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Abstract In this paper, we present an effective meshless method for solving the inverse heat

conduction problems, with the Neumann boundary condition. A PDE-constrained optimiza-

tion method is developed to get a global approximation scheme in both spatial and temporal

domains, by using the fundamental solution of the governing equation as the basis function.

Since the initial measured data contain some noises, and the resulting systems of equations

are usually ill-conditioned, the Tikhonov regularization technique with the generalized cross-

validation criterion is applied to obtain more stable numerical solutions. It is shown that the

proposed schemes are effective by some numerical tests.
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1. Introduction

In heat conduction problems, when the heat flux and/or temperature histories on the surface

of a solid body are known as functions of time, furthermore, the temperature distribution can be

found. This is called a direct problem. But in many heat transfer settings, the surface heat flux

and temperature histories have to be determined from temperature measurements at one or more

interior locations. This is termed as an inverse problem [1]. Inverse heat conduction problems

(IHCPs) play very important role in many fields of engineering technology and computational

science, which have been widely investigated over the last 40 years. Many researchers have been

attracted attention to study IHCPs, including heat flux, material structure control [2], industrial

controlling-models with heat propagation, and mechanics of continuous media etc in related

areas [3]. However, IHCPs are more difficult to solve than the direct heat conduction problems,

because they are usually extremely sensitive to the measured noisy data, it means that IHCPs

are ill-posed in the sense of Hadamard [4], i.e., any small perturbation of measurement values
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can lead to enormous error for computing the identified solutions, and the resulting matrix is

usually ill-conditioned, thus the key is to find some special numerical techniques to overcome the

ill-posedness of problems, further to get stable and accurate numerical solutions. Although heat

conduction process is very smooth, it is shown that the process is irreducible to IHCPs. It means

that the characteristics of the problem solutions may not be affected by the observed data, it is

one of the major difficulties of IHCPs [3,5,6].

In practice, many traditional numerical methods for solving one-dimensional and multi-

dimensional IHCPs have been proposed during the last decades, such as the finite difference

method (FDM) and the finite element method (FEM) [7]. However, the above methods confine to

solve the problems possessing very special regular domains and low-dimensional cases, moreover,

the property of mesh-dependent requires enormous computation cost for lots of grids or elements,

so it can derive numerical instability. In addition, the boundary element method (BEM) does

not require domain discretization, which only need boundary discretization, the measured data

of temperature can be chosen in an arbitrary way, and it does not need any internal cells [8–

10]. In contrast to a meshless method, the BEM would suffer costly numerical integrations

high-dimensional irregular domain [11].

Meshless methods have been proposed and effectively employed to solve many problems

in engineering and science, the major advantage of meshless methods can easily solve high-

dimensional IHCPs with arbitrary geometry, it can directly apply the geometry of domain

to avoid lots of computation difficulties, such as mesh generation, re-meshing and other data-

dependent techniques, since the meshless methods are mesh-independent [5,12–14]. In this set-

ting, a class of meshless methods is focused on the use of radial basis functions (RBFs) for

solving partial differential equations (PDEs) [15,16]. In addition, many numerical methods by

using RBFs have been developed to solve one-dimensional and multi-dimensional IHCPs [17–19].

Recently, a meshless method based on the fundamental solution and radial basis function was

presented to solve IHCP [20]. In [21], Zhang and Li proposed a Gaussian RBFs method with

regularization to solve IHCPs, with the Neumann boundary conditions. In scientific computation

and simulation, the method of fundamental solutions (MFS) is an integration-free and meshless

boundary collocation method for solving IHCPs [3,5,22–24], which belongs to the family of Tre-

fftz methods, and proposed primarily by Kupradze and Alexdze during the early 1960s (see [25]).

Recently, Chen el at. [26] applied MFS to characterize the space-dependent thermal conductivity

of nonlinear functionally graded materials (FGMs). Sun [27] proposed a meshless method based

on MFS for solving the steady-state heat conduction. Additionally, in recent several years, some

effective methods have attracted considerable attention for the conjunction of PDE-constrained

optimization, meshless techniques and multigrid algorithms etc. to solve the distribution control

problems [28–31].

