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1. Introduction

In the paper we are mainly concerned with some characterizations on the generalized Morrey

space. Precisely, our aim is to give some properties for the weighted Hardy operator, maximal

operator, potential operator and singular operator on the vanishing generalized weak Morrey

spaces. It is well known that the classical Morrey spaces named by Morrey were firstly introduced

in [1] (or refer to [2]). Later the classical Morrey spaces together with the weighted Lebesgue

spaces, were applied to study the local regularity properties of solutions of partial differential

equations [3]. In the local Morrey (or Morrey type) spaces and the global Morrey (or Morrey

type) spaces the boundedness of various classical operators were largely considered, for example,

maximal, potential, singular, Hardy operators and commutators and others, here we may refer to

Adams [4], Akbulut et al. [5], Adams and Xiao [6,7], Burenkov et al. [8,9], Guliyev et al. [10,11],

Chiarenza and Frasca [12], Kurata et al. [13], Komori and Shirai [14,15], Lukkassen et al. [16],

Nakai et al. [17,18], Persson et al. [19,20], Softova [21], Sugano and Tanaka [22] and references

therein. However, in the classical harmonic analysis the vanishing Morrey space was firstly

introduced by Vitanza [23] to study the regularity results for elliptic partial differential equations,

and more than nearly two decades later Ragusa [24] and Samko et al. [25,26] and references

therein systematically discussed the boundedness of various classical operators in such these

type of spaces. Inspired by the above statements, we continue to study Samko’s results from
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[25,26] on the vanishing generalized Morrey spaces, and correspondingly obtain the related results

under the weak versions, which are similar to the ones with constant exponent from Kokilashvili

et al. [27,28] and Guliyev et al. [29,30]. Since the set Ω is bounded, we do not completely employ

the methods of Samko, which is the real hard part of this paper. For the convenience of the better

statements about our results, the remainder of this paper is organized as follows. In the rest

of this section we will introduce some notation and background about the vanishing generalized

Morrey spaces. In Section 2 we will be ready for some necessary lemmas. In Section 3 we will

chiefly deal with our main theorems and provide their detailed proofs.

Given a non-empty measurable subset Ω of RN , let f be a measure function on Ω with the

following norms:

∥f∥Lp(Ω) :=
(∫

Ω

|f(y)|pdy
) 1

p

, 0 < p <∞,

∥f∥L∞(Ω) := sup{β : |{y ∈ Ω : |f(y)| ≥ β}| > 0}.

For x ∈ Ω and r > 0, denote by B(x, r) an open ball with x and radius r. Let Π ⊆ Ω. The

classical Morrey type space Lp,φΠ (Ω) is introduced as the space of all functions f satisfying the

next norm

∥f∥Lp,φ
Π (Ω) := sup

x∈Π,r>0
φ(x, r)−

1
p ∥f∥Lp(B̃(x,r)) <∞,

where B̃(x, r) = B(x, r) ∩ Ω and 1 ≤ p <∞. Here φ(x, r) belongs to the class i = i(Π× [0, ℓ))

of all non-negative functions on Π × [0, ℓ), which are positive on Π × (0, ℓ) with ℓ = diamΩ.

Moreover, when Π = {x0} and Π = Ω, Lp,φ{x0}(Ω) and Lp,φΩ (Ω) are called the local generalized

Morrey space and the global generalized Morrey space, respectively. If φ(x, r) = rλ and Π = Ω,

then Lp,φΠ (Ω) is exactly the classical Morrey space Lp,λ(Ω) for 0 ≤ λ ≤ N . For λ = 0 and λ = N ,

we know that Lp,0(Ω) = Lp(Ω) and Lp,N (Ω) = L∞(Ω), respectively. As for λ < 0 and λ > N ,

we know Lp,λ(Ω) = Θ, where Θ is the set of all functions equivalent to 0 on Ω.

