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Abstract In this paper, we introduce two subclasses ¥;(¢) and 37 . (¢) of meromorphic func-

tions f(z) for which %j;z) < p(z) and

—(1— 2)g2Dy f(2) + agzDy 2Dy (2)]
(1= 2)f(2) — azD,(2)

respectively. Sharp bounds for the Fekete-Szegé functional |a; — pad| of the above classes are
obtained. Also, we consider some applications of the results obtained to functions defined by

< ¢(z), ac€C\(0,1], 0<g<1,

g-Bessel function.
Keywords analytic function; meromorphic function; Fekete-Szego problem; g-derivative oper-

ator; g-Bessel function

MR(2010) Subject Classification 30C45; 30C50

1. Introduction

The theory of g-analysis has important role in many areas of mathematics and physics, for
example, in the areas of ordinary fractional calculus, optimal control problems, g¢-difference,
g-integral equations and in g-transform analysis [1-4].

Let ¥ denote the class of meromorphic functions of the form:

flz)= 1—|—io:akzk (1.1)
S — 7
which are analytic in the open punctured unit disc U* = {z: 2z € C and 0 < |z| < 1} = U\{0}.
A function f € ¥ is meromorphic starlike of order «, denoted by ¥*(«), if

2f'(2)
f(z2)
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The class ¥*(a) was introduced and studied by Pommerenke [5] (see also Miller [6]).
Let ¢(z) be an analytic function with positive real part on U satisfying ¢(0) = 1 and ¢’(0) > 0

which maps U onto a region starlike with respect to 1 and symmetric with respect to the real

axis.
Let X*(p) be the class of functions f € ¥ for which
2f'(2)
— <p(z), zel.
TN

The class ¥*(¢) was introduced and studied by Silverman et al.[7]. We note that, the class
¥*(«) is the special case of the class £*(p) when p(z) = M (0<a<l).
For a function f(z) € ¥ given by (1.1) and 0 < g < 1, the ¢-derivative of a function f(z) is
defined by [2]
flaz) = (2)
=1z ~

From (1.2), we deduce that D, f(z) for a function f(z) of the form (1.1) is given by

Dyf(z) = 2 e U (1.2)

DI =gt + W, 240

where

1—q°
As q — 17, [k]; — k, we have lim,_,;- Dy f(2) = f'(2).

Making use of the g-derivative Dy, we introduce the subclasses ¥} () and X7 () as follows:

Definition 1.1 A function f(z) € X is said to be in the class X} (y), if and only if

7qZqu(Z) 2). 2
e < p(z), zel. (1.3)

We note that:
i) lim,_,- X7 (p) = X*(p) (see [7] and [8, with a = 0]);

i) limg_,q- E*(W) =3¥*(a) (0<a<1) (see [5]);

(
(
(ili) limg_q- X3 (32) = F*(1) = F* (see [9, with b = 1]);
(iv) limg;- S5 (S0 2;75 ) =%(0,8,7) (0<5<1, 0< B <13 <y <1) (see [10));
(

v) limg - $5(154%) = K1(A,B) (0< B<1,-B< A< B) (See [11]).

Definition 1.2 For a € C\(0,1], let X} ,(¢) be the subclass of ¥ consisting of functions f(z)
of the form (1.1) and satisfying the analytic criterion:
—(1- %)quqf(z) + aqzDy[2D, f(2)]
(L—=5)f(2) —azDqf(2)
From (1.3) and (1.4), we note that

< p(2). (1.4)

and limg_,1- 37 (@) = X% () (see [7]).

[e3%



238 Huo TANG, H. M. ZAYED, A. O. MOSTAFA and et al.
2. Fekete-Szego problems
To prove our results, we need the following lemmas.

Lemma 2.1 ([12]) Ifp(z) =1+ c12 + c22? + -+ is a function with positive real part in U and

W is a complex number, then
o2 — el | < 2max{1s]2u — 1]}.

