Ordering Quasi-Tree Graphs on n Vertices by Their Spectral Radii

Ke LUO ${ }^{1,2}$, Zhen LIN ${ }^{1,2}$ Shuguang GUO ${ }^{2, *}$
1. Department of Mathematics, Qinghai Normal University, Qinghai 810008, P. R. China;
2. School of Mathematics and Statistics, Yancheng Teachers University, Jiangsu 224002, P. R. China

Abstract

A connected graph $G=(V, E)$ is called a quasi-tree graph, if there exists a vertex $v_{0} \in V(G)$ such that $G-v_{0}$ is a tree. Liu and Lu [Linear Algebra Appl. 428 (2008) 27082714] determined the maximal spectral radius together with the corresponding graph among all quasi-tree graphs on n vertices. In this paper, we extend their result, and determine the second to the fifth largest spectral radii together with the corresponding graphs among all quasi-tree graphs on n vertices.

Keywords quasi-tree graph; spectral radius; extremal graph
MR(2010) Subject Classification 05C50

1. Introduction

Let $G=(V, E)$ be a simple undirected graph with vertex set $V=V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E=E(G)$. As usual, $A(G)$ denotes the adjacency matrix of a graph G and $\rho(G)$ denotes the largest eigenvalue of $A(G)$ which is called spectral radius of G. If G is connected, then $A(G)$ is irreducible and by the Perron-Frobenius theorem, $\rho(G)$ has multiplicity one and there exists a unique positive unit eigenvector corresponding to $\rho(G)$. We will refer to such an eigenvector as the Perron vector of G.

The study of ordering graphs by their spectral radius was stared by Collatz and Sinogowitz [1] in 1957. Cvetković [2] proposed twelve directions for further research in the theory of graph spectra, one of which is "classifying and ordering graphs". From then on, ordering graphs with various properties by their spectra, specially by their largest eigenvalues, becomes an attractive topic. There are many results on ordering graphs by their spectral radii [3-12].

A connected graph $G=(V, E)$ is called a quasi-tree graph, if there exists a vertex $v_{0} \in V(G)$ such that $G-v_{0}$ is a tree. Let \mathcal{Q}_{n} be the set of all quasi-tree graphs on n vertices. Liu and Lu [12] determined the maximal spectral radius together with the corresponding graph among all quasi-tree graphs in the set \mathcal{Q}_{n}. In this paper, we extend their result, and determine the second to the fifth largest spectral radii together with the corresponding graphs among all quasi-tree

[^0]graphs in the set \mathcal{Q}_{n}. The main result of this paper is as follows:
Theorem 1.1 Let $n \geq 32, G \in \mathcal{Q}_{n} \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{3}, G_{n}^{4}, G_{n}^{5}\right\}$, where $G_{n}^{i}(i=1,2, \ldots, 5)$ is showed in Figure 1. Then
$$
\rho\left(G_{n}^{1}\right)>\rho\left(G_{n}^{2}\right)>\rho\left(G_{n}^{3}\right)>\rho\left(G_{n}^{4}\right)>\rho\left(G_{n}^{5}\right)>\rho(G)
$$
where $\rho\left(G_{n}^{i}\right)(i=1,2, \ldots, 5)$ is the largest root of the following polynomial $f_{i}(x)$,
\[

$$
\begin{aligned}
& f_{1}(x):=x^{3}-(2 n-3) x-2(n-2), \\
& f_{2}(x):=x^{5}-(2 n-3) x^{3}-2(n-2) x^{2}+3(n-4) x+2(n-4), \\
& f_{3}(x):=x^{4}-2(n-2) x^{2}-2(n-3) x+(n-3), \\
& f_{4}(x):=x^{5}-2(n-2) x^{3}-2(n-3) x^{2}+(2 n-7) x+2(n-4), \\
& f_{5}(x):=x^{5}-(2 n-3) x^{3}-2(n-2) x^{2}+6(n-5) x+4(n-5) .
\end{aligned}
$$
\]

Figure $1 G_{n}^{i}(i=1,2,3,4,5)$

The rest of the paper is organized as follows. In Section 2, we recall some basic notions and lemmas used further, and prove three new lemmas. In Section 3, we give a proof of Theorem 1.1.

2. Preliminaries

Denote by $K_{1, n-1}$ and P_{n} the star and the path on n vertices, respectively. Let $G-u$ denote the graph that arises from G by deleting the vertex $u \in V(G)$ and all the edges incident with u, and $G-u v$ denote the graph that arises from G by deleting the edge $u v \in E(G)$. Similarly, $G+u v$ is the graph that arises from G by adding an edge $u v \notin E(G)$, where $u, v \in V(G)$. For $v \in V(G)$, $N(v)$ denotes the neighborhood of v in G and $d(v)=|N(v)|$ denotes the degree of vertex v. The diameter of a connected graph is the maximum distance between pairs of its vertices. A pendant vertex of G is a vertex of degree 1. A pendant edge of G is an edge incident with a pendant vertex. Let $S_{n}(s, t)(s \geq t \geq 1, s+t=n-2)$ be the graph on n vertices obtained from a path P_{2} by attaching s pendant edges and t pendant edges to each end vertex of P_{2}, respectively. Denote by $\Phi(G, x)$ the characteristic polynomial of a graph G, where $\Phi(G, x)=\operatorname{det}\left(x E_{n}-A(G)\right)$.

