− 19)x2 − (n− 7)] > 0

for x ≥ ρ(F5). By Lemma 2.3, we have ρ(F4) > ρ(F5). This implies that G ̸= F5. From the

above arguments, we have G = F4.

From the above arguments, we have G ∈ {K2, n−2, F2, F4}. Now we show that G = F2.

Noting thatK2, n−4 is a subgraph of F4, by Lemma 2.4, we have ρ(F4) > ρ(K2, n−4) =
√
2(n− 4).

By Lemma 2.2, we have

Φ(F2;x) =xn−6[x6 − 2(n− 2)x4 − 2(n− 3)x3 + (4n− 17)x2 + 2(n− 4)x− (n− 5)],

Φ(F4;x) =xn−6[x6 − 2(n− 2)x4 − 2(n− 3)x3 + (5n− 18)x2 + 4(n− 5)x− (n− 5)].

It follows that

Φ(F4;x)− Φ(F2;x) = xn−5[(n− 1)x+ 2(n− 6)] > 0

for x ≥ ρ(F4). By Lemma 2.3, we have ρ(F2) > ρ(F4). This implies that G ̸= F4. Noting that

ρ(K2, n−2) =
√
2(n− 2) and Φ(F2; ρ(K2, n−2)) < 0, we have ρ(F2) > ρ(K2, n−2). This implies

that G ̸= K2, n−2. Combining the above arguments, we have G = F2. �
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Lemma 2.9 Let n ≥ 32, Gi
n (i = 2, 3, 4, 5), F2 andH1 be showed in Figures 1 and 2, respectively.

Then

ρ(G2
n) > ρ(G3

n), ρ(G4
n) > ρ(G5

n), ρ(G5
n) > ρ(F2), ρ(G5

n) > ρ(H1).

Proof By Lemma 2.2, we have

Φ(G2
n;x) =xn−5[x5 − (2n− 3)x3 − 2(n− 2)x2 + 3(n− 4)x+ 2(n− 4)],

Φ(G3
n;x) =xn−4[x4 − 2(n− 2)x2 − 2(n− 3)x+ (n− 3)],

Φ(G4
n;x) =xn−5[x5 − 2(n− 2)x3 − 2(n− 3)x2 + (2n− 7)x+ 2(n− 4)],

Φ(G5
n;x) =xn−5[x5 − (2n− 3)x3 − 2(n− 2)x2 + 6(n− 5)x+ 4(n− 5)],

Φ(F2;x) =xn−6[x6 − 2(n− 2)x4 − 2(n− 3)x3 + (4n− 17)x2 + 2(n− 4)x− (n− 5)],

Φ(H1;x) =xn−4[x4 − (2n− 5)x2 − 2(n− 4)x+ 2(n− 4)].

Firstly, we show that ρ(G2
n) > ρ(G3

n). It is easy to see that K2, n−3 is a subgraph of G3
n. By

Lemma 2.4, we have ρ(G3
n) > ρ(K2, n−3) =

√
2(n− 3). This implies that

Φ(G3
n;x)− Φ(G2

n;x) = xn−5[x3 + 2x2 − (2n− 9)x− 2(n− 4)]

= xn−5[x(x2 − (2n− 9)) + 2(x2 − (n− 4))] > 0

for x ≥ ρ(G3
n). By Lemma 2.3, we have ρ(G2

n) > ρ(G3
n).

Secondly, we show that ρ(G4
n) > ρ(G5

n). It is easy to see that K2, n−4 is a subgraph of G5
n.

By Lemma 2.4, we have ρ(G5
n) > ρ(K2, n−4) =

√
2(n− 4). By Lemmas 2.5 and 2.7, we have

ρ(G5
n) < ρ(G1

n) ≤
√
3n− 5. This implies that

√
2(n− 4) < ρ(G5

n) <
√
3n− 5. Note that

Φ(G5
n;x)− Φ(G4

n;x) = xn−5[−x3 − 2x2 + (4n− 23)x+ 2n− 12].

Let f(x) = −x3 − 2x2 + (4n− 23)x+ 2n− 12. Then

f ′(x) = −3x2 − 4x+ (4n− 23),

f ′′(x) = −6x− 4.

It follows that f ′(x) is decreasing for x > 0. Noting that f ′(
√
2(n− 4) ) < 0, we have f(x)

is decreasing for x ∈ [
√
2(n− 4),∞). Noting that f(

√
3n− 5 ) > 0, we have f(x) > 0 for

x ∈ [
√
2(n− 4),

√
3n− 5 ]. This implies that

Φ(G5
n;x)− Φ(G4

n;x) > 0 for x ∈ [
√
2(n− 4),

√
3n− 5 ].

Combining the above arguments, we have Φ(G4
n; ρ(G

5
n)) < 0. Hence ρ(G4

n) > ρ(G5
n).

Thirdly, we show that ρ(G5
n) > ρ(F2). It is easy to see that K2, n−4 is a subgraph of F2.