In this paper, we develop a general form of the PDE-constrained optimization method for

solving a class of IHCPs, with the Neumann boundary condition and the time-dependent heat

source term, which is an effective meshless numerical technique. Compared with the mesh-

dependent techniques, such as FDM and FEM, the developed method does not require any
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discrete boundary or domain, by using the collocation technique in the given physical domain, it

can obtain a global approximation solution in both the spatial and temporal domains. Meanwhile,

due to the use of fundamental solution, it can be reduced the computation complexity by avoiding

computation of the Lagrange multiplier term.

The paper is organized as follows. In Section 2, we consider a class of IHCPs with the time-

dependent heat source term f(t) and the Neumann boundary condition. The PDE-constrained

optimization technique based on MFS is concretely presented in Section 3, involving 1-D IHCP

for the rectangular domain, 2-D IHCP for the rectangular domain and 2-D IHCP for the non-

rectangular domain with smooth boundary cases, respectively. In order to test the accuracy and

efficiency of the presented approaches, several numerical examples are given in Section 4. Finally,

we conclude the paper in Section 5.

2. Statement of the IHCPs

We consider the following heat conduction equation with time-dependent heat source f(t):

ut(x, t) = ∆u(x, t) + f(t), (x, t) ∈ Ω× (0, tmax], (2.1)

with the initial condition

u(x, 0) = ϕ(x), x ∈ Ω̄, (2.2)

the Neumann boundary condition

∂u

∂n̄
(x, t) = s(x, t), (x, t) ∈ ∂Ω× [0, tmax], (2.3)

and the over-specification point x∗ in the given domain Ω satisfying

u(x∗, t) = g(t), t ∈ [0, tmax], (2.4)

where Ω is a simply connected domain in R
d (d=1, 2 or 3), n̄ is the unit outward normal vector

to ∂Ω, ∆ denotes the Laplace operator, Ω̄ and ∂Ω indicate the closure and boundary of Ω

respectively, ∂u/∂n̄ is referred to as the directional derivative in the direction normal to ∂Ω.

Simultaneously, the functions ϕ(x), s(x, t) and g(t) are known, but u(x, t) and f(t) are identified

in Eqs. (2.1)–(2.4). Since the governing Eq. (2.1) involves two unknown functions u(x, t) and

f(t), we here adopt the following integral transformation, which transforms Eq. (2.1) into another

homogeneous equation. Similar transformations can be found in [17,18,21,22].

Let

r(t) =

∫ t

0

f(η)dη, (2.5)

and

v(x, t) = u(x, t)− r(t). (2.6)

Thus Eqs. (2.1)–(2.3) can be transformed into the following formulas

vt(x, t) = ∆v(x, t), (x, t) ∈ Ω× (0, tmax], (2.7)



306 Yongfu ZHANG and Chongjun LI

with the initial condition

v(x, 0) = ϕ(x), x ∈ Ω̄, (2.8)

and the Neumann boundary condition

∂v

∂n̄
(x, t) = s(x, t), (x, t) ∈ ∂Ω× [0, tmax]. (2.9)

According to the Eqs. (2.4)–(2.6), we can obtain r(t), f(t) as follows

r(t) = g(t)− v(x∗, t), (2.10)

f(t) = rt(t). (2.11)

3. PDE-constrained optimization by MFS

In this section, we take the L2-norm defined in the domain Ω × [0, tmax]. Eqs. (2.7)–(2.9)

above can be considered as a boundary distributed control problem, more details may be found in

[28–31]. It means that the cost functional gets to minimize, which is derived form the initial and

Neumann boundary conditions. Further, the Eqs. (2.7)–(2.9) can be formulated as the following

constrained optimization problem. In practice, the obtained measurement data often contain

some errors from the initial and boundary measured values, thus we have

min
v

J (v) :=
1

2

{

‖v(x, 0)− ϕσ(x)‖
2
L2(Ω̄) + ‖

∂v

∂n̄
(x, t)− sσ(x, t)‖2L2(∂Ω×[0,tmax])

}

, (3.1)

subject to

vt(x, t) = ∆v(x, t), (x, t) ∈ Ω× (0, tmax]. (3.2)

Here, the Eqs. (3.1) and (3.2) would be solved by applying the Lagrange multiplier method

in the sense of unconstrained optimization, so the Lagrangian for the problems (3.1) and (3.2)

is defined by

L(v, λ) =
1

2

{

‖v(x, 0)− ϕσ(x)‖2
L2(Ω̄) + ‖

∂v

∂n̄
(x, t)− sσ(x, t)‖2L2(∂Ω×[0,tmax])