Lemma 2.1 ([13]) Let G be a connected graph of order n and $\rho(G)$ be the spectral radius of $A(G)$. Let u, v be two vertices of G. Suppose $v_{1}, v_{2}, \ldots, v_{s} \in N_{G}(v) \backslash N_{G}(u)\left(1 \leq s \leq d_{G}(v)\right)$, and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron vector of $A(G)$, where x_{i} corresponds to the vertex
$v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $v v_{i}$ and adding the edges $u v_{i}(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\rho(G)<\rho\left(G^{*}\right)$.

Lemma 2.2 ([14]) Let $C(u)$ be the set of all cycles containing u, where $u \in V(G)$. Then

$$
\Phi(G ; x)=x \Phi(G-u ; x)-\sum_{v \in N(u)} \Phi(G-u-v ; x)-2 \sum_{Z \in C(u)} \Phi(G-V(Z) ; x) .
$$

Lemma 2.3 ([15]) Let G_{1} and G_{2} be two graphs. If $\Phi\left(G_{2}, x\right)>\Phi\left(G_{1}, x\right)$ for $x \geq \rho\left(G_{2}\right)$, then $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$.

Lemma 2.4 ([16]) Let G be a connected graph of order n, and H be a proper subgraph of G. Then $\rho(H)<\rho(G)$.

Lemma 2.5 ([17]) For a connected graph $G, V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then

$$
\rho(G) \leq \max \left\{\sqrt{d_{v_{i}} m_{v_{i}}}: 1 \leq i \leq n\right\}
$$

where $m_{v_{i}}=\sum_{v_{j} v_{i} \in E(G)} d_{v_{j}} / d_{v_{i}}$.
Let $Q_{n, d_{0}}$ be the graph obtained from a star $K_{1, n-2}$ and an isolated vertex v_{0} by adding an edge joining v_{0} to the center of $K_{1, n-2}$ and $d_{0}-1$ edges joining v_{0} to the pendant vertices of $K_{1, n-2}$, respectively. Let $Q_{n, d_{0}}^{*}\left(2 \leq d_{0} \leq n-2\right)$ be the graph obtained from a graph $Q_{n-1, d_{0}}$ by attaching a pendant edge to one vertex of degree 2 in $Q_{n-1, d_{0}}$. For $1 \leq d_{0} \leq n-1$, let $\mathcal{Q}\left(n, d_{0}\right):=\left\{G: G \in \mathcal{Q}_{n}\right.$ with $G-v_{0}$ being a tree and $\left.d_{G}\left(v_{0}\right)=d_{0}\right\}$.

Lemma 2.6 ([12]) (i) Let $n \geq 4,1 \leq d_{0} \leq n-1, G \in \mathcal{Q}\left(n, d_{0}\right)$. Then $\rho(G) \leq \rho\left(Q_{n, d_{0}}\right)$ and equality holds if and only if $G \cong Q_{n, d_{0}}$.
(ii) Let $n \geq 5,2 \leq d_{0} \leq n-2, G \in \mathcal{Q}\left(n, d_{0}\right) \backslash\left\{Q_{n, d_{0}}\right\}$. Then $\rho(G) \leq \rho\left(Q_{n, d_{0}}^{*}\right)$ and equality holds if and only if $G \cong Q_{n, d_{0}}^{*}$.
(iii) $\rho\left(Q_{n, d_{0}+1}\right)>\rho\left(Q_{n, d_{0}}\right)$ for $1 \leq d_{0} \leq n-2$.

Lemma 2.7 Let $n \geq 7, G_{n}^{i}(i=1,2,5)$ be showed in Figure 1, $G \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{5}\right\}$. Then $\rho\left(G_{n}^{1}\right)>\rho\left(G_{n}^{2}\right)>\rho\left(G_{n}^{5}\right)>\rho(G)$.

Proof Let $G \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}\right\}$. By Lemma 2.6, we have $\rho\left(G_{n}^{1}\right)>\rho(G)$.
Let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $x=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}^{T}$ be the Perron vector of $A(G)$, where x_{i} corresponds to the vertex v_{i} for $0 \leq i \leq n-1$. Assume, without loss of generality, that $G-v_{0}$ is a tree.

Step 1. Choose $G \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}\right\}$ such that $\rho(G)$ is as large as possible, and prove that $G=G_{n}^{2}$. Since $G \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}\right\}$, it follows that $G-v_{0} \neq K_{1, n-2}$.

