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Abstract This paper investigates the persistence and existence of almost periodic solutions

for a discrete competitive system with feedback controls based on the comparison theorem of

the difference equation and constructing appropriate Lyapunov function, and several sufficient

conditions for the existence of positive almost periodic solutions for the model are obtained.

Finally, a numerical example is given to illustrate effectiveness of our main results.
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1. Introduction

In the past ten years, the study on the dynamics of dynamic population has attracted many

researcher’s attention [1–11]. The simple two competitive species model can be written as follows

[3]:
{

ẋ1(t) = x1(t)[a1 − b1x1(t)− c1x2(t)− d1x
2
1(t)],

ẋ2(t) = x2(t)[a2 − b2x2(t)− c2x1(t)− d2x
2
2(t)],

where x1(t), x2(t) can be interpreted as the density of two competing species at time t, respec-

tively. a1 and a2 stand for the intrinsic growth rates of two species, b1, d1, b2 and d2 represent the

effects of intra-specific competition, c1 and c2 are the effects of inter-specific competition. How-

ever, realistic models require the inclusion of the effect of changing environment. Tang et al. [10]

discussed the following non-autonomous competition system with impulsive perturbations:






















ẋ1(t) = x1(t)[a1(t)− b1(t)x1(t)− c1(t)x2(t)− d1(t)x
2
1(t)], t 6= τk,

ẋ2(t) = x2(t)[a2(t)− b2(t)x2(t)− c2(t)x1(t)− d2(t)x
2
2(t)], t 6= τk,

x1(τ
+
k ) = (1 + γ1k)x1(τk), t = τk,

x2(τ
+
k ) = (1 + γ2k)x2(τk), t = τk, k ∈ N.
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Some conditions were derived that guarantee the sufficient conditions for the uniformly asymp-

totic stability of a unique positive almost periodic solution. Moreover, as we know, since the

discrete time models can also provide efficient computational models of continuous models for

numerical simulations, it is reasonable to study discrete time models governed by difference

equations.

Tang et al. [11] considered the following periodic discrete competitive system subject to

feedback controls:






















y1(k + 1) = y1(k) exp{a1(k)− b1(k)y1(n)− c1(k)y2(k)− d1(k)x
2
1(k)− e1(k)v1(n)},

y2(k + 1) = y2(k) exp{a2(k)− b2(k)y2(k)− c2(k)y1(n)− d2(k)y
2
2(k)− e2(k)v2(n)},

∆v1 = h1(k)− f1(k)v1(k) + g1(k)y1(k),

∆v2 = h2(k)− f2(k)v2(n) + g2(k)y2(n), k ∈ Z+.

(1.1)

Sufficient conditions which guarantee the persistence of system (1.1) are studied. Moreover,

assuming that the coefficients in the system are periodic sequences, they obtained the sufficient

conditions which guarantee the existence of a globally asymptotically stable periodic solution of

system (1.1).

As we well know, systems without feedback controls are very important in the models of

competitive populations dynamics. However, we note that ecosystems in the real world are

continuously distributed by unpredictable forces which can result in changes in the biological

parameters such as survival rates. In 1993, Gopalsamy and Weng [1] introduced a feedback

control variable into the delayed logistic model and discussed the asymptotic behavior of solutions

in logistic models with feedback controls, in which the control variables satisfy certain differential

equation. In fact, feedback control is the basic mechanism by which models, whether mechanical,

electrical, or biological, maintain their equilibrium or homeostasis. During the last decade, a

series of mathematical models have been established to describe the dynamics of feedback control

systems, we refer to [2,5–7,11–13]. Furthermore, more and more dynamics of the competition

system has important significance, for example, see [3,4], [9,10] and the references therein for

details. Moreover, many results about the existence of almost periodic solutions of a continuous

time system with impulsive effects, we can refer to [10] and the references cited therein. There are

few works that consider the existence of almost periodic solutions for discrete time population

dynamic model with feedback controls. However, on the other hand, studies on competitive

dynamical systems not only involve stability and periodicity, but also involve other dynamic

behaviors such as almost periodicity, chaos and bifurcation. In reality, almost periodicity is

universal than periodicity.

Stimulated by the above reason, we consider a non-autonomous discrete competitive system

with feedback controls:






















x1(n+ 1) = x1(n) exp{a1(n)− b1(n)x1(n)− c1(n)x2(n)− d1(n)x
2
1(n)− e1(n)u1(n)},

x2(n+ 1) = x2(n) exp{a2(n)− b2(n)x2(n)− c2(n)x1(n)− d2(n)x
2
2(n)− e2(n)u2(n)},

∆u1(n) = h1(n)− f1(n)u1(n) + g1(n)x1(n),

∆u2(n) = h2(n)− f2(n)u2(n) + g2(n)x2(n), n ∈ Z
+,

(1.2)
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where ∆ui(n) = ui(n + 1) − ui(n) (i = 1, 2) are the first-order forward difference operators,

xi(n) (i = 1, 2) stand for the densities of species xi at the nth generation, ai(n) represen-

t the natural growth rates of species xi at the nth generation, bi(n) and di(n) stand for the

intraspecific effects of the nth generation of species xi on own population, and ci(n) mea-

sure the interspecific effects of the nth generation of species xj on species xi. The coefficients

{ai(n)}, {bi(n)}, {ci(n)}, {di(n)}, {ei(n)}, {fi(n)}, {gi(n)} and hi(n) are all almost ω-periodic se-

quences with 0 < fi(n) < 1, i, j = 1, 2, i 6= j, Z+ is the set of nonnegative integers.

To the best of our knowledge, though many works have been done for the population dynamic

systems with feedback controls, through most of the works deal with the continuous time models.

On the existence and stability of almost periodic sequence solutions for the discrete biological

models, some results are found in the literature, we refer to [1,7,8,12,13,15]. In the present paper

we will study the existence and uniqueness of almost periodic solutions for the system (1.2).

Remark 1.1 Let xi(n) = yi(k), ui(n) = vi(k) (i = 1, 2), system (1.2) reduces to the system

(1.1). As we know, ecosystems in the real world are often distributed by unpredictable forces

which can result in changes in biological parameters such as survival rates, so it is necessary to

study models with control variables which are so-called feedback control. Moreover, it is more

realistic to consider almost periodic systems than periodic systems.

Throughout this paper, we always assume that

(H1) {ai(n)}, {bi(n)}, {ci(n)}, {di(n)}, {ei(n)}, {fi(n)}, {gi(n)} and hi(n) for i = 1, 2

are bounded nonnegative almost periodic sequences such that

0 < aLi < ai(n) < aMi , 0 < bLi < bi(n) < bMi , 0 < cLi < ci(n) < cMi ,

0 < dLi < di(n) < dMi , 0 < eLi < ei(n) < eMi , 0 < fL
i < fi(n) < fM

i < 1,

0 < gLi < gi(n) < gMi , 0 < hLi < hi(n) < hMi .