The result is sharp for the functions given by

1+ 22 1+z2
= d = .
and p(z) = T—

Lemma 2.2 ([12]) Ifpi(z) = 1+c12+coz? +- -+ is a function with positive real part in U, then
—4v+2, ifv <0,

, ifo<wv<i,

qv — 2, ifv>1.

|co —Z/C%| < 2

When v < 0 or v > 1, the equality holds if and only if pi(z) = 12 or one of its rotations. If

1—=
0 < v < 1, then the equality holds if and only if p1(z) = %fiz or one of its rotations. If v = 0,
the equality holds if and only if
1 A 14z 1 A l1-2z
=(z+¢ - — = 0<A<1
n) =G+ + G-, 0sAst
or one of its rotations. If v = 1, the equality holds if and only if
1 1 A l1+4+z 1 A l1-z
-+ = - — = 0<A<1
+ )1fz+(2 2)1+z’ -

n(z) (2
or one of its rotations. Also the above upper bound is sharp and it can be improved as follows
when 0 < v < 1:

lco —ved| +v|e1]? <2, 0<v<

DN | =

and

1
lea —vei| 4+ (1 —v)|es]? < 2, 5 <v< 1.

Unless otherwise mentioned, we assume throughout this paper that « € C\(0,1] and 0 < ¢ <
1.

Theorem 2.3 Let p(z) = 1+ Bz + Boz? +---(By > 0). If f(2) given by (1.1) belongs to the

class ¥} () and p is a complex number, then

B B
a2 < B max{1.|=2 — [1 — u(1 B B, #0 2.1
lax Na0|_»(147q) ax{ 7LBI [1—u(l+q)]Bil}, B1#0, (2.1)
| B |
< . B, =0. 2.2
‘a’ll = (1+q) 1 ( )

The result is sharp.
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Proof If f(z) € ¥7(p), then there is a Schwarz function w(z) in U with w(0) = 0 and |w(2)| < 1
in U and such that

22 o). (2
Define the function p;(z) by
pl(z):mzl—&—clz—l—@zz—i—u-. (2.4)

Since w(z) is a Schwarz function, we see that ®{p;(z)} > 0 and p;(0) = 1.

Define
. qzDyf(2)

p(z) = O T4+biz+boz? +---. (2.5)
In view of (2.3)-(2.5), we have
o) = ET). (2:6)
Since ) -1 1 2 P
1 st @ PP+ Y o))
Therefore, we have
ﬂ%) =1+ %Blclz + [%Bl(c2 — %) + iBch]z2 4+ (2.7)
From (2.6) and (2.7), we obtain
by = 33161,
and 1 .1
by = 5 Bi(es = 51) + 1 Bact

Then, from (2.5) and (1.1), we see that by = —ag, and by = a3 — (q + 1)ay, or, equivalently, we

have

Bic
apg = — 12 13 (28)
and B ) B
1 1 2
=— ——=(1-=+4 By)] 2.
U= 301y [e2 — 5 ( B T 1)] (2.9)
Therefore B
2 1 2
ai Hag 2(1+q){02 Vcl}7
where ) B
v==[1-=22 4B — uBi(1+q) (2.10)
2 B
Now, the result (2.1) follows by an application of Lemma 2.1. Also, if B; = 0, then
BQC%
=0, =— .
0 R TE
Since p(z) has positive real part, then |c¢1]| < 2 (see [13]). Hence
B
01| < | Ba|

1+4q’
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this proving (2.2). The result is sharp for the functions

_qZqu<Z) — (22 _qZqu<Z) — (2
A 1 R

This completes the proof of Theorem 2.3. O

Remark 2.4 For ¢ — 1~ in Theorem 2.3, we obtain the result obtained by [7, Theorem 2.1].

1
Putting ¢ — 17 and p(z) = 7 te in Theorem 2.3, we obtain the following corollary.
—z

Corollary 2.5 If f(z) given by (1.1) belongs to the class F* and u is a complex number, then
a1 — pad] < max{1, 1 - 2(1 — 24}

The result is sharp.

By using Lemma 2.2, we can obtain the following theorem.

Theorem 2.6 Let ¢(z) = 1+ B2+ Baz?+--- (B; > 0,i = 1,2). If f(z) given by (1.1) belongs
to the class X3 (p), then

Ba—[1—u(1+q)]B}

1+q ) 1fﬂl S 01,
a1 — pag| < ¢ £, if o1 < p < oo, (2.11)
— — 2 .
where
—By — By + B? By — By + B}
= —m AR o 2T T aIan
(1+4q)B; (1+q)B7
2
The result is sharp. Further, let o3 = ?1%;;5’;} .