Denote by WLp,φΠ (Ω) the weak Morrey space of all functions f ∈ Lploc(Ω) via the norm

∥f∥WLp,φ
Π (Ω) := sup

x∈Π,r>0
φ(x, r)−

1
p ∥f∥WLp(B̃(x,r)) <∞,

where WLp(B̃(x, r)) is the weak Lp-space of measurable functions f on B̃(x, r) with the norm

∥f∥WLp(B̃(x,r)) ≡ |fχB(x,r)|WLp(Ω) := sup
t>0

t|{y ∈ B̃(x, r) : ∥f(y)∥ > t}|
1
p

= sup
t>0

t
1
p (fχB̃(x,r))

∗(t) <∞,

here g∗ is the non-increasing rearrangement of the function g.

Moreover, the vanishing generalized Morrey space V Lp,φΠ (Ω) is defined as the spaces of all

functions f ∈ Lp,φΠ (Ω) such that

lim
r→0

sup
x∈Π

φ(x, r)−
1
p ∥f∥Lp(B̃(x,r)) = 0. (1.1)

Correspondingly, the vanishing generalized weak Morrey space VWLp,φΠ (Ω) is defined as the
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space of all functions f ∈WLp,φΠ (Ω) such that

lim
r→0

sup
x∈Π

φ(x, r)−
1
p ∥f∥WLp(B̃(x,r)) = 0. (1.2)

Clearly, it is appropriate to impose on φ(x, r) with the following extra conditions:

lim
r→0

sup
x∈Π

rN

φ(x, r)
= 0 (1.3)

and

inf
ℓ≥r>1

sup
x∈Π

φ(x, r) > 0, (1.4)

where (1.4) must be imposed when Ω is unbounded. From Eqs. (1.3) and (1.4), we easily know

that the bounded functions with compact support belong to V Lp,φΠ (Ω) and VWLp,φΠ (Ω).

In the paper we firstly consider the multi-dimensional weighted Hardy operators as follows.

Hαωf(x) = |x|α−Nω(|x|)
∫
|y|<|x|

f(y)dy

ω(|y|)
, Hα

ωf(x) = |x|αω(|x|)
∫
|y|>|x|

f(y)dy

|y|Nω(|y|)
,

where α ≥ 0. When N = 1, the Hardy operators above may be read either as R1 or R1
+ with

Hαωf(x) = xα−1ω(x)

∫ x

0

f(y)dy

ω(y)
, Hα

ωf(x) = xαω(x)

∫ ∞

x

f(y)dy

yω(y)
, x > 0.

If ω(t) = tβ , then the operator above is denoted by

Hαβf(x) = |x|α+β−N
∫
|y|<|x|

f(y)dy

|y|β
, Hα

βf(x) = |x|α+β
∫
|y|>|x|

f(y)dy

|y|β+N
,

and the one versions

Hαβf(x) = xα+β−1

∫ x

0

f(y)dy

yβ
, Hα

βf(x) = xα+β
∫ ∞

x

f(y)dy

yβ+1
, x > 0.

Besides this we also consider other classical operators, and we list them as follows.

• For f ∈ L1
loc(Ω), the centered Hardy-Littlewood maximal operator Mf of the function f

is defined by

Mf = sup
r>0

1

|B(·, r)|

∫
B̃(·,r)

|f(y)|dy,

where the supremum is taken over all the balls B(·, r) in Ω.

• The potential type operator Iαf with order α is denoted by

Iαf =

∫
Ω

I(·, y)f(y)dy, 0 < α < N,

where I(·, y) =| · − y |α−N .

• The fractional maximal operator Mαf with order α of the function f is defined by

Mαf = sup
r>0

| B(·, r)| α
N −1

∫
B̃(·,r)

|f(y)|dy, 0 ≤ α < N,

where the supremum is taken over all the balls B(·, r) in Ω.