Here, for any bounded sequence {θ(n)}, θM = supn∈N{θ(n)} and θL = infn∈N{θ(n)}. Further-

more, denote x∗1 =
exp(aM

1 −1)

bL
1

, x∗2 =
exp(aM

2 −1)

bL
2

, u∗i =
hM
i +gM

i x∗

i

fL
i

(i = 1, 2), we need the following

assumptions:

(H2) aL1 > cM1 x
∗
2 + eM1 u

∗
1,

(H3) aL2 > cM2 x
∗
1 + eM2 u

∗
2.

By the biological meaning, we focus our discussion on the positive solution of the model

(1.2). So it is assumed that the initial conditions of model (1.2) are of the form

xi(0) > 0, ui(0) > 0, i = 1, 2. (1.3)

One can easily show that all the solutions of model (1.2) with the initial condition (1.3) are

defined and remain positive for all n ∈ Z+.

The rest of this paper is organized as follows. Next section, we give some basic definitions

and necessary lemmas which will be used in later sections. In Section 3, the persistence of model

(1.2) is established. In Section 4, based on the persistence result, we show the existence and

uniformly asymptotical stability of an almost periodic solution to model (1.2). An example is

given in Section 5.
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2. Preliminaries

In order to obtain the main results, we give the definitions and lemmas of the involved

terminologies.

Definition 2.1 ([14]) A sequence x : Z → R is called an almost periodic sequence if the

ǫ-translation number set of x

E{ǫ, x} = {τ ∈ Z : |x(n+ τ) − x(n)| < ǫ, ∀n ∈ Z}

is a relatively dense set in Z for all ǫ > 0; that is, for any given ǫ > 0, there exists an integer

l(ǫ) > 0 such that each interval of length l(ǫ) contains an integer τ ∈ E{ǫ, x} such that

|x(n+ τ)− x(n)| < ǫ, ∀n ∈ Z,

τ is called the ǫ-translation number of x(n).

Definition 2.2 ([12]) Let f : Z × D → Rk, where D is an open set in Rk, f(n, x) is said to be

almost periodic in n uniformly for x ∈ D, or uniformly almost periodic for short, if for any ǫ > 0

and any compact set S in D, there exists a positive integer l(ǫ, S) such that any interval of length

l(ǫ, S) contains an integer τ for which

|f(n+ τ, x)− f(n, x)| < ǫ, ∀n ∈ Z, x ∈ S.

τ is called the ǫ-translation number of f(n, x).

Lemma 2.3 ([15]) {x(n)} is an almost periodic sequence if and only if for any sequence {h′k} ⊂ Z

there exists a subsequence {hk} ⊂ {h′k} such that x(n + hk) converges uniformly on n ∈ Z as

k → ∞. Furthermore, the limit sequence is also an almost periodic sequence.

Zhang and Zheng [14] consider the following almost periodic delay difference system

x(n+ 1) = f(n, xn), n ∈ Z
+, (2.1)

where f : Z+ × CB → R, CB = {φ ∈ C : ‖φ‖ < B}, C = {φ : [−τ, 0]Z → R} with ‖φ‖ =

sups∈[−τ,0]Z
|φ(s)|, f(n, φ) is almost periodic in n uniformly for φ ∈ CB and is continuous in φ,

while xn ∈ CB is defined as xn(s) = x(n+ s) for all s ∈ [−τ, 0]Z.
The product system of (1.2) is in the form of

x(n+ 1) = f(n, xn), y(n+ 1) = f(n, yn). (2.2)

A discrete Lyapunov functional of (1.2) is a functional V : Z+ × CB × CB → R+ which is

continuous in its second and third variables. Define the difference of V along the solution of

system (1.2) by

∆V(1.2)(n, φ, ψ) = V (n+ 1, xn+1(n, φ), yn+1(n, ψ))− V (n, φ, ψ),

where (x(n, φ), y(n, ψ)) is a solution of system (1.2) through (n, (φ, ψ)), φ, ψ ∈ CB .

Lemma 2.4 ([14]) Suppose that there exists a Lyapunov functional V (n, φ, ψ) satisfying the

following conditions:
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(1) a(|φ(0) − ψ(0)|) ≤ V (n, φ, ψ) ≤ b(‖φ − ψ‖), where a, b ∈ P with P = {a : [0,∞) →
[0,∞)|a(0) = 0 and a(u) is continuous, increasing in u}.

(2) |V (n, φ1, ψ1)− V (n, φ2, ψ2)| ≤ L(‖φ1 − φ2‖+ ‖ψ1 − ψ2‖), where L > 0 is a constant.

(3) ∆V(1.2)(n, φ, ψ) ≤ −γV (n, φ, ψ), where 0 < γ < 1 is a constant.

Moreover, if there exists a solution x(n) of (1.2) such that ‖xn‖ ≤ B∗ < B for all n ∈ Z+, then

there exists a unique uniformly asymptotically stable almost periodic solution p(n) of (1.2) which

satisfies |p(n)| ≤ B∗ for all n ∈ I. In particular, if f(n, φ) is periodic of period ω, then (1.2) has

a unique uniformly asymptotically stable periodic solution of period ω.

3. Persistence

In this section, we establish a persistence result for system (1.2).

Proposition 3.1 Assume that (H1) holds. For every solution (x1(n), x2(n), u1(n), u2(n))
T of

system (1.2),

lim sup
n→∞

xi(n) < x∗i , lim sup
n→∞

ui(n) < u∗i , i = 1, 2. (3.1)

Proof We first present two cases to prove that

lim sup
n→∞

x1(n) < x∗1. (3.2)

Case 1 By the first equation of system (1.2), from (H1) and (1.3), we have

x1(n+ 1) = x1(n) exp{a1(n)− b1(n)x1(n)− c1(n)x2(n)− d1(n)x
2
1(n)− e1(n)u1(n)}

< x1(n) exp{a1(n)− b1(n)x1(n)}

= x1(n) exp{a1(n)[1−
b1(n)

a1(n)
x1(n)]}.

Then there exists l0 ∈ N such that x1(l0 + 1) ≥ x1(l0). So, 1− b1(l0)x1(l0)
a1(l0)

≥ 0. Hence,

x1(l0 + 1) < x1(l0) exp{a1(l0)− b1(l0)x1(l0)}

≤ x1(l0) exp
{

aM1
[

1− b1(l0)x1(l0)

a1(l0)

]}

≤ exp(aM1 − 1)

bL1
:= x∗1. (3.3)

Here we used maxx∈R+ x exp(a− bx) = exp(a− 1)/b for a, b > 0 and R+ is the set of all positive

real numbers. We claim that x1(n) ≤ x∗1 for n ≥ l0.