(i) If o1 < pu < o3, then
{(B1+ Bs) + [u(g +1) — UB{}aol* _ B

2
a; — pag| + . 2.12
(ii)) If o3 < p < o9, then
o), {(B1 = B) + [1 — p(g + 1)]Bi}aol* _ B
a1 — ua + < . 213
ar — pa) oD < (213)
Proof First, let p < o1. Then
B B
2 1 2
a1 — pag| < — —[1—pu(l+q)|B
lay Mo|_(1+q) B, [ 1 q)|B1}
~ Ba—[1 = u(l +q)B?
= l1+gq '
Let, now o1 < p < g2. Then, using the above calculations, we obtain
B
— pa?| < 1
la1 — pag| < 1+g

Finally, if 4 > o9, then

—By + [1 — p(1 4 )] B}
144 '

B
iy = paf| € G- -+ 0B <

By
(1+4q)
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To show that the bounds are sharp, we define the functions K., (n > 2) by
~ q2DgKpn(2)

Ksan(z)
and the functions Fy and G, (0 <y <1) by

= ‘p(zn_l)(zQKgan(z)lzzo =0= _ZQKan(ZNz:O — 1)

0 — 25 B
£y (2) B 147z le=0 = 0= =2"F,(2)[:=0 — 1)
and D.G.(2) ( |
_ 120G (2) _  ZEEY) e e B
G, (2) = ¢( 1+2 )(2°Gy(2)|z20 = 0= —2 G7(2)|Z:0 1).

Clearly, the functions K, I, and G, € X7 (¢). Also we write K, = K. If 1 < 01 or pu > 09,
then the equality holds if and only if f(z) is K, or one of its rotations. When o1 < p < o9, then
the equality holds if f(z) is K3 or one of its rotations. If ;1 = o1, then the equality holds if and
only if f(z) is F or one of its rotations. If y = o, then the equality holds if and only if f(z) is

G, or one of its rotations. This completes the proof of Theorem 2.6. [

Remark 2.7 (i) For ¢ — 1~ in Theorem 2.6, we obtain the result obtained by [8, Theorem 5.1];

(ii) Putting ¢ — 1~ and ¢(z) = 1£2 in Theorem 2.6, we obtain a new result for the class

Fr.

Theorem 2.8 Let ¢(2) =1+ Byz+ Be2?+ -+ (By > 0). If f(2) given by (1.1) belongs to the

class ¥} ,(¢) and p is a complex number, then

By q(1+q)lg — a(1 + q)]

B
— pa?] < (2 LI=2—1— By}, By #0
s = nad] < (Tl 5 = [ @ —ap 1Bi[}, By #0,
(2.14)

B
ja| < (1)) 2|, B =0 (2.15)

The result is sharp.

Proof If f(2) € ¥ ,(¢), then there is a Schwarz function w(z) in U with w(0) = 0 and
|w(z)| < 1in U and such that
—(1=9)qzDq f(2) + aqzDy[zDqy f (2)]
(1= 2)7() — 2Dy f (2)
Since w(z) is a Schwarz function, we see that ®{pi(z)} > 0 and p;(0) = 1.
Define

= p(w(2))-

—(1=9)q2Dq f(2) + aqzDy[2Dq f(2)]

p(z) = = =14+biz+b2?+---. 2.16
) (1= 2)7(5) — 02D, 1 (2) 2 b (2.16)
Then, from (2.6), (2.7), (2.16) and (1.1), we see that

1 o

ZBier = —(1— Z)ao,

g B ( q) 0
and )

‘1 L, o 2 2
5Bilca = o)+ 7Baci = (1= —)%ag — (1+ ¢)(1 —a — —)as,
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or, equivalently, we have

qBicy qB1 C% By
)= —5—, a1 = — co— —=—(1—- =+ By)].
"= Taga) T Aol ol ]2 2T B
Therefore
2 9B 2
a1 — pag = — co — vci},
LR Sl —a )] Y
where

q(1+q)lg — a(1 4 q)] 1
(g —a)? '

Now, the result (2.14) follows by an application of Lemma 2.1. Also, if B; = 0, then

1. B
V:§[1——2+Bl(1—u (2.17)

By

qBact
A1+ q)lg—a(l+q)]
Since p(z) has positive real part, then |c;| < 2 (see [13]), hence

a0:O7 [

q By
<
ol < (C L) —22 |

this proving (2.15). The result is sharp for the functions

—(1 - %)quqf(Z) +agqzDy[2Dg f(2)] _ (22)
(- 9/G) -l f(z) °

and
—(1 = 2)qzDqf(2) + aqzDy[zDq f(2)] )
(—5iE —aD ) 2

This completes the proof of Theorem 2.8. [J

Remark 2.9 (i) Putting o = 0 in Theorem 2.8, we obtain the result of Theorem 2.3;
(ii) Putting ¢ — 1~ in Theorem 2.8, we obtain the result obtained by [7, Theorem 2.2].
Using arguments similar to those in the proof of Theorem 2.6, we obtain the following theo-

rem.