• The Calderón-Zygmund type singular integral operator is denoted by

TCZf =

∫
Ω

K(·, y)f(y)dy,
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here K(·, ·) is the standard singular kernel. That is to say, K(x, y) is a continuous function on

{(x, y) ∈ Ω× Ω : x ̸= y} and satisfies the following conditions:

|K(x, y)| ≤ C|x− y|−N for all x ̸= y,

|K(x, y)−K(x, z)| ≤ C
|y − z|σ

|x− y|N+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C
|x− ξ|σ

|x− y|N+σ
, σ > 0, if |x− y| > 2|x− ξ|.

Let f be a non-negative function on [0, ℓ]. If there exists a constant C ≥ 1 such that f(x) ≤
Cf(y) for all x ≤ y or x ≥ y, then f is named almost increasing or decreasing function. Moreover,

if f and g are the two almost increasing or decreasing functions and satisfy c1f ≤ g ≤ c2f for

c1, c2 > 0, then they are equivalent.

Definition 1.1 Let 0 < ℓ <∞.

• Denote by W =W ([0, ℓ]) the class of continuous and positive functions ϕ(r) on (0, ℓ] such

that the limit limr→0 ϕ(r) exists and is finite;

• Denote by W0 =W0([0, ℓ]) the class of almost increasing functions ϕ(r) ∈W on (0, ℓ);

• Denote by W =W ([0, ℓ]) the class of functions ϕ(r) ∈W such that raϕ(r) ∈W0 for some

a = a(ϕ) ∈ R;
• Denote by W = W ([0, ℓ]) the class of functions ϕ(r) ∈ W such that r−bϕ(r) is almost

decreasing for some b ∈ R.

2. Some necessary Lemmas

In the section we are prepared to provide and prove the related lemmas. At first we give

two results being similar to the ones from Persson and Samko [19, Propositions 3.6 and 3.8].

Lemma 2.1 For 1 ≤ p < ∞, 0 < s ≤ p and 0 < ℓ ≤ ∞, let ν(t) ∈ W ([0, ℓ]), ν(2t) ≤ Cν(t),
φ

s
p (x,·)
ν ∈W ([0, ℓ]) for x ∈ Π. Then(∫

|z|<|y|

|f(z)|s

ν(|z|)
dz

) 1
s ≤ CD(|y|)∥f∥Lp,φ

Π (Ω), 0 < |y| ≤ ℓ,

where C > 0 does not depend on y and f , and

D(r) =
(∫ r

0

tN(1− s
p )−1φ

s
p (x, t)

ν(t)
dt
) 1

s

for x ∈ Π.

Lemma 2.2 For 1 ≤ p <∞ and 0 ≤ s ≤ p, let φ(r) ≥ CrN and ν(t) ∈W (R+). Then(∫
|z|>|y|

|f(z)|sν(|z|)dz
) 1

s ≤ CE(|y|)∥f∥Lp,φ
Π (Ω), y ̸= 0,

where C > 0 does not depend on y and f , and

E(r) =
(∫ ∞

r

tN(1− s
p )−1φ

s
p (x, t)ν(t)dt

) 1
s

for x ∈ Π.
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Next we state the lemma below, which is similar to the result from Samko [26, Lemma 3.4].

Because ℓ is finite, here we have to modify slightly the procedure of Samko and give our proof

in detail.

Lemma 2.3 For 1 ≤ p ≤ ∞, α ∈ R, x ∈ Ω and 0 < r < diam(Ω). Then∫
Ω\B(x,2r)

|f(z)|
|x− y|N−α dy ≤ C

∫ ℓ

r

∥f∥Lp(B(x,s))ds

s
N
p +1−α

,

where C > 0 does not depend on x, f and r.