Firstly, we show that the diameter d of $G-v_{0}$ is 3 . Otherwise, we suppose $d>3$. Then there are at least two nonpendant edges in $G-v_{0}$. Assume that $u v$ is one of them. If $x_{u} \geq x_{v}$, let

$$
G^{*}=G-\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}\right\}} v w+\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}\right\}} u w ;
$$

if $x_{u}<x_{v}$, let

$$
G^{*}=G-\sum_{w \in N_{G}(u) \backslash\left\{v, v_{0}\right\}} u w+\sum_{w \in N_{G}(u) \backslash\left\{v, v_{0}\right\}} v w .
$$

Then in either case, $G^{*} \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}\right\}$. By Lemma 2.1, we have $\rho\left(G^{*}\right)>\rho(G)$, a contradiction. Therefore the diameter d of $G-v_{0}$ is $3, G-v_{0}=S_{n-1}(s, t)(s \geq t \geq 1)$.

Secondly, we show that $G-v_{0}=S_{n-1}(n-4,1)$. Otherwise, we suppose $t>1$. Let $u v$ be the unique nonpendant edge in $G-v_{0}$, and $u a, v b$ be two pendant edges in $G-v_{0}$. If $x_{u} \geq x_{v}$, let

$$
G^{*}=G-\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}, b\right\}} v w+\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}, b\right\}} u w ;
$$

if $x_{u}<x_{v}$, let

$$
G^{*}=G-\sum_{w \in N_{G}(u) \backslash\left\{v, v_{0}, a\right\}} u w+\sum_{w \in N_{G}(u) \backslash\left\{v, v_{0}, a\right\}} v w .
$$

Then in either case, $G^{*} \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}\right\}$. By Lemma 2.1, we have $\rho\left(G^{*}\right)>\rho(G)$, a contradiction. Therefore, $G-v_{0}=S_{n-1}(n-4,1)$. Namely, $G=G_{n}^{2}$.

Step 2. Choose $G \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}, G_{n}^{2}\right\}$ such that $\rho(G)$ is as large as possible, and show that $G=G_{n}^{5}$. Since $G \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}, G_{n}^{2}\right\}$, it follows that $G-v_{0} \neq K_{1, n-2}$, $G-v_{0} \neq S_{n-1}(n-4,1)$.

Similarly, we can show that $G-v_{0}=S_{n-1}(s, t)(s \geq t \geq 2)$. Next we show that $G-v_{0}=$ $S_{n-1}(n-5,2)$. Otherwise, we suppose $t \geq 3$. Let $u v$ be the unique nonpendant edge in $G-v_{0}$, and $u a, u b, v c, v d$ be four pendant edges in $G-v_{0}$. If $x_{u} \geq x_{v}$, let

$$
G^{*}=G-\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}, c, d\right\}} v w+\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}, c, d\right\}} u w ;
$$

if $x_{u}<x_{v}$, let

$$
G^{*}=G-\sum_{w \in N_{G}(u) \backslash\left\{v, v_{0}, a, b\right\}} u w+\sum_{w \in N_{G}(u) \backslash\left\{v, v_{0}, a, b\right\}} v w .
$$

Then in either case, $G^{*} \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}, G_{n}^{2}\right\}$. By Lemma 2.1, we have $\rho\left(G^{*}\right)>\rho(G)$, a contradiction. Therefore, $G-v_{0}=S_{n-1}(n-5,2)$. Namely, $G=G_{n}^{5}$.

Lemma 2.8 Let $n \geq 10, G_{n}^{3}, G_{n}^{4}$ and $F_{i}(i=1,2, \ldots, 7)$ be showed in Figures 1 and 2, respectively, $G \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}, F_{2}\right\}$. Then $\rho\left(G_{n}^{3}\right)>\rho\left(G_{n}^{4}\right)>\rho\left(F_{2}\right)>\rho(G)$.

F_{1}

F_{2}

F_{3}

F_{4}

Figure $2 F_{i}(i=1,2,3,4,5,6,7), H_{1}$
Proof By Lemma 2.6, we have $\rho\left(G_{n}^{3}\right)>\rho\left(G_{n}^{4}\right)>\rho(G)$.
Choose $G \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}\right\}$ such that $\rho(G)$ is as large as possible. We will prove that $G=F_{2}$. Let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $x=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}^{T}$ be the Perron vector of $A(G)$, where x_{i} corresponds to the vertex v_{i} for $0 \leq i \leq n-1$. Assume, without loss of generality, that $G-v_{0}$ is a tree.