In fact, if there exists an integer m ≥ n0 + 2 such that x1(m) > x∗1, and let m1 be the

least integer between n0 and m such that x1(m) = maxn0≤n≤m−1{x1(n)}, then m1 ≥ n0 + 2

and x1(m1) > x1(m1 − 1) which implies x1(m1) < x∗1 < x1(m). This is impossible. The claim is

proved.

Case 2 x1(n) ≥ x1(n+1) for n ∈ N. In particular, limn→∞ x1(n) exists, denoted by x̄1. We claim

that x̄1 < x∗1. By way of contradiction, assume that x̄1 > x∗1. Take limn→∞(1 − a(n)x1(n)
b(n) ) = 0.
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Noting that
bL1
aM
1

≤ x∗1, we have

1− b1(n)x1(n)

a1(n)
≤ 1− bL1 x̄1

aM1
< 0, (3.4)

for n ∈ N, which is a contradiction. This proves the claim.

Similarly to the above analysis, it is not difficult to get lim supn→∞ x2(n) < x∗2, where

x∗2 =
exp(aM2 − 1)

bL2
.

In the following, for all i = 1, 2, we prove that limn→+∞ ui(n) ≤ u∗i . For any ǫ > 0, there

exits an integer n0 ∈ Z+ such that xi(n) ≤ x∗i + ǫ for all n ≥ n0. By the third and fourth

equations of system (1.2), we can get

ui(n) =
n−1
∏

i=0

(1− fi(i))
[

ui(0) +
n−1
∑

i=0

hi(i) + gi(i)xi(i)
∏i

j=0(1 − fi(j))

]

≤ (1− fL
i )

n
[

ui(0) +

n0−1
∑

i=0

hi(i) + gi(i)xi(i)
∏i

j=0(1− fi(j))

]

+ [hMi + gMi (x∗i + ǫ)]

n−1
∑

i=n0

n−1
∏

j=i+1

(1 − fi(j))

≤ (1− fL
i )

n
[

ui(0) +

n0−1
∑

i=0

hi(i) + gi(i)xi(i)
∏i

j=0(1− fi(j))

]

+ [hMi + gMi (x∗i + ǫ)]
n−1
∑

i=n0

(1− fL
i )

n−i−1.

Since 0 < fL
i < 1, we can find two positive numbers Λi such that 1 − fL

i = e−Λi , using Stolz’s

theorem, we have

lim
n→∞

n−1
∑

i=n0

(1 − fL
i )

n−i−1 = lim
n→∞

∑n−1
i=n0

eΛi(i+1)

eΛin
=

1

1− e−Λi
=

1

fL
i

.

Hence lim supn→∞ ui(n) ≤ hM
i +gM

i (x∗

i+ǫ)

fL
i

. Since ǫ is arbitrary, let ǫ→ 0, we obtain that

lim sup
n→∞

ui(n) ≤
hMi + gMi x∗i

fL
i

:= u∗i , i = 1, 2. (3.5)

Then lim supn→∞ ui(n) ≤ u∗i is valid. So the proof of Proposition 3.1 is completed. �

Proposition 3.2 Assume that (H1)–(H3) hold, where x∗i and u∗i (i = 1, 2) are the same in

Proposition 3.1. Then

lim inf
n→∞

xi(n) > xi∗, lim inf
n→∞

ui(n) > ui∗, i = 1, 2, (3.6)

where

x1∗ = ∆1 exp{aL1 − bM1 x
∗
1 − cM1 x

∗
2 − dM1 x

∗2
1 − eM1 u

∗
1},

x2∗ = ∆2 exp{aL2 − bM2 x
∗
2 − cM2 x

∗
1 − dM2 x

∗2
2 − eM2 u

∗
2},

ui∗ =
hLi + gLi xi∗

fM
i

, i = 1, 2.

Proof Firstly, we also present two cases to prove that

lim inf
n→∞

x1(n) ≥ x1∗.



Almost periodic solutions for a non-autonomous discrete competitive system with feedback controls 265

For any ǫ > 0, according to Proposition 3.1, there exists n0 ∈ N such that

xi(n) ≤ x∗i + ǫ, ui(n) ≤ u∗i + ǫ, i = 1, 2, (3.7)

for n ≥ n0.

Case 1 There exists a positive integer l0 ≥ n0 such that x1(l0 + 1) ≤ x1(l0). Note that for

n ≥ n0, we have

x1(n+ 1) = x1(n) exp{a1(n)− b1(n)x1(n)− c1(n)x2(n)− d1(n)x
2
1(n)− e1(n)u1(n)}

≥ x1(n) exp{a1(n)[1 −
b1(n)x1(n)

a1(n)
− c1(n)x2(n)

a1(n)
− d1(n)x

2
1(n)

a1(n)
− e1(n)u1(n)

a1(n)
]}.

In particular, with n = l0, we obtain

1− bM1 x1(l0)

aL1
− cM1 (x∗2 + ǫ)

aL1
− dM1 x

2
1(l0)

aL1
− eM1 (u∗1 + ǫ)

aL1
≤ 0,

which implies that

x1(l0) ≥
−bM1 +

√

bM2
1 − 4dM1 (cM1 (x∗2 + ǫ)− aM1 + eM1 (u∗1 + ǫ))

2dM1
:= ∆+

1ǫ,

x1(l0) ≥
−bM1 −

√

bM2
1 − 4dM1 (cM1 (x∗2 + ǫ)− aM1 + eM1 (u∗1 + ǫ))

2dM1
:= ∆−

1ǫ.

Since −bM1 −
√

bM2
1 − 4dM1 (cM1 (x∗2 + ǫ)− aM1 + eM1 (u∗1 + ǫ)) < 0, it follows from (H1) ∆−

1ǫ < 0

and x1(l0) < 0. From system (1.3), we get

x1(l0 + 1) > ∆+
1ǫ exp{aL1 [1−

bM1 (x∗1 + ǫ)

aL1
− cM1 (x∗2 + ǫ)

aL1
− dM1 (x∗1 + ǫ)2

aL1
− eM1 (u∗1 + ǫ)

aL1
]}

:= x1ǫ. (3.8)

We claim that x1(n) ≥ x1ǫ for n ≥ l0.

By way of contradiction, assume that there exists p0 ≥ l0 such that x1(p0) < x1ǫ. Then

p0 ≥ l0+2, let p1 ≥ l0+2 be the smallest integer such that x1(p1) < x1ǫ. Then x(p1−1) < x(p1).