Proof For x ∈ Ω, we may take β > max{Np − α, 0} and specifically proceed as follows:∫
Ω\B(x,2r)

|f(y)|
|x− y|N−α dy =

β2β

2β − 1

∫
Ω\B(x,2r)

|f(y)|
|x− y|N−α−β

(∫ 2|x−y|

|x−y|

ds

sβ+1

)
dy

≤ C

∫
Ω\B(x,2r)

|f(y)|
|x− y|N−α−β

(∫ 2ℓ

|x−y|

ds

sβ+1

)
dy

≤ C

∫ 2ℓ

2r

1

sβ+1

(∫
{y∈Ω,2r≤|x−y|≤s}

|f(y)|dy
|x− y|N−α−β

)
ds

≤ C

∫ ℓ

r

s−β−1∥f∥Lp(B(x,s))∥|x− y|α−N+β∥Lp′ (B(x,s))ds

≤ C

∫ ℓ

r

sα−
N
p −1∥f∥Lp(B(x,s))ds,

where 1
p +

1
p′ = 1, and C > 0 does not depend on x, f and r. �

3. Statements of main results

Next we start to state our main theorems and their proofs. Firstly we consider the bound-

edness of weighted Hardy operator in the weak Morrey type spaces.

Theorem 3.1 Let 1 ≤ p, q <∞ and φ ∈ i satisfy (1.2)–(1.4).

(I) Suppose that

ω ∈W ([0, ℓ]), ω(2t) ≤ Cω(t),
φ

1
p (x, ·)
ω

∈W ([0, ℓ]).

If

sup
x∈Π,r>0

1

φ(x, r)

∫
B̃(x,r)

ωq(|y|)|y|q(α−N)
(∫ |y|

0

t
N
p′ −1

φ
1
p (x, t)

ω(t)
dt
)q

dy <∞, (3.1)

where 1
p+

1
p′ = 1, then the weighted Hardy operator Hαω is bounded from V Lp,φΠ (Ω) to VWLq,φΠ (Ω).

(II) Suppose that

ω ∈W ([0, ℓ]) and ω(2t) ≤ Cω(t) or
1

ω
∈W ([0, ℓ]).

If

sup
x∈Π,r>0

1

φ(x, r)

∫
B̃(x,r)

ωq(|y|)|y|qα
(∫ ℓ

|y|

t−
N
p −1φ

1
p (x, t)

ω(t)
dt
)q

dy <∞, (3.2)
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then the weighted Hardy operator operator Hα
ω is bounded from V Lp,φΠ (Ω) to VWLq,φΠ (Ω).

Proof Note that

∥Hαωf∥WLq(Ω) . ∥Hαωf∥Lq(Ω).

Set s = 1 and ν(t) = ω(t) in Lemma 2.1. Then

|Hαωf(y)| ≤ Cω(|y|)|y|α−N
∫ |y|

0

t
N
p′ −1

φ
1
p (x, t)

ω(t)
dt∥f∥Lp,φ

Π (Ω)

for y ∈ B̃(x, r) with x ∈ Π, and we obtain

∥Hαωf∥
q

WLq(B̃(x,r))
.

∫
B̃(x,r)

ωq(|y|)|y|q(α−N)
(∫ |y|

0

t
N
p′ −1

φ
1
p (x, t)

ω(t)
dt
)q

dy. (3.3)

That is to say

∥Hαωf∥
q
WLq,φ

Π (Ω)
. sup
x∈Π,r>0

1

φ(x, r)

∫
B̃(x,r)

ωq(|y|)|y|q(α−N)
(∫ ℓ

|y|

t
N
p′ −1

φ
1
p (x, t)

ω(t)
dt
)q

dy. (3.4)

Hence Hαωf ∈WLq,φΠ (Ω). On the other hand, by the inequality (3.3) and Eq. (1.3) we get that

lim
r→0

sup
x∈Π

φ− 1
q (x, r)∥Hαωf∥WLq(B̃(x,r)) = 0,

which implies Hαωf ∈ VWLq,φΠ (Ω), i.e., the operator Hαω is bounded from V Lp,φΠ (Ω) to VWLq,φΠ (Ω).

Similarly, once we apply Lemma 2.2 into Hα
ω, we have that

|Hα
ωf(y)| ≤ Cω(|y|)|y|α

∫ ℓ

|y|

t−
N
p −1φ

1
p (x, t)

ω(t)
dt∥f∥Lp,φ

Π (Ω)

for y ∈ B̃(x, r) with x ∈ Π, and we know that

∥Hα
ωf∥

q

WLq(B̃(x,r))
.