Firstly, we claim that $G-v_{0}=K_{1, n-2}$ or $G-v_{0}=S_{n-1}(s, t)(s \geq t \geq 1)$. Otherwise, we suppose that the diameter d of $G-v_{0}$ is more than 3 , then there are at least two nonpendant edges in $G-v_{0}$. It is not difficult to see that there must exist a nonpendant edge $u v$ in $G-v_{0}$ such that $x_{u} \geq x_{v}$ and

$$
G^{*}=G-\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}\right\}} v w+\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}\right\}} u w \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}\right\} .
$$

By Lemma 2.1, we have $\rho\left(G^{*}\right)>\rho(G)$, a contradiction. Therefore, the diameter d of $G-v_{0}$ is not more than 3 , then $G-v_{0}=K_{1, n-2}$ or $G-v_{0}=S_{n-1}(s, t)(s \geq t \geq 1)$.

Secondly, for the case of $G-v_{0}=S_{n-1}(s, t)(s \geq t \geq 1)$, we claim that $G-v_{0}=S_{n-1}(n-4,1)$ or $G-v_{0}=S_{n-1}(n-5,2)$. Otherwise, we suppose $t \geq 3$. Let $u v$ be the unique nonpendant edge in $G-v_{0}$. If $v_{0} u, v_{0} v \in E(G)$, then there exists a vertex $v_{i} \in V(G) \backslash\left\{v_{0}, u, v\right\}$ such that $v_{0} v_{i} \notin E(G)$. Without loss of generality, we may assume that $x_{u} \geq x_{v}$ and $v v_{j}$ is a pendant edge in $G-v_{0}$ such that $v_{j} \neq v_{i}$. Let

$$
G^{*}=G-\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}, v_{j}\right\}} v w+\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}, v_{j}\right\}} u w .
$$

Then $G^{*} \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}\right\}$, by Lemma 2.1, we have $\rho\left(G^{*}\right)>\rho(G)$, a contradiction. If $v_{0} u \notin E(G)$, then let $u a, v b$ be two pendant edges in $G-v_{0}$. If $x_{u} \geq x_{v}$, let

$$
G^{*}=G-\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}, b\right\}} v w+\sum_{w \in N_{G}(v) \backslash\left\{u, v_{0}, b\right\}} u w ;
$$

if $x_{u}<x_{v}$, let

$$
G^{*}=G-\sum_{w \in N_{G}(u) \backslash\{v, a\}} u w+\sum_{w \in N_{G}(u) \backslash\{v, a\}} v w .
$$

Then in either case, $G^{*} \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}\right\}$. By Lemma 2.1, we have $\rho\left(G^{*}\right)>\rho(G)$, a contradiction. If $v_{0} v \notin E(G)$, similarly, we can also get a contradiction. Therefore, $G-v_{0}=$ $S_{n-1}(n-4,1)$ or $G-v_{0}=S_{n-1}(n-5,2)$.

Thirdly, when $G-v_{0}=K_{1, n-2}$, it is easy to see that $G=K_{2, n-2}$.
Fourthly, for the case of $G-v_{0}=S_{n-1}(n-4,1)$, we claim that $G=F_{2}$. In this case, $G \in$ $\left\{F_{1}, F_{2}, F_{3}\right\}$. For F_{1}, if $x_{2} \geq x_{4}$, let $G^{*}=F_{1}-v_{4} v_{0}+v_{2} v_{0}$; if $x_{2}<x_{4}$, let $G^{*}=F_{1}-v_{2} v_{3}+v_{4} v_{3}$. Then in either case, $G^{*} \cong F_{2} \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}\right\}$. By Lemma 2.1, we have $\rho\left(F_{2}\right)>\rho\left(F_{1}\right)$. This implies that $G \neq F_{1}$. For F_{3}, if $x_{1} \geq x_{4}$, let $G^{*}=F_{3}-v_{4} v_{0}+v_{1} v_{0}$; if $x_{1}<x_{4}$, let

$$
G^{*}=F_{3}-\sum_{u \in N_{F_{3}}\left(v_{1}\right) \backslash\left\{v_{4}\right\}} v_{1} u+\sum_{u \in N_{F_{3}}\left(v_{1}\right) \backslash\left\{v_{4}\right\}} v_{4} u .
$$

Then in either case, $G^{*} \cong F_{2} \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}\right\}$. By Lemma 2.1, we have $\rho\left(F_{2}\right)>\rho\left(F_{3}\right)$. This implies that $G \neq F_{3}$. From the above arguments, we have $G=F_{2}$.

Fifthly, for the case of $G-v_{0}=S_{n-1}(n-5,2)$, we claim that $G=F_{4}$. In this case, $G \in\left\{F_{4}, F_{5}, F_{6}, F_{7}\right\}$. For F_{6}, if $x_{1} \geq x_{5}$, let $G^{*}=F_{6}-v_{5} v_{0}+v_{1} v_{0}$; if $x_{1}<x_{5}$, let

$$
G^{*}=F_{6}-\sum_{u \in N_{F_{6}}\left(v_{1}\right) \backslash\left\{v_{5}\right\}} v_{1} u+\sum_{u \in N_{F_{6}}\left(v_{1}\right) \backslash\left\{v_{5}\right\}} v_{5} u .
$$