}

+

λ‖vt(x, t) −∆v(x, t)‖2L2(Ω×(0,tmax])
, (3.3)

where σ denotes the noise level of input data involving in the initial and Neumann boundary

conditions respectively, and λ is a Lagrange multiplier. Mathematically, the purpose of the

Lagrange multiplier method is to find the global minimum of (3.3) (the convex functional) with

respect to the variables v and λ. Thus, we consider the following optimization problem

(v∗, λ∗) := argmin
v,λ

L(v, λ), (3.4)

where (v∗, λ∗) is a pair of stationary point for the Lagrange functional L(v, λ). In general, it

would be infeasible to obtain directly the above values v∗, λ∗ in the formula (3.4) by computing

the partial derivative of L, here, the identified function v∗ contains both the spatial and time

variables. In addition, if the boundary conditions are complex, the usual approach is to discretize

the boundary into linear segments, and apply numerical schemes to solve problem [32].
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In order to deal with the problem (3.4), the approximation solution ṽ(x, t) of the exact v(x, t)

is constructed by using the fundamental solution of the given heat equation as basis function, so

the scheme can lead to a global approximation in both the spatial and temporal domains. The

fundamental solution of Eq. (2.7) (see [3,5]) is presented by

F (x, t) = (4πt)−
d

2 exp(−
‖x‖2

4t
)H(t),

where H(t) is the Heaviside function, ‖ · ‖ indicates the Euclidean norm, and d denotes the

d-dimensional Euclidean space in this paper. Suppose T > tmax is a constant, a general solution

of (2.7) in domain Ω× (0, tmax] is given by

φ(x, t) = F (x, t+ T ).

The time shift function φ(x, t) as the basis function is applied to represent the approximation

solution of v as follows

ṽ(x, t) =
N
∑

i=1

αiφi(x, t), (3.5)

where φi(x, t) = φ(x − xs
i , t − tsi ), and {αi}

N
i=1 are unknown coefficients to be determined. Let

Θ := {(xs
i , t

s
i ) ∈ R

d ×R : i = 1, 2, . . . , N} be the chosen source points, which are located outside

the physical domain to overcome the singularity of fundamental solution [3,5,22]. Combining

with Eqs. (3.3) and (3.5), we further get

L̃1(Λ, λ, x, t) =
1

2

{
∥

∥

∥

N
∑

i=1

αiφi(x, 0)− ϕσ(x)
∥

∥

∥

2

L2(Ω̄)
+

∥

∥

∥

N
∑

i=1

αi

∂φi

∂n̄
(x, t)− sσ(x, t)

∥

∥

∥

2

L2(∂Ω×[0,tmax])

}

+

λ
∥

∥

∥

N
∑

i=1

αi(
∂φi

∂t
(x, t)−∆φi(x, t))

∥

∥

∥

2

L2(Ω×(0,tmax])
, (3.6)

where Λ = (α1, α2, . . . , αN )′, the superscript ′ denotes the transpose of a vector or matrix.

According to the property of fundamental solution, which can automatically satisfy the governing

Eqs. (2.7) and (3.2) in the domain Ω× (0, tmax], the following form holds

∂φi

∂t
(x, t) −∆φi(x, t) ≡ 0, (x, t) ∈ Ω× (0, tmax], (3.7)

then we can write Eq. (3.6) by the formula (3.7) as follows

L̃2(Λ, x, t) =
1

2

{
∥

∥

∥

N
∑

i=1

αiφi(x, 0)− ϕσ(x)
∥

∥

∥

2

L2(Ω̄)
+

∥

∥

∥

N
∑

i=1

αi

∂φi

∂n̄
(x, t)− sσ(x, t)

∥

∥

∥

2

L2(∂Ω×[0,tmax])

}

. (3.8)

In practice, we often obtain some discrete measurement data of functions ϕσ(x) and sσ(x, t),

so the integral implementation of L̃2(Λ, x, t), in L2-norm sense, would fail and be infeasible to
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solve directly. In order to solve the problem (3.8) numerically, we here apply the “optimize-

discretize-optimize” method in this paper, i.e., the optimality condition is derived firstly, then

the form is discretized, and last the unknown parameters are determine by using the optimization

scheme. We can refer to the literatures [28,29] for the optimize-discretize and discretize-optimize

methods.