Theorem 2.10 Let ¢(2) =1+ Biz+ B22? +--- (B;>0,i€1,2,0<a< TH;)- If f(z) given
by (1.1) belongs to the class ¥} (), then

_ ,,90+g)[g—a(l+q)] ]312}7

Ty B2 — 1 = n T if i < o4,

|a1—ua(2)| < W]ﬁ(lﬂz)]’ ifoy < p < os,
a(1+q)[g—a(1+q)]1 p2 i
T amrg - Be + [1 - pt =0 —21B1}, ifp > os,
where
g W=PBi - Bt Bl (¢—)’[Bi— Ba + Bi

g1+ q)lg— (1 +q)]|B3’

The result is sharp. Further, let

g1+ q)lg— (14 q)]| B}

__@-aPB+ B
T 41+ q)lq—a(t + 9B}
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(i) If o4 < p < 0g, then
(¢—a)
5 X
q(1+q)lqg — a(1+ q)] B

(
((By+ By) + [ 14 q)[g — a(l + q)]
(g —a)?

lay — pag| +

qB
—1]Bf}aol* < :

(ii)) Ifog < p < o5, then

(g —a)?

(1+qlg—all+qB2
q(1+q)lg — a(1 +q)]
(g —)?

a1 — | +
0 g

qB
| Bt} aol? < !

{(Bi=Ba) + [l —p

3. Applications to functions defined by ¢-Bessel function

We recall some definitions of g-calculus which will be used in our paper.
For any complex number «, the g-shifted factorials are defined by

n—1

(@)oo =1; (;q)n = H(l —ag¢®), neN=1{1,2,...}.
k=0

(1+qlg—al+q)]

(14+q)[g— a1l +q)]

243

(3.1)

If |g| < 1, the definition (3.1) remains meaningful for n = co as a convergent infinite product

o0

(05 @) = [] (1 - ad?):

j=0
In terms of the analogue of the gamma function
Ly(a+n)(1—q)"

(@%5q)n = , n>0,
Ly(a)
where the g-gamma function is defined by
. 1— 1—z
r,(z) = (@Dl =)™

(0% @)oo

We note that lim,_,;- ((‘{a_;g))lf = (a),, where

(@) = if n =0,
"] ala+D)(@+2)--(a+n—1), if neN.

Now, consider the g-analoge of Bessel function defined by [3]

@)oo N (=" Z 2%kt
(:9) o0 kzo<q;q>k(qv+1§Q)k(2) , 0<qg< 1.

v+1.

TO(z0) = 1

Also, let us define

2°(¢39)oo
Tl = g s (1= a)a)

E (1)FH(L g2y

1
==+
z kzzo AR (g5 q)k+1(05 @)

Lo(zq) =

2F 2el.
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By using the Hadamard product (or convolution), we define the linear operator £, ,, : 3 — X,
as follows:

—1)kF1(1 — ¢)? (k+1) -y

(Lgwf)(2) = Lu(z9) * *+Z

(k+1) (@ ODr+1(¢Y Qi

The linear operator L, ,, was introduced and studied by Mostafa et al. [14]. Also, as ¢ — 17, the
linear operator £, ,, reduces to the operator £, introduced and studied by Aouf et al. [15].

For 0 < ¢ <1 and a € C\(0,1], let X7 () and X} , . () be the subclasses of ¥ consisting
of functions f(z) of the form (1.1) and satisfy the analytic criterions, respectively:

_ QZDq(‘Cq,vf)(Z)
Louhz)

—(1- %)qZDq(Eq,vf) + aqzDq[2Dqg(Lq.0 f)]
(1 - %)f(z) - aZDq(Eq,vf)(Z)

p(z), 2€l,

< p(z), zel.