The above argument produces that x1(p1) ≥ x1ǫ, a contradiction. This proves the claim.

Case 2 We assume that x1(n + 1) ≥ x1(n) for all large n ∈ N. Then limn→∞ x1(n) exists,

denoted by x1. We claim that x1 ≥ ∆+
1ǫ. By way of contradiction, assume that x1 < ∆+

1ǫ. Take

lim
n→∞

(1− b1(n)x1(n)

a1(n)
− c1(n)x2(n)

a1(n)
− d1(n)x

2
1(n)

a1(n)
− e1(n)u1(n)

a1(n)
) = 0,

which is a contradiction, since

lim
n→∞

(1− b1(n)x1(n)

a1(n)
− c1(n)x2(n)

a1(n)
− d1(n)x

2
1(n)

a1(n)
− e1(n)u1(n)

a1(n)
)

≥ 1− bM1 x1(n)

aL1
− cM1 (x∗2 + ǫ)

aL1
− dM1 (x∗1 + ǫ)2

aL1
− eM1 (u∗1 + ǫ)

aL1
> 0.

Note that x∗1 ≥ aM1 ≥ aL1 , we see that ∆+
1ǫ ≥ x1ǫ, and limǫ→0 x1ǫ = x1∗. We can easily see that

lim infn→∞ x1(n) ≥ x1∗ holds. Similarly, we can prove that lim infn→∞ x2(n) ≥ x2∗. Thus for
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any ǫ > 0 small enough, there exists a positive integer n0, such that xi(n) ≥ xi∗ − ǫ > 0 for all

ǫ > 0.

Next, we will prove that lim infn→∞ ui(n) ≥ ui∗ for all i = 1, 2. For any ǫ > 0, there exists

an integer n0 ∈ Z+ such that xi(n) ≥ xi∗ − ǫ for n ≥ n0. We have from the third and fourth

equations of system (1.2) that

ui(n) =

n−1
∏

i=0

(1 − fi(i))
[

ui(0) +

n−1
∑

i=0

hi(i) + gi(i)xi(i)
∏i

j=0(1− fi(j))

]

≥ (1 − fM
i )n

[

ui(0) +

n0−1
∑

i=0

hi(i) + gi(i)xi(i)
∏i

j=0(1− fi(j))

]

+ [hLi + gLi (xi∗ − ǫ)]

n−1
∑

i=n0

n−1
∏

j=i+1

(1− fi(j))

≥ (1 − fM
i )n

[

ui(0) +

n0−1
∑

i=0

hi(i) + gi(i)xi(i)
∏i

j=0(1− fi(j))

]

+ [hLi + gLi (xi∗ − ǫ)]

n−1
∑

i=n0

(1− fM
i )n−i−1.

Since 0 < fM
i < 1, we can find two positive numbers Γi such that 1− fM

i = e−Γi . Using Stolz’s

theorem, we have

lim
n→∞

n−1
∑

i=n0

(1− fM
i )n−i−1 = lim

n→∞

∑n−1
i=n0

eΓi(i+1)

eΓin
→ 1

1− e−Γi
=

1

fM
i

.

Hence lim infn→∞ ui(n) ≥ hL
i +gL

i (xi∗−ǫ)

fM
i

. Since ǫ is arbitrary, let ǫ→ 0, we obtain that

lim inf
n→∞

ui(n) ≥
hLi + gLi xi∗

fM
i

:= ui∗. (3.9)

So the proof of Proposition 3.2 is completed. �

Remark 3.3 Similar results have been obtained by Tan [11, Lemmas 1 and 2].

Now the main result of this section is obtained as follows.

Theorem 3.4 Assume that (H1)–(H3) hold. Then system (1.2) is persistent.

4. Main result

According to Lemma 2.4, we first prove that there exists a bounded solution of system (1.2),

and then construct an adaptive Lyapunov functional for system (1.2).

The next result tells that there exists a bounded solution of system (1.2).

We denote by Ω the set of all solutions X(n) = (x1(n), x2(n), u1(n), u2(n))
T of system (1.2)

satisfying xi∗ ≤ xi(n) ≤ x∗i , ui∗ ≤ ui(n) ≤ u∗i for all n ∈ Z+.

Proposition 4.1 Assume that (H1)–(H3) hold. Then Ω 6= ∅.
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Proof It is now possible to show by an inductive argument that system (1.2) leads to














































x1(n) = x1(0) exp
n−1
∑

l=0

{a1(l)− b1(l)x1(l)− c1(l)x2(l)− d1(l)x
2
1(l)− e1(l)u1(l)},

x2(n) = x2(0) exp
n−1
∑

l=0

{a2(l)− b2(l)x2(l)− c2(l)x1(l)− d2(l)x
2
2(l)− e2(l)u2(l)},

u1(n) = u1(0)−
n−1
∑

l=0

{−h1(l) + f1(l)u1(l)− g1(l)x1(l)},

u2(n) = u2(0)−
n−1
∑

l=0

{−h2(l) + f2(l)u1(l)− g2(l)x1(l)}.

(4.1)

From Propositions 3.1 and 3.2, any solution X(n) = (x1(n), x2(n), u1(n), u2(n))
T of system (1.2)

with initial condition (1.3) satisfies system (4.1). Hence, for any ǫ > 0, there exists n0 such that

if n0 is sufficiently large, we have

xi∗ − ǫ ≤ xi(n) ≤ x∗i + ǫ, ui∗ − ǫ ≤ ui(n) ≤ u∗i + ǫ, ∀n ≥ n0, i = 1, 2. (4.2)

Let {tn} be any integer-valued sequence such that tn → ∞ as n→ ∞. We claim that there

exists a subsequence of {tn}, we still denote it by {tn} such that

xi(n+ tn) → x∗i (n) (4.3)

uniformly in n on any finite subset B of Z as n→ ∞, where B = {a1, a2, . . . , αm}, ah ∈ Z (h =

1, 2, . . . ,m) and m is a finite number.

In fact, for any finite subset B ⊂ Z, when a is large enough, tn + ah > n0, h = 1, 2, . . . ,m.

So

xi∗ − ǫ ≤ xi(n+ tn) ≤ x∗i + ǫ, ui∗ − ǫ ≤ ui(n+ tn) ≤ u∗i + ǫ. (4.4)

That is, {xi(n+ tn)}, {ui(n+ tn)} are uniformly bounded for large enough n.

Similarly, for a2 ∈ B, we can choose a subsequence {t2n} of {t1n} such that {xi(a2 +

t2n)}, {ui(a2 + t2n)} uniformly converges on Z+ for n large enough.