Then in either case, $G^{*} \cong F_{5} \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}\right\}$. By Lemma 2.1, we have $\rho\left(F_{5}\right)>\rho\left(F_{6}\right)$. This implies that $G \neq F_{6}$. For F_{7}, if $x_{2} \geq x_{3}$, let $G^{*}=F_{7}-v_{3} v_{0}+v_{2} v_{0}$; if $x_{2}<x_{3}$, let

$$
G^{*}=F_{7}-\sum_{u \in N_{F_{7}}\left(v_{2}\right) \backslash\left\{v_{3}\right\}} v_{2} u+\sum_{u \in N_{F_{7}}\left(v_{2}\right) \backslash\left\{v_{3}\right\}} v_{3} u .
$$

Then in either case, $G^{*} \cong F_{4} \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}\right\}$. By Lemma 2.1, we have $\rho\left(F_{4}\right)>\rho\left(F_{7}\right)$. This implies that $G \neq F_{7}$. For F_{5}, by Lemma 2.2, we have

$$
\begin{aligned}
& \Phi\left(F_{4} ; x\right)=x^{n-6}\left[x^{6}-2(n-2) x^{4}-2(n-3) x^{3}+(5 n-18) x^{2}+4(n-5) x-(n-5)\right] \\
& \Phi\left(F_{5} ; x\right)=x^{n-6}\left[x^{6}-2(n-2) x^{4}-2(n-3) x^{3}+(7 n-37) x^{2}+4(n-5) x-2(n-6)\right]
\end{aligned}
$$

Noting that $K_{2, n-5}$ is a subgraph of F_{5}, by Lemma 2.4, we have $\rho\left(F_{5}\right)>\rho\left(K_{2, n-5}\right)=\sqrt{2(n-5)}$. It follows that

$$
\Phi\left(F_{5} ; x\right)-\Phi\left(F_{4} ; x\right)=x^{n-6}\left[(2 n-19) x^{2}-(n-7)\right]>0
$$

for $x \geq \rho\left(F_{5}\right)$. By Lemma 2.3, we have $\rho\left(F_{4}\right)>\rho\left(F_{5}\right)$. This implies that $G \neq F_{5}$. From the above arguments, we have $G=F_{4}$.

From the above arguments, we have $G \in\left\{K_{2, n-2}, F_{2}, F_{4}\right\}$. Now we show that $G=F_{2}$. Noting that $K_{2, n-4}$ is a subgraph of F_{4}, by Lemma 2.4, we have $\rho\left(F_{4}\right)>\rho\left(K_{2, n-4}\right)=\sqrt{2(n-4)}$. By Lemma 2.2, we have

$$
\begin{aligned}
& \Phi\left(F_{2} ; x\right)=x^{n-6}\left[x^{6}-2(n-2) x^{4}-2(n-3) x^{3}+(4 n-17) x^{2}+2(n-4) x-(n-5)\right] \\
& \Phi\left(F_{4} ; x\right)=x^{n-6}\left[x^{6}-2(n-2) x^{4}-2(n-3) x^{3}+(5 n-18) x^{2}+4(n-5) x-(n-5)\right] .
\end{aligned}
$$

It follows that

$$
\Phi\left(F_{4} ; x\right)-\Phi\left(F_{2} ; x\right)=x^{n-5}[(n-1) x+2(n-6)]>0
$$

for $x \geq \rho\left(F_{4}\right)$. By Lemma 2.3, we have $\rho\left(F_{2}\right)>\rho\left(F_{4}\right)$. This implies that $G \neq F_{4}$. Noting that $\rho\left(K_{2, n-2}\right)=\sqrt{2(n-2)}$ and $\Phi\left(F_{2} ; \rho\left(K_{2, n-2}\right)\right)<0$, we have $\rho\left(F_{2}\right)>\rho\left(K_{2, n-2}\right)$. This implies that $G \neq K_{2, n-2}$. Combining the above arguments, we have $G=F_{2}$.

Lemma 2.9 Let $n \geq 32, G_{n}^{i}(i=2,3,4,5), F_{2}$ and H_{1} be showed in Figures 1 and 2, respectively. Then

$$
\rho\left(G_{n}^{2}\right)>\rho\left(G_{n}^{3}\right), \rho\left(G_{n}^{4}\right)>\rho\left(G_{n}^{5}\right), \rho\left(G_{n}^{5}\right)>\rho\left(F_{2}\right), \rho\left(G_{n}^{5}\right)>\rho\left(H_{1}\right)
$$