Using similar arguments to those in the proof of the above theorems, we obtain the following

theorems.

Theorem 3.1 Let ¢(z) = 1+ Bz + Boz? +--- (B > 0). If f(2) given by (1.1) belongs to the

class ¥ () and p is a complex number, then

L(1- g (1= "B

2
lar — pag| < (1—q)2
By (1—¢""h)
max{L ‘E — [1 — Mm]31|}7 Bl 7& 07
42 1— v+1 1— v+2 B
< PO OB

(1-q)? ’
The result is sharp.

Theorem 3.2 Let ¢(2) = 1+ Byz+ Baz?+--- (B; > 0,i = 1,2). If f(2) given by (1.1) belongs
to the class X7 (¢), then

Paa 00"y, (1 - p(IZL)BY, i< o,
jar — pa| < § e Jga ifoi < <o},
B0 IO By + [1 - ()] BY, if > o,
where
yi o EBL Bk B0 —q) L [B - Byt Bt
(1—gqvt1)B? (1—qvt1)B?

The result is sharp. Further, let

[-B2 + Bf](1 —¢"*?)
(1-g¢t)Bf

*
03 =
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(i) If o7 < p < o3, then

v+1

(1—q""?) 1—gq

a1 — pag| + Tz il(Bi+ B2) + (— ) — 1]B?}aol?
(1—qv+h)Bi 1—gv*
B0 -¢"H( = ¢")B
- (1—q)?
(ii)) If o < pu < o3, then
(1-q"*2) 1— g+

2
|lay — pag| + m{(Bl = Ba) + [1—p(
- 42(1 _ qv+1)(1 _ qv+2)Bl
N (1-4q)? '
Theorem 3.3 Let ¢(2) =1+ Bz + Bez?+ -+ (By > 0). If f(2) given by (1.1) belongs to the

class ¥F () and p is a complex number, then

m)]B%}\aoF

q,Oé,U
oy — pa2| < FA0 =)A= ¢ By
— (1-9)?g—a(l+q)
B, q(1—¢""H[g — a(l + q)]
L1221 - B By £0
maX{ ’|Bl [ 12 (a_q)g(l_qv+2) ] 1|}7 17é )
42 1— v+1 1— v+2 B
0] < ¢1-¢" A= " NB| 5

(1=q?lg—al+q]|
The result is sharp.

Theorem 3.4 Let ¢(2) =1+ Biz+ Byz?+--- (B;>0,i=1,2,0<a< Ti;)- I f(z) given
by (1.1) belongs to the class X% ., . (¢), then

q,a,v
42(1—quthH(1—¢g""?)
(1-9)2[g—a(1+q)] ) e (1 gt
(B — 1 - plt R By,
42(17q17+1)(17qv+2)B1

(l—q)ﬂq—u(lJqu)] ’
42—t (1—g"* )
(1-9)%[g—a(1+q)]

—q""Hg—a . %
{_B2 + [1 - /,Lq(l(qza)g([lq_qu(_&;;q”]B%}, 1f,u Z 05,

X

if p < oy,
a1 — pag| <

if o} < p <o,

where
(g — @)*(1 — ¢""?)[-B1 — By + Bj]
¢Bi(1— g g —a(l+q)]

*
04 =

or = (@—=a)?(1—¢"**)[B) — By + Bi]
° ¢B? (1 = ¢*tY)[g — a(1 + q)]

The result is sharp. Further, let

ot = @—=a)?(1 = ¢"**)[-B; + Bij
07 ¢B}1—q¢")g—a(l+q)]
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(i) If o} < pu < of, then

(@=)P(-g¢"")
(1—¢v*lg — a(l+q)]B}
—¢")g —a(l +9)]
(I =gt (a—q)?

£(1-¢")(1-¢""*)By
(1= q)%[g — a(l +q)]

(ii) If 0§ < p < of, then

a1 — pag| +
g

{(B1 + Ba) + [p 14 1)B?}aol?

(@=)(1=g¢"")
(1—q"t)[g—a(l + q)|B}
q(1 = ¢"")[g — a(1 + q)]
(1-qvt)(a—q)?
42(1 o qv+1)(1 _ qv+2)Bl
(1-9)%[g — (1 +q)]

2
a1 — pag| +
| ol p

{(B1 = B2) +[L—p | B3 }aol®
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