Repeating this procedure, for am ∈ B, we obtain a subsequence {tmn } of {tm−1
n } such that

{xi(am + tmn )}, {ui(am + tmn )} uniformly converges on Z+ for n large enough.

Now pick the sequence {tmn } which is a subsequence of {tn}, we still denote it by {tn}, then
for all n ∈ B, we have xi(n+ tn) → x∗i (n), ui(n+ tn) → u∗i (n) uniformly in n ∈ B as p→ ∞.

By the arbitrariness of B, the conclusion is valid.

Since {ai(n)}, {bi(n)}, {ci(n)}, {di(n)}, {ei(n)}, {fi(n)}, {gi(n)} and {hi(n)} (i = 1, 2) are

almost periodic sequences, for the above sequence {τp}, τp → ∞ as p → ∞, there exists a

subsequence still denoted by {τp} (if necessary, we take a subsequence) such that

ai(n+ τp) → ai(n), bi(n+ τp) → bi(n), ci(n+ τp) → ci(n),

di(n+ τp) → di(n), ei(n+ τp) → ei(n), fi(n+ τp) → fi(n),

gi(n+ τp) → gi(n), hi(n+ τp) → hi(n), for all i = 1, 2,

as p→ ∞ uniformly on Z+. For any σ ∈ Z, we can assume that τp + σ ≥ n0 for p large enough.

Let n ≥ 0 and n ∈ Z+. Using an inductive argument of system (1.2) from τp + σ to n+ τp + σ
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leads to










































































x1(n+ τp + σ) = x1(τp + σ) exp
n+τp+σ−1

∑

l=τp+σ

{

a1(l)− b1(l)x1(l)− c1(l)x2(l)−

d1(l)x
2
1(l)− e1(l)u1(l)

}

,

x2(n+ τp + σ) = x2(τp + σ) exp
n+τp+σ−1

∑

l=τp+σ

{

a2(l)− b2(l)x2(l)− c2(l)x1(l)−

d2(l)x
2
2(l)− e2(l)u2(l)

}

,

u1(n+ τp + σ) = u1(τp + σ)−
n+τp+σ−1

∑

l=τp+σ

{

− h1(l) + f1(l)u1(l)− g1(l)x1(l)
}

,

u2(n+ τp + σ) = u2(τp + σ)−
n+τp+σ−1

∑

l=τp+σ

{

− h2(l) + f2(l)u2(l)− g2(l)x2(l)
}

.

(4.5)

Then, for i = 1, 2, we have


































































































x1(n+ τp + σ) = x1(τp + σ) exp
n+τp+σ−1

∑

l=τp+σ

{

a1(l + τp)− b1(l + τp)x1(l + τp)−

c1(l + τp)x2(l + τp)− d1(l + τp)x
2
1(l + τp)− e1(l + τp)u1(l + τp)

}

,

x2(n+ τp + σ) = x2(τp + σ) exp
n+τp+σ−1

∑

l=τp+σ

{

a2(l + τp)− b2(l + τp)x2(l + τp)−

c2(l + τp)x1(l + τp)− d2(l + τp)x
2
2(l + τp)− e2(l + τp)u2(l + τp)

}

,

u1(n+ τp + σ) = u1(τp + σ)−
n+τp+σ−1

∑

l=τp+σ

{

− h1(l + τp) + f1(l + τp)u1(l)−

g1(l + τp)x1(l + τp)
}

,

u2(n+ τp + σ) = u2(τp + σ)−
n+τp+σ−1

∑

l=τp+σ

{

− h2(l + τp) + f2(l + τp)u2(l + τp)−

g2(l + τp)x2(l + τp)
}

.

(4.6)

Let p→ ∞, for any n ≥ 0,










































































x∗1(n+ τp + σ) = x∗1(τp + σ) exp
n+τp+σ−1

∑

l=τp+σ

{

a1(l)− b1(l)x
∗
1(l)− c1(l)x

∗
2(l)−

d1(l)x
∗
1
2(l)− e1(l)u

∗
1(l)

}

,

x∗2(n+ τp + σ) = x∗2(τp + σ) exp
n+τp+σ−1

∑

l=τp+σ

{

a2(l)− b2(l)x
∗
2(l)− c2(l)x

∗
1(l)−

d2(l)x
∗
2
2(l)− e2(l)u

∗
2(l)

}

,

u∗1(n+ τp + σ) = u∗1(τp + σ)−
n+τp+σ−1

∑

l=τp+σ

{

− h1(l) + f1(l)u
∗
1(l)− g1(l)x

∗
1(l)

}

,

u∗2(n+ τp + σ) = u∗2(τp + σ)−
n+τp+σ−1

∑

l=τp+σ

{

− h2(l) + f2(l)u
∗
2(l)− g2(l)x

∗
2(l)

}

.

(4.7)

By the arbitrariness of σ,X∗ = (x∗1(n), x
∗
2(n), u

∗
1(n), u

∗
2(n))

T is a solution of system (1.2) on Z
+.

It is clear that 0 < xi∗ ≤ x∗i (n) ≤ x∗i , 0 < ui∗ ≤ u∗i (n) ≤ u∗i , for all n ∈ Z+, i = 1, 2. So Ω 6= ∅.

Proposition 4.1 is valid. �

The main results of the following theorem concern the existence of a uniformly asymptoti-
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cally stable almost periodic sequence solution of system (1.2).

Theorem 4.2 Assume that (H1)–(H3) hold. Suppose further that (H4): 0 < Θ < 1, where

Θ1 = 1−W1 − Ω1 − gM1 ξ1(n)(2 − f l
1),

Θ2 = 1−W2 − Ω2 − gM2 ξ2(n)(2 − f l
2),

Θ3 = 2f l
1 − f l2

1 − gM1 ξ1(n)(1− f l
1)−W3,

Θ4 = 2f l
2 − f l2

2 − gM2 ξ2(n)(1− f l
2)− Ω3,

Θ = min{Θ1,Θ2,Θ3,Θ4},

then there exists a unique uniformly asymptotically stable almost periodic solution X(n) =

(x1(n), x2(n), u1(n), u2(n))
T of system (1.2) which is bounded by Ω for all n ∈ Z+.