Proof By Lemma 2.2, we have

$$
\begin{aligned}
& \Phi\left(G_{n}^{2} ; x\right)=x^{n-5}\left[x^{5}-(2 n-3) x^{3}-2(n-2) x^{2}+3(n-4) x+2(n-4)\right], \\
& \Phi\left(G_{n}^{3} ; x\right)=x^{n-4}\left[x^{4}-2(n-2) x^{2}-2(n-3) x+(n-3)\right] \\
& \Phi\left(G_{n}^{4} ; x\right)=x^{n-5}\left[x^{5}-2(n-2) x^{3}-2(n-3) x^{2}+(2 n-7) x+2(n-4)\right], \\
& \Phi\left(G_{n}^{5} ; x\right)=x^{n-5}\left[x^{5}-(2 n-3) x^{3}-2(n-2) x^{2}+6(n-5) x+4(n-5)\right], \\
& \Phi\left(F_{2} ; x\right)=x^{n-6}\left[x^{6}-2(n-2) x^{4}-2(n-3) x^{3}+(4 n-17) x^{2}+2(n-4) x-(n-5)\right], \\
& \Phi\left(H_{1} ; x\right)=x^{n-4}\left[x^{4}-(2 n-5) x^{2}-2(n-4) x+2(n-4)\right] .
\end{aligned}
$$

Firstly, we show that $\rho\left(G_{n}^{2}\right)>\rho\left(G_{n}^{3}\right)$. It is easy to see that $K_{2, n-3}$ is a subgraph of G_{n}^{3}. By Lemma 2.4, we have $\rho\left(G_{n}^{3}\right)>\rho\left(K_{2, n-3}\right)=\sqrt{2(n-3)}$. This implies that

$$
\begin{aligned}
\Phi\left(G_{n}^{3} ; x\right)-\Phi\left(G_{n}^{2} ; x\right) & =x^{n-5}\left[x^{3}+2 x^{2}-(2 n-9) x-2(n-4)\right] \\
& =x^{n-5}\left[x\left(x^{2}-(2 n-9)\right)+2\left(x^{2}-(n-4)\right)\right]>0
\end{aligned}
$$

for $x \geq \rho\left(G_{n}^{3}\right)$. By Lemma 2.3, we have $\rho\left(G_{n}^{2}\right)>\rho\left(G_{n}^{3}\right)$.
Secondly, we show that $\rho\left(G_{n}^{4}\right)>\rho\left(G_{n}^{5}\right)$. It is easy to see that $K_{2, n-4}$ is a subgraph of G_{n}^{5}. By Lemma 2.4, we have $\rho\left(G_{n}^{5}\right)>\rho\left(K_{2, n-4}\right)=\sqrt{2(n-4)}$. By Lemmas 2.5 and 2.7, we have $\rho\left(G_{n}^{5}\right)<\rho\left(G_{n}^{1}\right) \leq \sqrt{3 n-5}$. This implies that $\sqrt{2(n-4)}<\rho\left(G_{n}^{5}\right)<\sqrt{3 n-5}$. Note that

$$
\Phi\left(G_{n}^{5} ; x\right)-\Phi\left(G_{n}^{4} ; x\right)=x^{n-5}\left[-x^{3}-2 x^{2}+(4 n-23) x+2 n-12\right] .
$$

Let $f(x)=-x^{3}-2 x^{2}+(4 n-23) x+2 n-12$. Then

$$
\begin{gathered}
f^{\prime}(x)=-3 x^{2}-4 x+(4 n-23) \\
f^{\prime \prime}(x)=-6 x-4
\end{gathered}
$$

It follows that $f^{\prime}(x)$ is decreasing for $x>0$. Noting that $f^{\prime}(\sqrt{2(n-4)})<0$, we have $f(x)$ is decreasing for $x \in[\sqrt{2(n-4)}, \infty)$. Noting that $f(\sqrt{3 n-5})>0$, we have $f(x)>0$ for $x \in[\sqrt{2(n-4)}, \sqrt{3 n-5}]$. This implies that

$$
\Phi\left(G_{n}^{5} ; x\right)-\Phi\left(G_{n}^{4} ; x\right)>0 \text { for } x \in[\sqrt{2(n-4)}, \sqrt{3 n-5}]
$$

Combining the above arguments, we have $\Phi\left(G_{n}^{4} ; \rho\left(G_{n}^{5}\right)\right)<0$. Hence $\rho\left(G_{n}^{4}\right)>\rho\left(G_{n}^{5}\right)$.
Thirdly, we show that $\rho\left(G_{n}^{5}\right)>\rho\left(F_{2}\right)$. It is easy to see that $K_{2, n-4}$ is a subgraph of F_{2}. By Lemma 2.4, we have $\rho\left(F_{2}\right)>\rho\left(K_{2, n-4}\right)=\sqrt{2(n-4)}$. By Lemmas 2.5 and 2.6, we have $\rho\left(F_{2}\right)<\rho\left(G_{n}^{1}\right) \leq \sqrt{3 n-5}$. This implies that $\sqrt{2(n-4)}<\rho\left(F_{2}\right)<\sqrt{3 n-5}$. Note that

$$
\Phi\left(F_{2} ; x\right)-\Phi\left(G_{n}^{5} ; x\right)=x^{n-6}\left[x^{4}+2 x^{3}-(2 n-13) x^{2}-2(n-6) x-(n-5)\right] .
$$