Let Ξ := {(xj , tj) ∈ R
d × R : j = 1, 2, . . . ,M} be the chosen collocation points on the

physical boundary, the Eq. (3.8) can be simplified by using the collocation technique as follows

L̃3(Λ) =
1

2

{

m1
∑

j=1

(

N
∑

i=1

αiφi(xj , 0)−ϕσ(xj)
)2

+

M
∑

j=m1+1

(

N
∑

i=1

αi

∂φi

∂n̄
(xj , tj)− sσ(xj , tj)

)2}

. (3.9)

Let us consider the minimization of quadratic problem (3.9) to determine Λ by

Λ∗ := argmin
Λ

L̃3(Λ), (3.10)

where Λ∗ = (α∗
1, α

∗
2, . . . , α

∗
N )′, and the identified coefficients Λ∗ can be obtained by solving

a system of linear equations. For more details one can see the following subsections 3.1-3.3.

Furthermore, the approximation solution ṽ of v to the problems (2.7)–(2.9) is developed by

ṽ(x, t) =
N
∑

i=1

α∗
i φi(x, t), (3.11)

and, we have

r̃(t) = g(t)−

N
∑

i=1

α∗
i φi(x

∗, t), (3.12)

ũ(x, t) = g(t) +

N
∑

i=1

α∗
i (φi(x, t)− φi(x

∗, t)). (3.13)

Suppose g(t) ∈ C1[0, tmax], we get

f̃(t) = gt(t)−

N
∑

i=1

α∗
i

∂φi

∂t
(x∗, t). (3.14)

If the function g(t) is not differentiable in the interval [0, tmax] with respect to the variable t,

or it can only be obtained by discrete data with errors, then we should apply the regularization

technique based on the smoothing spline model [21]. r̃, ũ and f̃ are approximation solutions of

the exact functions r, u and f , respectively.

Based on the inverse heat conduction problems proposed in [21], we will present the detailed

algorithms for the one-dimensional (1-D) and two-dimensional (2-D) IHCPs in the rectangular

domains, respectively. Simultaneously, the 2-D IHCP for the non-rectangular domain in the

smooth boundary case, with the Neumann boundary conditions, will be studied in the following

parts.

3.1. 1-D IHCP for the rectangular domain
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We now consider 1-D IHCP with time-dependent heat source f(t) being stated as follows

∂u

∂t
=

∂2u

∂x2
+ f(t), 0 < x < 1, 0 < t ≤ tmax, (3.15)

with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (3.16)

the Neumann boundary conditions

ux(0, t) = s(t), ux(1, t) = l(t), 0 ≤ t ≤ tmax, (3.17)

and the over-specification point x∗ in the spatial domain (0, 1) satisfying

u(x∗, t) = g(t), 0 ≤ t ≤ tmax, (3.18)

where u0(x), s(t), l(t) and g(t) are the given functions, the functions u(x, t) and f(t) are unknown.

In addition, we suppose that the given functions satisfy the following compatibility conditions

u0(x
∗) = g(0), (u0)x(0) = s(0), (u0)x(1) = l(0).

The PDE-constrained optimization method obtained by the above Eqs. (3.1)–(3.9) is applied

to problems (3.15)–(3.18), then we have

L̃31(Λ) =
1

2

{

m1
∑

j=1

(

N
∑

i=1

αiφi(x
0
j , t

0
j)− uσ

0 (x
0
j )
)2

+

m2
∑

j=1

(

N
∑

i=1

αi

∂φi

∂x
(x1

j , t
1
j)− sσ(t1j )

)2

+

m3
∑

j=1

(

N
∑

i=1

αi

∂φi

∂x
(x2

j , t
2
j)− lσ(t2j)