∫
B̃(x,r)

ωq(|y|)|y|qα
(∫ ℓ

|y|

t−
N
p −1φ

1
p (x, t)

ω(t)
dt
)q

dy. (3.5)

Therefore,

∥Hα
ωf∥

q
WLq,φ

Π (Ω)
. sup
x∈Π,r>0

1

φ(x, r)

∫
B̃(x,r)

ωq(|y|)|y|qα
(∫ ℓ

|y|

t−
N
p −1φ

1
p (x, t)

ω(t)
dt
)q

dy (3.6)

holds, and so follows Hα
ωf ∈ WLq,φΠ (Ω). Moreover, with the inequality (3.5) and Eq. (1.3) we

obtain that

lim
r→0

sup
x∈Π

φ− 1
q (x, r)∥Hα

ωf∥WLq(B̃(x,r)) = 0,

which implies Hα
ωf ∈ VWLq,φΠ (Ω). Then we may conclude the operator Hα

ω is also bounded from

V Lp,φΠ (Ω) to VWLq,φΠ (Ω). �
Now we recall the definition of p-admissible singular operator. A sublinear operator T , that

is to say |T (f + g)| ≤ |Tf |+ |Tg|, is called p-admissible singular operator if it satisfies the next

two conditions:

• T satisfies the size conditions of the form as

χB(x,r)(z)|T (fχRN\B(x,2r))(z)| ≤ CχB(x,r)(z)

∫
RN\B(x,2r)

|f(y)|dy
|y − z|N

(3.7)
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for x ∈ RN and r > 0;

• T is bounded in Lp(RN ).

For two similar concepts: Φ-admissible singular operator and (Φ,Ψ)-admissible potential

operator, we refer to [31] and references therein. Here we remark that the maximal operator

M and the Calderón-Zygmund type singular integral operator TCZ with standard kernel are

p-admissible singular operators.

Theorem 3.2 Let φ ∈ i satisfy (1.2)–(1.4). Every sublinear p-admissible singular operator T

is bounded from the vanishing generalized Morrey space V Lp,φΠ (Ω) to the vanishing generalized

Morrey space VWLp,φΠ (Ω), if the quantity

Cδ :=

∫ ℓ

δ

supx∈Π φ
1
p (x, t)dt

t
N
p +1

<∞ (3.8)

for each δ > 0 and ∫ ℓ

r

φ
1
p (x, t)dt

t
N
p +1

≤ C0
φ

1
p (x, r)

r
N
p

, (3.9)

where C0 does not depend on x ∈ Π and r > 0.

Proof For arbitrary x ∈ Π, let B̃(x, r) = B(x, r) ∩ Ω for the ball B(x, r) centered at x and

of radius r, where r < diam(Ω)/2. Now we write f = f1 + f2, where f1 = fχB̃(x,2r) and

f2 = fχΩ\B̃(x,2r). Therefore, we know that

∥Tf∥WLp(B̃(x,r)) := sup
t>0

t|{y ∈ B̃(x, r) : |Tf(y)| > t}|
1
p

. sup
t>0

t|{y ∈ B̃(x, r) : |Tf1(y)| > t/2}|
1
p+

sup
t>0

t|{y ∈ B̃(x, r) : |Tf2(y)| > t/2}|
1
p

≈∥Tf1∥WLp(B̃(x,r)) + ∥Tf2∥WLp(B̃(x,r)).

From the boundedness of T in Lp(RN ) it naturally follows that

∥Tf1∥WLp(B̃(x,r)) ≤ ∥Tf1∥Lp(B̃(x,r)) ≤ ∥Tf1∥Lp(RN ) ≤ C∥f1∥Lp(RN ) = C∥f∥Lp(B̃(x,2r)).