Proof Let pi(n) = ln xi(n) (i = 1, 2). From (1.2), we have

p1(n+ 1) = p1(n) + a1(n)− b1(n)e
p1(n) − c1(n)e

p2(n) − d1(n)e
2p1(n) − e1(n)u1(n),

p2(n+ 1) = p2(n) + a2(n)− b2(n)e
p2(n) − c2(n)e

p1(n) − d2(n)e
2p2(n) − e2(n)u2(n),

∆u1(n) = h1(n)− f1(n)u1(n) + g1(n)e
p1(n),

∆u2(n) = h2(n)− f2(n)u2(n) + g2(n)e
p2(n), n ∈ Z

+. (4.8)

From Proposition 4.1, we know that system (4.8) has a bounded solution Y (n) = (p1(n), p2(n),

u1(n), u2(n))
T satisfying

lnxi∗ ≤ pi(n) ≤ lnx∗i , ui∗ ≤ ui(n) ≤ u∗i , i = 1, 2, n ∈ Z
+. (4.9)

Hence, |pi(n)| ≤ Ai, |ui(n)| ≤ Bi, where Ai = max{| lnxi∗|, lnx∗i }, Bi = max{ui∗, u∗i }, i = 1, 2.

For (X,U) ∈ R2+2, we define the norm ‖(X,U)‖ =
∑2

i=1 |xi|+
∑2

i=1 |ui|.
Consider the product system of system (4.8)











































p1(n+ 1) = p1(n) + a1(n)− b1(n)e
p1(n) − c1(n)e

p2(n) − d1(n)e
2p1(n) − e1(n)u1(n),

p2(n+ 1) = p2(n) + a2(n)− b2(n)e
p2(n) − c2(n)e

p1(n) − d2(n)e
2p2(n) − e2(n)u2(n),

∆ui(n) = hi − fi(n)ui(n) + gi(n)e
pi(n), i = 1, 2,

q1(n+ 1) = q1(n) + a1(n)− b1(n)e
q1(n) − c1(n)e

q2(n) − d1(n)e
2q1(n) − e1(n)v1(n),

q2(n+ 1) = q2(n) + a2(n)− b2(n)e
q2(n) − c2(n)e

q1(n) − d2(n)e
2q2(n) − e2(n)v2(n),

∆vi(n) = hi − fi(n)vi(n) + gi(n)e
qi(n), i = 1, 2.

(4.10)

Suppose that P = (p1(n), p2(n), u1(n), u2(n))
T , Q = (q1(n), q2(n), v1(n), v2(n))

T are any

two solutions of system (4.10) defined on Z+ × S∗ × S∗. Then ‖P‖ ≤ B, ‖Q‖ ≤ B, where

B =

2
∑

i=1

{Ai +Bi},

S∗ = {(p1(n), p2(n), u1(n), u2(n)) : lnxi∗ ≤ pi(n) ≤ lnx∗i , ui∗ ≤ ui(n) ≤ u∗i ,

i = 1, 2, n ∈ Z
+}. (4.11)
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Choose Lyapunov function defined on Z+ × S∗ × S∗ as follows:

V (n, P,Q) =

2
∑

i=1

{(pi(n)− qi(n))
2 + (ui(n)− vi(n))

2}. (4.12)

It is easy to see that the norm ‖P −Q‖ =
∑2

i=1{|pi(n)− qi(n)|+ |ui(n)− vi(n)|} and the norm

‖P − Q‖∗ = {∑2
i=1{(pi(n) − qi(n))

2 + (ui(n) − vi(n))
2}}1/2 are equivalent, that is, there exist

two constants C1 > 0, C2 > 0 such that

C1‖P −Q‖ ≤ ‖P −Q‖∗ ≤ C2‖P −Q‖, (4.13)

then

(C1‖P −Q‖)2 ≤ ‖P −Q‖∗ ≤ (C2‖P −Q‖)2. (4.14)

Let a ∈ C(R+,R+), a(x) = C2
1x

2, b ∈ C(R+,R+), b(x) = C2
2x

2. Thus condition (1) in Lemma

2.4 is satisfied.

In addition,

|V (n, P,Q)− V (n, P̃ , Q̃)|

=
∣

∣

∣

2
∑

i=1

{(pi(n)− qi(n))
2 + (ui(n)− vi(n))

2} −
2

∑

i=1

{(p̃i(n)− q̃i(n))
2 + (ũi(n)− ṽi(n))

2}
∣

∣

∣

≤
2

∑

i=1

|((pi(n)− qi(n))
2 + (ui(n)− vi(n))

2|+
2

∑

i=1

|(p̃i(n)− q̃i(n))
2 + (ũi(n)− ṽi(n))

2|

=
2

∑

i=1

{|(pi(n)− qi(n)) + (p̃i(n)− q̃i(n))||(pi(n)− qi(n)) − (p̃i(n)− q̃i(n))|}

2
∑

i=1

{|(ui(n)− vi(n)) + (ũi(n)− ṽi(n))|||(ui(n)− vi(n))− (ũi(n)− ṽi(n))||}

≤
2

∑

i=1

{(|pi(n)|+ |qi(n)|+ |p̃i(n)|+ |q̃i(n)|)(|pi(n)− p̃i(n)|+ |qi(n)− q̃i(n)|)}

2
∑

i=1

{(|ui(n)|+ |vi(n)|+ |ũi(n)|+ |ṽi(n)|)(|ui(n)− ũi(n)|+ |vi(n)− ṽi(n)|)}

≤ L
{

2
∑

i=1

{|pi(n)− p̃i(n)|+ |ui(n)− ũi(n)|} +
2

∑

i=1

{|qi(n)− q̃i(n)|+ |vi(n)− ṽi(n)|}
}

= L{‖P − P̃‖+ ||Q− Q̃‖}, (4.15)

where L = 4max{Ai, Bi} (i = 1, 2). Hence condition (2) of Lemma 2.4 is satisfied.

Finally, calculating ∆V of V (n) along the solutions of (4.10), we can obtain

∆V(4.10)(n) =V (n+ 1)− V (n)

=
2

∑

i=1

{[pi(n+ 1)− qi(n+ 1)]2 + (ui(n+ 1)− vi(n+ 1))2}−

2
∑

i=1

{[pi(n)− qi(n)]
2 + [ui(n)− vi(n)]

2}
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=

2
∑

i=1

{(pi(n+ 1)− qi(n+ 1))2 − (pi(n)− qi(n))
2+

(ui(n+ 1)− vi(n+ 1))2 − (ui(n)− vi(n))
2}

=

2
∑

i=1

{[pi(n+ 1)− qi(n+ 1)]2 − (pi(n)− qi(n))
2 + [(1− fi(n))(ui(n)−

vi(n)) + gi(n)(e
pi(n) − eqi(n))]2 − (ui(n)− vi(n))

2}. (4.16)

In view of system (4.1) and using the mean value theorem, we get

epi(n) − eqi(n) = ξi(n)(pi(n)− qi(n)), i = 1, 2, (4.17)

where ξi(n) lies between e
pi(n) and eqi(n).