)2}

, (3.19)

where M = m1+m2+m3. Moreover, the source points {xs
i , t

s
i }

N
i=1 can be chosen as Θ1∪Θ2∪Θ3

by

Θ1 :={(xs
i , t

s
i ) : x

s
i = −d1, 0 ≤ tsi ≤ tmax, i = 1, . . . , n1},

Θ2 :={(xs
i , t

s
i ) : 0 ≤ xs

i ≤ 1, tsi = −τ, i = n1 + 1, . . . , n1 + n2},

Θ3 :={(xs
i , t

s
i ) : x

s
i = 1 + d2, 0 ≤ tsi ≤ tmax, i = n1 + n2 + 1, . . . , N},

where d1, d2, τ > 0 are fixed constants, and n3 = N −
∑2

i=1 ni. Simultaneously, the collocation

points {x0
j , t

0
j}

m1

j=1, {x
1
j , t

1
j}

m2

j=1 and {x2
j , t

2
j}

m3

j=1 are chosen as follows

Ξ1 :={(x0
j , t

0
j) : 0 ≤ x0

j ≤ 1, t0j = 0, j = 1, . . . ,m1},

Ξ2 :={(x1
j , t

1
j) : x

1
j = 0, 0 ≤ t1j ≤ tmax, j = 1, . . . ,m2},

Ξ3 :={(x2
j , t

2
j) : x

2
j = 1, 0 ≤ t2j ≤ tmax, j = 1, . . . ,m3}.

One can refer to [27,28] for the similar details. Furthermore, we get the following quadratic form

L̃31(Λ) =
1

2
{Λ′(A1 +A2 +A3)Λ− 2Λ′(b1 + b2 + b3) + C1 + C2 + C3}, (3.20)
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where










A1 := [(A1)i,k] ∈ R
N×N , (A1)i,k =

∑m1

j=1 φi(x
0
j , t

0
j)φk(x

0
j , t

0
j),

b1 := [(b1)i] ∈ R
N , (b1)i =

∑m1

j=1 φi(x
0
j , t

0
j )u

σ
0 (x

0
j ),

C1 :=
∑m1

j=1(u
σ
0 (x

0
j ))

2,











A2 := [(A2)i,k] ∈ R
N×N , (A2)i,k =

∑m2

j=1
∂φi

∂x
(x1

j , t
1
j )

∂φk

∂x
(x1

j , t
1
j),

b2 := [(b2)i] ∈ R
N , (b2)i =

∑m2

j=1
∂φi

∂x
(x1

j , t
1
j)s

σ(t1j ),

C2 :=
∑m2

j=1(s
σ(t1j))

2,











A3 := [(A3)i,k] ∈ R
N×N , (A3)i,k =

∑m3

j=1
∂φi

∂x
(x2

j , t
2
j )

∂φk

∂x
(x2

j , t
2
j),

b3 := [(b3)i] ∈ R
N , (b3)i =

∑m3

j=1
∂φi

∂x
(x2

j , t
2
j)l

σ(t2j),

C3 :=
∑m3

j=1(l
σ(t2j ))

2,

and i, k = 1, 2, . . . , N . By differentiating L̃31 of (3.20) with respect to Λ, and setting the deriva-

tives to be zero, we can obtain the following system of equations by

ĀΛ = b̄, (3.21)

where Ā =
∑3

i=1 Ai, b̄ =
∑3

i=1 bi. Due to the ill-posed nature of the IHCPs, the resulting matrix

Ā above is ill-conditioned, i.e., the condition number of Ā is usually very large. Moreover, the

right-hand side b̄ is a set of discrete data contaminated by inherent measurement noises, here we

apply the Tikhonov regularization technique to obtain stable numerical solution by Eq. (3.21),

and get

Λ∗
β := argmin

Λ
{‖ĀΛ− b̄‖22 + β2‖Λ‖22}, (3.22)

where β > 0 is an unknown regularization parameter. In the regularization tools, there are some

classical criterions, such as the generalized cross-validation (GCV), the L-curve criterion, and

the quasi-optimality criterion etc. to compute the value β. We choose a good regularization

parameter β by using the GCV in this paper, more details can be referred to the literatures

[21,33–35]. In addition, the Matlab code package, as a tool for choosing the parameter β, was

developed by Hansen [36].

Thus, the approximation solutions ũ(x, t), f̃(t) can be computed by Eqs. (3.13) and (3.14),

respectively.