By Lemma 2.4, we have ρ(F2) > ρ(K2, n−4) =
√
2(n− 4). By Lemmas 2.5 and 2.6, we have

ρ(F2) < ρ(G1
n) ≤

√
3n− 5. This implies that

√
2(n− 4) < ρ(F2) <

√
3n− 5. Note that

Φ(F2;x)− Φ(G5
n;x) = xn−6[x4 + 2x3 − (2n− 13)x2 − 2(n− 6)x− (n− 5)].

Let f(x) = x4 + 2x3 − (2n− 13)x2 − 2(n− 6)x− (n− 5). Then

f ′(x) = 4x3 + 6x2 − 2(2n− 13)x− 2(n− 6),
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f ′′(x) = 12x2 + 12x− 2(2n− 13),

f ′′′(x) = 24x+ 12.

It is easy to see that f ′′(x) is increasing for x > 0. Since f ′′(
√

2(n− 4) ) > 0, it follows that

f ′(x) is increasing for x ∈ [
√
2(n− 4),∞). Noting that f ′(

√
2(n− 4) ) > 0, we have f(x) is

increasing for x ∈ [
√

2(n− 4),∞). Noting that f(
√
2(n− 4) ) > 0, we have f(x) > 0 for x ∈

[
√
2(n− 4),

√
3n− 5 ]. This implies that Φ(F2;x)−Φ(G5

n;x) > 0 for x ∈ [
√
2(n− 4),

√
3n− 5 ].

Combining the above arguments, we have Φ(G5
n; ρ(F2)) < 0. Hence ρ(G5

n) > ρ(F2).

Fourthly, noting that H1 is a subgraph of G5
n, by Lemma 2.4, we have ρ(G5

n) > ρ(H1). �

3. A proof of Theorem 1.1

Employing the lemmas above, now we give a proof of Theorem 1.1.

Proof Let G ∈ Qn \ {G1
n}. By Lemma 2.6, we have ρ(G1

n) > ρ(G).

Let G ∈ Qn\{G1
n, G

2
n}. If G ∈ Q(n, n−1)\{G1

n, G
2
n}, by Lemma 2.7, we have ρ(G2

n) > ρ(G).

If G ∈ Q(n, d0)\{G3
n} (1 ≤ d0 ≤ n−2), by Lemmas 2.6 and 2.9, we have ρ(G2

n) > ρ(G3
n) > ρ(G).

It follows that ρ(G1
n) > ρ(G2

n) > ρ(G) for the case of G ∈ Qn \ {G1
n, G

2
n}.

Let G ∈ Qn \ {G1
n, G

2
n, G

3
n}. If G ∈ Q(n, n − 1) \ {G1

n, G
2
n, G

5
n}, by Lemmas 2.6, 2.7 and

2.9, we have ρ(G3
n) > ρ(G4

n) > ρ(G5
n) > ρ(G). If G ∈ Q(n, n − 2) \ {G3

n}, by Lemma 2.6,

we have ρ(G3
n) > ρ(G). If G ∈ Q(n, d0) \ {H1} (1 ≤ d0 ≤ n − 3), by Lemma 2.6, we have

ρ(G3
n) > ρ(H1) > ρ(G). It follows that ρ(G1

n) > ρ(G2
n) > ρ(G3

n) > ρ(G) for the case of

G ∈ Qn \ {G1
n, G

2
n, G

3
n}.

Let G ∈ Qn \ {G1
n, G

2
n, G

3
n, G

4
n}. If G ∈ Q(n, n − 1) \ {G1

n, G
2
n, G

5
n}, by Lemmas 2.7 and

2.9, we have ρ(G4
n) > ρ(G5

n) > ρ(G). If G ∈ Q(n, n − 2) \ {G3
n, G

4
n}, by Lemma 2.6, we have

ρ(G4
n) > ρ(G). If G ∈ Q(n, d0) \ {H1} (1 ≤ d0 ≤ n − 3), by Lemmas 2.6 and 2.9, we have

ρ(G4
n) > ρ(G5

n) > ρ(H1) > ρ(G). It follows that ρ(G1
n) > ρ(G2

n) > ρ(G3
n) > ρ(G4

n) > ρ(G) for

the case of G ∈ Qn \ {G1
n, G

2
n, G

3
n, G

4
n}.

Let G ∈ Qn \ {G1
n, G

2
n, G

3
n, G

4
n, G

5
n}. If G ∈ Q(n, n − 1) \ {G1

n, G
2
n, G

5
n}, by Lemma 2.7,

we have ρ(G5
n) > ρ(G). If G ∈ Q(n, n − 2) \ {G3

n, G
4
n, F2}, by Lemmas 2.8 and 2.9, we have

ρ(G5
n) > ρ(F2) > ρ(G). If G ∈ Q(n, d0) \ {H1} (1 ≤ d0 ≤ n − 3), by Lemmas 2.6 and 2.9, we

have ρ(G5
n) > ρ(H1) > ρ(G). It follows that ρ(G1

n) > ρ(G2
n) > ρ(G3

n) > ρ(G4
n) > ρ(G5

n) > ρ(G)

for the case of G ∈ Qn \ {G1
n, G

2
n, G

3
n, G

4
n, G

5
n}. �
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