Let $f(x)=x^{4}+2 x^{3}-(2 n-13) x^{2}-2(n-6) x-(n-5)$. Then

$$
f^{\prime}(x)=4 x^{3}+6 x^{2}-2(2 n-13) x-2(n-6),
$$

$$
\begin{gathered}
f^{\prime \prime}(x)=12 x^{2}+12 x-2(2 n-13) \\
f^{\prime \prime \prime}(x)=24 x+12
\end{gathered}
$$

It is easy to see that $f^{\prime \prime}(x)$ is increasing for $x>0$. Since $f^{\prime \prime}(\sqrt{2(n-4)})>0$, it follows that $f^{\prime}(x)$ is increasing for $x \in[\sqrt{2(n-4)}, \infty)$. Noting that $f^{\prime}(\sqrt{2(n-4)})>0$, we have $f(x)$ is increasing for $x \in[\sqrt{2(n-4)}, \infty)$. Noting that $f(\sqrt{2(n-4)})>0$, we have $f(x)>0$ for $x \in$ $[\sqrt{2(n-4)}, \sqrt{3 n-5}]$. This implies that $\Phi\left(F_{2} ; x\right)-\Phi\left(G_{n}^{5} ; x\right)>0$ for $x \in[\sqrt{2(n-4)}, \sqrt{3 n-5}]$. Combining the above arguments, we have $\Phi\left(G_{n}^{5} ; \rho\left(F_{2}\right)\right)<0$. Hence $\rho\left(G_{n}^{5}\right)>\rho\left(F_{2}\right)$.

Fourthly, noting that H_{1} is a subgraph of G_{n}^{5}, by Lemma 2.4, we have $\rho\left(G_{n}^{5}\right)>\rho\left(H_{1}\right)$.

3. A proof of Theorem 1.1

Employing the lemmas above, now we give a proof of Theorem 1.1.
Proof Let $G \in \mathcal{Q}_{n} \backslash\left\{G_{n}^{1}\right\}$. By Lemma 2.6, we have $\rho\left(G_{n}^{1}\right)>\rho(G)$.
Let $G \in \mathcal{Q}_{n} \backslash\left\{G_{n}^{1}, G_{n}^{2}\right\}$. If $G \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}, G_{n}^{2}\right\}$, by Lemma 2.7, we have $\rho\left(G_{n}^{2}\right)>\rho(G)$. If $G \in \mathcal{Q}\left(n, d_{0}\right) \backslash\left\{G_{n}^{3}\right\}\left(1 \leq d_{0} \leq n-2\right)$, by Lemmas 2.6 and 2.9, we have $\rho\left(G_{n}^{2}\right)>\rho\left(G_{n}^{3}\right)>\rho(G)$. It follows that $\rho\left(G_{n}^{1}\right)>\rho\left(G_{n}^{2}\right)>\rho(G)$ for the case of $G \in \mathcal{Q}_{n} \backslash\left\{G_{n}^{1}, G_{n}^{2}\right\}$.

Let $G \in \mathcal{Q}_{n} \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{3}\right\}$. If $G \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{5}\right\}$, by Lemmas 2.6, 2.7 and 2.9, we have $\rho\left(G_{n}^{3}\right)>\rho\left(G_{n}^{4}\right)>\rho\left(G_{n}^{5}\right)>\rho(G)$. If $G \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}\right\}$, by Lemma 2.6, we have $\rho\left(G_{n}^{3}\right)>\rho(G)$. If $G \in \mathcal{Q}\left(n, d_{0}\right) \backslash\left\{H_{1}\right\}\left(1 \leq d_{0} \leq n-3\right)$, by Lemma 2.6, we have $\rho\left(G_{n}^{3}\right)>\rho\left(H_{1}\right)>\rho(G)$. It follows that $\rho\left(G_{n}^{1}\right)>\rho\left(G_{n}^{2}\right)>\rho\left(G_{n}^{3}\right)>\rho(G)$ for the case of $G \in \mathcal{Q}_{n} \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{3}\right\}$.

Let $G \in \mathcal{Q}_{n} \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{3}, G_{n}^{4}\right\}$. If $G \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{5}\right\}$, by Lemmas 2.7 and 2.9, we have $\rho\left(G_{n}^{4}\right)>\rho\left(G_{n}^{5}\right)>\rho(G)$. If $G \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}\right\}$, by Lemma 2.6, we have $\rho\left(G_{n}^{4}\right)>\rho(G)$. If $G \in \mathcal{Q}\left(n, d_{0}\right) \backslash\left\{H_{1}\right\}\left(1 \leq d_{0} \leq n-3\right)$, by Lemmas 2.6 and 2.9, we have $\rho\left(G_{n}^{4}\right)>\rho\left(G_{n}^{5}\right)>\rho\left(H_{1}\right)>\rho(G)$. It follows that $\rho\left(G_{n}^{1}\right)>\rho\left(G_{n}^{2}\right)>\rho\left(G_{n}^{3}\right)>\rho\left(G_{n}^{4}\right)>\rho(G)$ for the case of $G \in \mathcal{Q}_{n} \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{3}, G_{n}^{4}\right\}$.