3.2. 2-D IHCP for the rectangular domain

We will discuss 2-D IHCP with time-dependent heat source f(t) in the rectangular domain

as
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ f(t), 0 < x, y < 1, 0 < t ≤ tmax, (3.23)

with the initial condition

u(x, y, 0) = ϕ(x, y), 0 ≤ x, y ≤ 1, (3.24)

the Neumann boundary conditions

ux(0, y, t) = f1(y, t), ux(1, y, t) = f3(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ tmax, (3.25)
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uy(x, 0, t) = f2(x, t), uy(x, 1, t) = f4(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ tmax, (3.26)

and a pair of over-specification data (x∗, y∗) in the spatial domain (0, 1)× (0, 1) satisfying

u(x∗, y∗, t) = g(t), 0 ≤ t ≤ tmax, (3.27)

where ϕ(x, y), f1(y, t), f2(x, t), f3(y, t), f4(x, t) and g(t) are given functions, which satisfy the

following compatibility conditions

f1(y, 0) = ϕx(0, y), f3(y, 0) = ϕx(1, y),

f2(x, 0) = ϕy(x, 0), f4(x, 0) = ϕy(x, 1), ϕ(x∗, y∗) = g(0),

where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, but u(x, y, t) and f(t) are unknown.

Similarly to the above case of 1-D IHCP, we can obtain the following form by using the

PDE-constrained optimization method obtained by Eqs. (3.1)–(3.9)

L̃32(Λ) =
1

2

{

m1
∑

j=1

(

N
∑

i=1

αiφi(x
0
j , y

0
j , t

0
j)− ϕσ(x0

j , y
0
j )
)2

+

m2
∑

j=1

(

N
∑

i=1

αi

∂φi

∂x
(x1

j , y
1
j , t

1
j)− fσ

1 (y
1
j , t

1
j)
)2

+

m3
∑

j=1

(

N
∑

i=1

αi

∂φi

∂x
(x2

j , y
2
j , t

2
j)− fσ

3 (y
2
j , t

2
j)
)2

+

m4
∑

j=1

(

N
∑

i=1

αi

∂φi

∂y
(x3

j , y
3
j , t

3
j)− fσ

2 (x
3
j , t

3
j)
)2

+

m5
∑

j=1

(

N
∑

i=1

αi

∂φi

∂y
(x4

j , y
4
j , t

4
j)− fσ

4 (x
4
j , t

4
j)
)2}

, (3.28)