Since

∥f∥Lp(B̃(x,2r)) . r
N
p

∫ ℓ

2r

t−
N
p −1∥f∥Lp(B̃(x,t))dt,

we declare that

∥Tf1∥WLp(B̃(x,r)) . r
N
p

∫ ℓ

r

φ
1
p (x, t)

t1+
N
p

dt (3.10)

holds. On the other hand, for z ∈ B̃(x, r) we have

|Tf2(z)| ≤ C

∫
Ω\B̃(x,2r)

|f(y)|dy
|y − z|N

.

Observe that the inequality |y−z|
2 ≤ |x− y| ≤ 3|y−z|

2 holds for z ∈ B(x, r) and y ∈ Ω \ B(x, 2r).

Therefore,

∥Tf2∥WLp(B̃(x,r)) ≤ C

∫
Ω\B̃(x,2r)

|f(y)|dy
|x− y|N

∥ χB̃(x,r)∥WLp(·)(Ω).
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Since ∥χB̃(x,r)∥Lp(·)(Ω) ∼ r
N
p , by the Hölder inequality or Lemma 2.3 it follows

∥Tf2∥WLp(B̃(x,r)) ≤ Cr
N
p

∫ ℓ

r

t−
N
p −1∥f∥Lp(B̃(x,t))dt.

So

∥Tf2∥Lp(B̃(x,r)) . r
N
p

∫ ℓ

r

φ
1
p (x, t)

t1+
N
p

dt. (3.11)

By the inequalities (3.10) and (3.11) we see

∥Tf∥WLp(B̃(x,r)) . r
N
p

∫ ℓ

r

φ
1
p (x, t)

t1+
N
p

dt.

Together with the inequalities (3.8) and (3.9), it easily follows that the p-admissible singular

operator T is bounded from the vanishing generalized Morrey space V Lp,φΠ (Ω) to the vanishing

generalized Morrey space VWLp,φΠ (Ω). �
Because the maximal operator M and the Calderón-Zygmund type singular integral opera-

tor TCZ with standard kernel are p-admissible singular operators, by Theorem 3.2 we may obtain

the following corollary.

Corollary 3.3 Let φ(x, t) satisfy (1.2)–(1.4), (3.8) and (3.9). Then the maximal operator M
and the Calderón-Zygmund type singular integral operator TCZ with standard kernel are bound-

ed from the vanishing generalized Morrey space V Lp,φΠ (Ω) to the vanishing generalized Morrey

space VWLp,φΠ (Ω).

Theorem 3.4 Let 0 < α < N , 1 < p < N
α ,

1
q = 1

p − α
N and φ,ψ ∈ i satisfy (1.2)–(1.4). If the

quantity

Cδ :=

∫ ℓ

δ

supx∈Π φ
1
p (x, t)dt

t1+
N
q

<∞ (3.12)

for each δ > 0 and ∫ ℓ

r

φ
1
p (x, t)dt

t1+
N
q

≤ C
ψ

1
q (x, r)

r
N
q

, (3.13)

where C does not depend on x ∈ Π and r > 0, then the operators Mα and Iα are bounded

from the vanishing generalized Morrey space V Lp,φΠ (Ω) to the vanishing generalized weak Morrey

space VWLq,ψΠ (Ω).

Proof Since Mαf ≤ CIα(|f |), here we only have to consider the case for Iα. As the same

methods in Theorem 3.2, we also split the function f into the forms f = f1 + f2 so that

Iαf = Iαf1 + Iαf2.