[p1(n+ 1)− q1(n+ 1)]2

=
[

(p1(n)− q1(n)) − b1(n)(e
p1(n) − eq1(n))− c1(n)(e

p2(n) − eq2(n))−
d1(n)(e

2p1(n) − e2q1(n))− e1(n)(u1(n)− v1(n))
]2

= [(p1(n)− q1(n))− b1(n)ξ1(n)(p1(n)− q1(n))− c1(n)ξ2(n)(p2(n)− q2(n))−
2d1(n)ξ1(n)(p1(n)− q1(n))− e1(n)(u1(n)− v1(n))]

2

= (1 − b1(n)ξ1(n)− 2d1(n)ξ1(n))
2(p1(n)− q1(n))

2 − 2[(1− b1(n)ξ1(n)−
2d1(n)ξ1(n))(p1(n)− q1(n))(c1(n)ξ2(n)(p2(n)− q2(n))+

e1(n)(u1(n)− v1(n)))] + c21(n)ξ
2
2(n)(p2(n)− q2(n))

2+

2c1(n)ξ2(n)e1(n)(p2(n)− q2(n))(u1(n)− v1(n)) + e21(n)(u1(n)− v1(n))
2

≤ (1 − bL1 ξ
L
1 − 2dL1 ξ1(n))

2[p1(n)− q1(n)]
2 + cM2

1 ξ2(n)
2
[p2(n)− q2(n)]

2+

2(bM1 ξ1(n) + 2dM1 ξ1(n)− 1)cM1 ξ2|p1(n)− q1(n)||p2(n)− q2(n)|+
2(bM1 ξ1(n) + 2dM1 ξ1(n)− 1)eM1 |p1(n)− q1(n)||u1(n)− v1(n)|+
eM2
1 (u1(n)− v1(n))

2 + 2cM1 ξ2(n)e
M
1 |u1(n)− v1(n)||p2(n)− q2(n)|

≤ (1 − bL1 ξ1(n)− 2dL1 ξ
l
1)

2[p1(n)− q1(n)]
2 + cM2

1 ξ2(n)
2
[p2(n)− q2(n)]

2+

(bM1 ξ1(n) + 2dM1 ξ1(n)− 1)cM1 ξ2(n)[(p1(n)− q1(n))
2 + (p2(n)− q2(n))

2]+

(bM1 ξ1(n) + 2dM1 ξ1(n)− 1)eM1 [(p1(n)− q1(n))
2 + (u1(n)− v1(n))

2]+

eM2
1 (u1(n)− v1(n))

2 + cM1 ξ2(n)e
M
1 [(u1(n)− v1(n))

2 + (p2(n)− q2(n))
2]

=W1[p1(n)− q1(n)]
2 +W2[p2(n)− q2(n)]

2 +W3[u1(n)− v1(n)]
2, (4.18)

where

W1 =(1− bL1 ξ1(n)− 2dL1 ξ1(n))
2 + (bM1 ξ1(n) + 2dM1 ξ1(n)− 1)cM1 ξ2(n) + (b1(n)ξ1(n)+

2dM1 ξ1(n)− 1)eM1 ,

W2 =cM2
1 ξ2(n)

2 + (bM1 ξ1(n) + 2dM1 ξ1(n)− 1)cM1 ξ2(n) + cM1 ξ2(n)e
M
1 ,

W3 =eM2
1 + (bM1 ξ1(n) + 2dM1 ξ1(n)− 1)eM1 + cM1 ξ2(n).
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Similarly, we also obtain

[p2(n+ 1)− q2(n+ 1)]2

=
[

(p2(n)− q2(n)) − b2(n)(e
p2(n) − eq2(n))− c2(n)(e

p1(n) − eq1(n))−
d2(n)(e

2p2(n) − e2q2(n))− e2(n)(u2(n)− v2(n))
]2

= [(p2(n)− q2(n))− b2(n)ξ2(n)(p2(n)− q2(n))− c2(n)ξ1(n)(p1(n)− q1(n))−
2d2(n)ξ2(n)(p2(n)− q2(n))− e2(n)(u2(n)− v2(n))]

2

= (1 − b2(n)ξ2(n)− 2d2(n)ξ2(n))
2(p2(n)− q2(n))

2 − 2[(1− b2(n)ξ2(n)−
2d2(n)ξ2(n))(p2(n)− q2(n))(c2(n)ξ1(n)(p1(n)− q1(n))+

e2(n)(u2(n)− v2(n)))] + c22(n)ξ
2
1(n)(p1(n)− q1(n))

2+

2c2(n)ξ1(n)e2(n)(p1(n)− q1(n))(u2(n)− v2(n)) + e22(n)(u2(n)− v2(n))
2

≤ (1 − bL2 ξ2(n)− 2dL2 ξ2(n))
2[p2(n)− q2(n)]

2 + cM2
2 ξ1(n)

2
[p1(n)− q1(n)]

2+

2(bM2 ξ2(n) + 2dM2 ξ2(n)− 1)cM2 ξ1(n)|p1(n)− q1(n)||p2(n)− q2(n)|+
2(bM2 ξ2(n) + 2dM1 ξ1(n)− 1)eM2 |p2(n)− q2(n)||u2(n)− v2(n)|+
eM2
2 (u2(n)− v2(n))

2 + 2cM2 ξ1(n)e
M
2 |u2(n)− v2(n)||p1(n)− q1(n)|

≤ (1 − bL2 ξ2(n)− 2dL2 ξ2(n))
2[p2(n)− q2(n)]

2 + cM2
2 ξ1(n)

2
[p1(n)− q1(n)]

2+

(bM2 ξ2(n) + 2dM2 ξ2(n)− 1)cM2 ξ1(n)[(p1(n)− q1(n))
2 + (p2(n)− q2(n))

2]+

(bM2 ξ2(n) + 2dM1 ξ1(n)− 1)eM2 [(p2(n)− q2(n))
2 + (u2(n)− v2(n))

2]+

eM2
2 (u2(n)− v2(n))

2 + cM2 ξ1(n)e
M
2 [(u2(n)− v2(n))

2 + (p1(n)− q1(n))
2]

= Ω1[p1(n)− q1(n)]
2 +Ω2[p2(n)− q2(n)]

2 +Ω3[u2(n)− v2(n)]
2, (4.19)

where

Ω1 =cM2
2 ξ1(n)

2 + (bM2 ξ2(n) + 2dM2 ξ2(n)− 1)cM2 ξ1(n) + cM2 ξ1(n)e
M
2 ,

Ω2 =(1− bL2 ξ2(n)− 2dL2 ξ2(n))
2 + (bM2 ξ2(n)+

2dM2 ξ2(n)− 1)cM2 ξ1(n) + (bM2 ξ2(n) + 2dM1 ξ1(n)− 1)eM2 ,

Ω3 =eM2
2 + (bM2 ξ2(n) + 2dM1 ξ1(n)− 1)eM2 + cM2 ξ1(n)e

M
2 .