where M =
∑5

i=1 mi. The source points {xs
i , y

s
i , t

s
i }

N
i=1 located outside the physical domain are

given by

Θ1 :={(xs
i , y

s
i , t

s
i ) : 0 ≤ xs

i ≤ 1, 0 ≤ ysi ≤ 1, tsi = −τ, i = 1, . . . , n1},

Θ2 :={(xs
i , y

s
i , t

s
i ) : x

s
i = −d4, 0 ≤ ysi ≤ 1, 0 ≤ tsi ≤ tmax,

i = n1 + 1, . . . , n1 + n2},

Θ3 :={(xs
i , y

s
i , t

s
i ) : x

s
i = 1 + d3, 0 ≤ ysi ≤ 1, 0 ≤ tsi ≤ tmax,

i = n1 + n2 + 1, . . . , n1 + n2 + n3},

Θ4 :={(xs
i , y

s
i , t

s
i ) : 0 ≤ xs

i ≤ 1, ysi = −d2, 0 ≤ tsi ≤ tmax,

i = n1 + n2 + n3 + 1, . . . , n1 + n2 + n3 + n4},

Θ5 :={(xs
i , y

s
i , t

s
i ) : 0 ≤ xs

i ≤ 1, ysi = 1 + d1, 0 ≤ tsi ≤ tmax,

i = n1 + n2 + n3 + n4 + 1, . . . , N},

where the parameters τ, d1, d2, d3, d4 > 0 are constants, and n5 = N−
∑4

i=1 ni. Furthermore, the

collocation points {x0
j , y

0
j , t

0
j}

m1

j=1, {x
1
j , y

1
j , t

1
j}

m2

j=1, {x
2
j , y

2
j , t

2
j}

m3

j=1, {x
3
j , y

3
j , t

3
j}

m4

j=1, {x
4
j , y

4
j , t

4
j}

m5

j=1
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are chosen as follows

Ξ1 :={(x0
j , y

0
j , t

0
j) : 0 ≤ x0

j ≤ 1, 0 ≤ y0j ≤ 1, t0j = 0, j = 1, . . . ,m1},

Ξ2 :={(x1
j , y

1
j , t

1
j) : x

1
j = 0, 0 ≤ y1j ≤ 1, 0 ≤ t1j ≤ tmax, j = 1, . . . ,m2},

Ξ3 :={(x2
j , y

2
j , t

2
j) : x

2
j = 1, 0 ≤ y2j ≤ 1, 0 ≤ t2j ≤ tmax, j = 1, . . . ,m3},

Ξ4 :={(x3
j , y

3
j , t

3
j) : 0 ≤ x3

j ≤ 1, y3j = 0, 0 ≤ t3j ≤ tmax, j = 1, . . . ,m4},

Ξ5 :={(x4
j , y

4
j , t

4
j) : 0 ≤ x4

j ≤ 1, y4j = 1, 0 ≤ t4j ≤ tmax, j = 1, . . . ,m5}.

According to Eq. (3.28), we can obtain the following quadratic problem with respect to Λ

by

L̃32(Λ) =
1

2
{Λ′(Q1 +Q2 +Q3 +Q4 +Q5)Λ− 2Λ′(h1 + h2 + h3 + h4 + h5)+

Ĉ1 + Ĉ2 + Ĉ3 + Ĉ4 + Ĉ5}, (3.29)

where










Q1 := [(Q1)i,k] ∈ R
N×N , (Q1)i,k =

∑m1

j=1 φi(x
0
j , y

0
j , t

0
j)φk(x

0
j , y

0
j , t

0
j ),

h1 := [(h1)i] ∈ R
N , (h1)i =

∑m1

j=1 φi(x
0
j , y

0
j , t

0
j)ϕ

σ(x0
j , y

0
j ),

Ĉ1 :=
∑m1

j=1

(

ϕσ(x0
j , y

0
j )
)2

,











Q2 := [(Q2)i,k] ∈ R
N×N , (Q2)i,k =

∑m2

j=1
∂φi

∂x
(x1

j , y
1
j , t

1
j)

∂φk

∂x
(x1

j , y
1
j , t

1
j),

h2 := [(h2)i] ∈ R
N , (h2)i =

∑m2

j=1
∂φi

∂x
(x1

j , y
1
j , t

1
j)f

σ
1 (y

1
j , t

1
j),

Ĉ2 :=
∑m2

j=1

(

fσ
1 (y

1
j , t

1
j)
)2

,











Q3 := [(Q3)i,k] ∈ R
N×N , (Q3)i,k =

∑m3

j=1
∂φi

∂x
(x2

j , y
2
j , t

2
j)

∂φk

∂x
(x2

j , y
2
j , t

2
j),

h3 := [(h3)i] ∈ R
N , (h3)i =

∑m3

j=1
∂φi

∂x
(x2

j , y
2
j , t

2
j)f

σ
3 (y

2
j , t

2
j),

Ĉ3 :=
∑m3

j=1

(

fσ
3 (y

2
j , t

2
j)
)2

,











Q4 := [(Q4)i,k] ∈ R
N×N , (Q4)i,k =

∑m4

j=1
∂φi

∂y
(x3

j , y
3
j , t

3
j)

∂φk

∂y
(x3

j , y
3
j , t

3
j),

h4 := [(h4)i] ∈ R
N , (h4)i =

∑m4

j=1
∂φi

∂x
(x3

j , y
3
j , t

3
j)f

σ
2 (x

3
j , t

3
j),

Ĉ4 :=
∑m4

j=1

(

fσ
2 (x

3
j , t

3
j)
)2

,











Q5 := [(Q5)i,k] ∈ R
N×N , (Q5)i,k =

∑m5

j=1
∂φi

∂y
(x4

j , y
4
j , t

4
j)

∂φk

∂y
(x4

j , y
4
j , t

4
j),

h5 := [(h5)i] ∈ R
N , (h5)i =

∑m5

j=1
∂φi

∂x
(x4

j , y
4
j , t

4
j)f

σ
4 (x

4
j , t

4
j),

Ĉ5 :=
∑m5

j=1

(

fσ
4 (x

4
j , t

4
j)
)2

,

and i, k = 1, 2, . . . , N . Similarly, by differentiating L̃32 of (3.29) with respect to Λ, and setting

the derivatives to be zero, we can obtain a system of linear equations as follows

Q̄Λ = h̄, (3.30)

where Q̄ =
∑5

i=1 Qi, h̄ =
∑5

i=1 hi. The identified functions ũ(x, y, t) and f̃(t) can be obtained

by Eqs. (3.13) and (3.14), combined with the Tikhonov regularization technique.