Clearly, we see that

∥Iαf∥WLq(B̃(x,r)) . ∥Iαf1∥WLq(B̃(x,r)) + ∥Iαf2∥WLq(B̃(x,r))

for each x ∈ Π. By the classical Sobolev theorem we get

∥Iαf1∥WLq(B̃(x,r)) . ∥Iαf1∥Lq(B̃(x,r)) ≤ ∥Iαf1∥Lq(Ω) ≤ C∥f1∥Lp(Ω) = C∥f∥Lp(B̃(x,2r)).
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Therefore,

∥Iαf1∥WLq(B̃(x,r)) . r
N
q

∫ ℓ

r

φ
1
p (x, t)

t1+
N
q

dt. (3.14)

Since the inequality |y−z|
2 ≤ |x− y| ≤ 3|y−z|

2 holds for z ∈ B(x, r) and y ∈ Ω \B(x, 2r), we infer

that

∥Iαf2∥Lq(B̃(x,r)) ≤ Cr
N
q

∫
Ω\B̃(x,2r)

|f(y)|dy
|x− y|N−α .

By Lemma 2.3 it follows that

∥Iαf2∥Lq(B̃(x,r)) ≤ Cr
N
q

∫ ℓ

r

t−
N
q −1∥f∥Lp(B̃(x,t))dt.

Hence

∥Iαf2∥Lq(B̃(x,r)) . r
N
q

∫ ℓ

r

φ
1
p (x, t)

t1+
N
q

dt. (3.15)

From the inequalities (3.14) and (3.15), we obtain that

∥Iαf∥WLq(B̃(x,r)) . r
N
q

∫ ℓ

r

φ
1
p (x, t)

t1+
N
q

dt.

In view of (1.2)–(1.4), and the inequalities (3.12) and (3.13), it follows that the potential operator

Iα is bounded from the vanishing generalized Morrey space V Lp,φΠ (Ω) to another vanishing

generalized Morrey space V Lp,ψΠ (Ω). �

Corollary 3.5 Let 0 < α, λ < N , 1 ≤ p < N−λ
α and 1

q ≤ 1
p−

α
N . Then the operators Mα and Iα

are bounded from the vanishing generalized Morrey space V Lp,λΠ (Ω) to the vanishing generalized

weak Morrey space VWLq,µΠ (Ω), where µ
q ≤ λ

p .

Proof Let φ(x, r) = rλ and ψ(x, r) = rµ in Theorem 3.4. Then we know

∥Iαf∥WLq,µ
Π (Ω) ≤ C sup

x∈Π,ℓ>r>0
r

N−µ
q

∫ ℓ

r

t−
N
q −1∥f∥Lp(B̃(x,t))dt

≤ C∥f∥Lp,λ
Π (Ω) sup

x∈Π,ℓ>r>0
r

N−µ
q

∫ ℓ

r

t
λ
p−N

q −1dt

≤ C∥f∥Lp,λ
Π (Ω)

and

lim
r→0

sup
x∈Π

r
−µ
q ∥Iαf∥WLq(B̃(x,r)) ≤ C lim

r→0
sup
x∈Π

r−
λ
p ∥f∥Lp(B̃(x,r)) = 0.

Therefore, Corollary 3.5 holds. �

Corollary 3.6 Let 0 < α, λ < N and 1 ≤ p < N−λ
α . Then the operators Mα and Iα are

bounded from the vanishing generalized Morrey space V Lp,λΠ (Ω) to the vanishing generalized

weak Morrey space VWLq,µΠ (Ω), where Np
N−αp < q and N−µ

q = N−λ
p − α.

Proof By the classical Sobolev theorem we know that

∥Iαf∥WLq,µ
Π (Ω) ≤ C sup

x∈Π,ℓ>r>0
r−

µ
q ∥f∥Lp(B̃(x,r)) ≤ C∥f∥Lp,λ

Π (Ω) sup
x∈Π,ℓ>r>0

r
λ
p−µ

q
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= C∥f∥Lp,λ
Π (Ω) sup

x∈Π,ℓ>r>0
r

N
p −N

q −α ≤ C∥f∥Lp,λ
Π (Ω)

and

lim
r→0

sup
x∈Π

r
−µ
q ∥Iαf∥WLq(B̃(x,r)) ≤ C lim

r→0
r

λ
p−µ

q sup
x∈Π

r−
λ
p ∥f∥Lp(B̃(x,r)) = 0.

Hence, Corollary 3.6 follows. �
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