From system (4.10), we also obtain

[ui(n+ 1)− vi(n+ 1)]2 − [ui(n)− vi(n)]
2

= [(1 − fi(n))
2 − 1](ui(n)− vi(n))

2 + g2i (n)(e
pi(n) − eqi(n))2+

2gi(n)(1 − fi(n))(ui(n)− vi(n))(e
pi(n) − eqi(n))

≤ (fL2
i − 2fL

i )(ui(n)− vi(n))
2 + gMi ξi(n)(pi(n)− qi(n))

2+

2gMi (1− fL
i )ξi(n)|ui(n)− vi(n)||pi(n)− qi(n)|

≤ (fL2
i − 2fL

i )(ui(n)− vi(n))
2 + gMi ξi(n)(pi(n)− qi(n))

2+

gMi (1 − fL
i )ξi(n)[(ui(n)− vi(n))

2 + (pi(n)− qi(n))
2]

= (fL2
i − 2fL

i + gMi (1− fL
i )ξi(n))(ui(n)− vi(n))

2+



Almost periodic solutions for a non-autonomous discrete competitive system with feedback controls 273

(gMi (1− fL
i )ξi(n) + gMi ξi(n))(pi(n)− qi(n))

2, i = 1, 2. (4.20)

From (4.16)–(4.19), we have

∆V(24)(n) ≤[W1 +Ω1 + gM1 ξ1(n)(1 − fL
1 ) + gM1 ξ1(n)− 1][p1(n)− q1(n)]

2+

[W2 +Ω2 + gM2 ξ2(n)(1 − fL
2 ) + gM2 ξ2(n)− 1][p2(n)− q2(n)]

2+

[W3 + fL2
1 − 2fL

1 + gM1 ξ1(n)(1− fL
1 )][u1(n)− v1(n)]

2+

[Ω3 + fL2
2 − 2fL

2 + gM2 ξ2(n)(1 − fL
2 )][u2(n)− v2(n)]

2

=− [1−W1 − Ω1 − gM1 ξ1(n)(2− fL
1 )][p1(n)− q1(n)]

2−
[1−W2 − Ω2 − gM2 ξ2(n)(2 − fL

2 )][p2(n)− q2(n)]
2−

[2fL
1 + fL2

1 − gM1 ξ1(n)(1− fL
1 )−W3][u1(n)− v1(n)]

2−
[2fL

2 + fL2
2 − gM2 ξ2(n)(1− fL

2 )− Ω3][u2(n)− v2(n)]
2

≤−Θ

2
∑

i=1

{

(ui(n)− vi(n))
2 + (pi(n)− qi(n))

2
}

=−ΘV (n),

where Θ = min{Θ1,Θ2,Θ3,Θ4}. That is, there exists a positive constant 0 < Θ < 1 such

that ∆(24)(n) ≤ −ΘV (n). From 0 < Θ < 1, condition (3) of Lemma 2.4 is satisfied. Hence,

from Lemma 2.4, there exists a unique uniformly asymptotically stable almost periodic solution

X(n) = (x1(n), x2(n), u1(n), u2(n)) of system (4.10) which is bounded by S∗ for all n ∈ Z
+,

which means that there exists a uniqueness and global attraction of the almost periodic solution

X(n) = (x1(n), x2(n), u1(n), u2(n))
T of system (1.2) which is bounded by Ω for all n ∈ Z+. This

completes the proof. �

5. Numerical example

In this section, we will present an example to illustrate the effectiveness of our theoretical

results.

Example 5.1 Consider the following discrete competition system with feedback controls:


















































































x1(n+ 1) = x1(n) exp{0.7 + 0.03 sin(
√
2n)− (0.6− 0.02 cos(

√
2n))x1(n)−

(0.02 + 0.01 sin(
√
2n))x2(n)− (0.004− 0.002 cos(

√
2n))x21(n)−

(0.004 + 0.001 sin(
√
2n))u1(n)},

x2(n+ 1) = x2(n) exp{0.8− 0.2 cos(
√
2n)− (0.8 + 0.06 cos(

√
2n))x2(n)−

(0.06 + 0.002 cos(
√
2n))x1(n)− (0.02 + 0.001 sin(

√
2n))x22(n)−

(0.007 + 0.0001 sin(
√
2n))u2(n)},

∆u1(n) = 0.002 + 0.0001 sin(
√
3n)− (0.4 + 0.001 cos(

√
2n))u1(n)+

(0.009 + 0.004 sin(
√
2n))x1(n),

∆u2(n) = 0.006 + 0.0002 sin(
√
3n)− (0.45 + 0.003 sin(

√
2n))u2(n)+

(0.004 + 0.0004 cos(
√
2n))x2(n), n ∈ Z+.

(5.1)

Then system (5.1) is persistence and has a unique uniformly asymptotically stable almost peri-
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odic sequence solution.

Proof It is easy to see that {ai(n)}, {bi(n)}, {ci(n)}, {di(n)}, {ei(n)}, {fi(n)}, {gi(n)}, and

{hi(n)} for i = 1, 2 are bounded nonnegative almost periodic sequences. By calculation of

Matlab software, we obtain

x1∗ = 0.4651, x∗1 = 1.6667, x2∗ = 0.7222, x∗2 = 1.1748,

u1∗ = 0.0105, u∗1 = 0.0596, u∗2 = 0.0343, u2∗ = 0.0146,

al1 − cM1 x
∗
2 − eM1 u

∗
1 = 0.3645 > 0,

al2 − cM2 x
∗
1 − eM2 u

∗
2 = 0.5864 > 0,

Θ1 ≈ 0.2914, Θ2 ≈ 0.7851, Θ3 ≈ 0.5887, Θ4 ≈ 0.6851,

Θ = min{Θ1,Θ3,Θ3,Θ4} = 0.2914.

Then 0 < Θ < 1. So we can see that all conditions of Theorem 4.2 hold. According to Theorem

4.2, system (5.1) has a unique global attraction of the almost periodic solution which is bounded

by Ω for all n ∈ Z+. In fact, by simulations, at least two trajectories with different initial sates

have been tracked, and their dynamics are illustrated in Figure 1, which are confirmed by our

theory. Figure 2 is dynamical behavior of system (5.1) with different initial state.
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Figure 1 Time response of the states x1(t) , x2(t) u1(t) and u2(t) of system (5.1)
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Figure 2 Dynamical behavior of system (5.1): two-dimensional phase portrait
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