Let $G \in \mathcal{Q}_{n} \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{3}, G_{n}^{4}, G_{n}^{5}\right\}$. If $G \in \mathcal{Q}(n, n-1) \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{5}\right\}$, by Lemma 2.7, we have $\rho\left(G_{n}^{5}\right)>\rho(G)$. If $G \in \mathcal{Q}(n, n-2) \backslash\left\{G_{n}^{3}, G_{n}^{4}, F_{2}\right\}$, by Lemmas 2.8 and 2.9, we have $\rho\left(G_{n}^{5}\right)>\rho\left(F_{2}\right)>\rho(G)$. If $G \in \mathcal{Q}\left(n, d_{0}\right) \backslash\left\{H_{1}\right\}\left(1 \leq d_{0} \leq n-3\right)$, by Lemmas 2.6 and 2.9 , we have $\rho\left(G_{n}^{5}\right)>\rho\left(H_{1}\right)>\rho(G)$. It follows that $\rho\left(G_{n}^{1}\right)>\rho\left(G_{n}^{2}\right)>\rho\left(G_{n}^{3}\right)>\rho\left(G_{n}^{4}\right)>\rho\left(G_{n}^{5}\right)>\rho(G)$ for the case of $G \in \mathcal{Q}_{n} \backslash\left\{G_{n}^{1}, G_{n}^{2}, G_{n}^{3}, G_{n}^{4}, G_{n}^{5}\right\}$.

Acknowledgement We are grateful to the anonymous referee for his (her) valuable suggestions and corrections which result in an improvement of the original manuscript.

References

[1] L. COLLATZ, U. SINOGOWITZ. Spektren endlicher Grafen. Abh. Math. Sem. Univ. Hamburg., 1957, 21: 63-77.
[2] D. CVETKOVIĆ. Some Possible Directions in Further Investigations of Graph Spectra. Algebraic Methods in Graph Theory, Amsterdam, North-Holland, 1981.
[3] Z. STANIĆ. Inequalities for Graph Eigenvalues. London Mathematical Society Lecture Note Series, 423, Cambridge University Press, Cambridge, 2015
[4] M. HOFMEISTER. On the two largest eigenvalues of trees. Linear Algebra Appl., 1997, 260: 43-59.
[5] An CHANG. On the largest eigenvalue of a tree with perfect matchings. Discrete Math., 2003, 269(1-3): 45-63.
[6] Wenshui LIN, Xiaofeng GUO. Ordering trees by their largest eigenvalues. Linear Algebra Appl., 2006, 418(2-3): 450-456.
[7] Jiming GUO, Jiayu SHAO. On the spectral radius of trees with fixed diameter. Linear Algebra Appl., 2006, 413(1): 131-147.
[8] Jiming GUO. On the spectral radii of unicyclic graphs with fixed matching number. Discrete Math., 2008, 308(24): 6115-6131.
[9] Kunfu FANG. Ordering graphs with cut edges by their spectral radii. Acta Math. Appl. Sin. Engl. Ser., 2012, 28(1): 193-200
[10] Muhuo LIU, Bolian LIU. New method and new results on the order of spectral radius. Comput. Math. Appl., 2012, 63(3): 679-686.
[11] Aimei YU. Ordering trees by their spectral radii. Acta Math. Appl. Sin. Engl. Ser., 2014, 30(4): 1107-1112.
[12] Huiqing LIU, Mei LU. On the spectral radius of quasi-tree graphs. Linear Algebra Appl., 2008, 428(11-12): 2708-2714.
[13] Baofeng WU, Enli XIAO, Yuan HONG. The spectral radius of trees on k pendant vertices. Linear Algebra Appl., 2005, 395: 343-349.
[14] D. CVETKOVIĆ, M. DOOB, H. SACHS. Spectra of Graphs. Academic Press, New York, 1980.
[15] Yaoping HOU, Jiongsheng LI. Bounds on the largest eigenvalues of trees with a given size of matching. Linear Algebra Appl., 2002, 342: 203-217.
[16] A. J. HOFFMAN, J. H. SMITH. On the spectral radii of topologically equivalent graphs. Recent advances in graph theory, Academia, Prague, 1975.
[17] O. FAVARON, M. MAHÉO, J. F. SACLÉ. Some eigenvalue properties in graphs (conjectures of Graffiti. II). Discrete Math., 1993, 111(1-3): 197-220.

[^0]: Received April 20, 2017; Accepted May 17, 2017
 Supported by the National Natural Science Foundation of China (Grant No. 11171290) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20151295).

 * Corresponding author

 E-mail address: ychgsg@163.com (Shuguang GUO)