3.3. 2-D IHCP for the non-rectangular domain with smooth boundary
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We now consider 2-D IHCP with time-dependent heat source f(t) stated for non-rectangular

domain with smooth boundary as follows

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ f(t), (x, y) ∈ Ω, 0 < t ≤ tmax, (3.31)

with the initial condition

u(x, y, 0) = χ(x, y), (x, y) ∈ Ω̄, (3.32)

the Neumann boundary condition

∂u

∂n̄
(x, y, t) = uN , (x, y) ∈ ∂Ω, 0 ≤ t ≤ tmax, (3.33)

and a pair of over-specification data (x∗, y∗) in domain Ω, satisfying

u(x∗, y∗, t) = g(t), 0 ≤ t ≤ tmax, (3.34)

where Ω is the non-rectangular domain with smooth boundary in R
2, uN denotes the known and

measured Neumann data, χ(x, y) and g(t) are the given functions, but u(x, y, t) and f(t) are

unknown.

By the PDE-constrained optimization method (3.1)–(3.9) above, we can derive the following

formula

L̃33(Λ) =
1

2

{

m1
∑

j=1

(

N
∑

i=1

αiφi(x
0
j , y

0
j , t

0
j)− χσ(x0

j , y
0
j )
)2

+

+

M
∑

j=m1+1

(

N
∑

i=1

αi

∂φi

∂n̄
(x1

j , y
1
j , t

1
j)− uσ

N(x1
j , y

1
j , t

1
j)
)2}

. (3.35)

The source points {xs
i , y

s
i , t

s
i}

N
i=1 located outside physical domain Ω× [0, tmax] are given as follows

Θ1 :={(xs
i , y

s
i , t

s
i ) : (x

s
i , y

s
i ) ∈ Ω̄, tsi = −τ, i = 1, . . . , n1},

Θ2 :={(xs
i , y

s
i , t

s
i ) : (x

s
i , y

s
i ) ∈ ∂Ω̃, 0 ≤ tsi ≤ tmax, i = n1 + 1, . . . , N},

where Ω̃ := Ω ∪ ∆Ω, ∆Ω denotes the outside expansion-domain of Ω, see Figure 1, τ > 0 is a

fixed constant, n2 = N − n1, and m2 = M −m1. We can make suitable setting according to the

given different problems. Moreover, the collocation points {x0
j , y

0
j , t

0
j}

m1

j=1 and {x1
j , y

1
j , t

1
j}

M
j=m1+1

are devised by

Ξ1 :={(x0
j , y

0
j , t

0
j) : (x

0
j , y

0
j ) ∈ Ω̄, t0j = 0, j = 1, . . . ,m1},

Ξ2 :={(x1
j , y

1
j , t

1
j) : (x

1
j , y

1
j ) ∈ ∂Ω, 0 ≤ t1j ≤ tmax, j = m1 + 1, . . . ,M}.

The quadratic optimization problem can be obtained by Eq. (3.35) as follows

L̃33(Λ) =
1

2
{Λ′(Z1 + Z2)Λ− 2Λ′(q1 + q2) + C̃1 + C̃2}, (3.36)

where










Z1 := [(Z1)i,k] ∈ R
N×N , (Z1)i,k =

∑m1

j=1 φi(x
0
j , y

0
j , t

0
j )φk(x

0
j , y

0
j , t

0
j),

q1 := [(q1)i] ∈ R
N , (q1)i =

∑m1

j=1 φi(x
0
j , y

0
j , t

0
j)χ

σ(x0
j , y

0
j ),

C̃1 :=
∑m1

j=1

(

χσ(x0
j , y

0
j )
)2

,
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









Z2 := [(Z2)i,k] ∈ R
N×N , (Z2)i,k =

∑M

j=m1+1
∂φi

∂n̄
(x1

j , y
1
j , t

1
j)

∂φk

∂n̄
(x1

j , y
1
j , t

1
j),

q2 := [(q2)i] ∈ R
N , (q2)i =

∑M

j=m1+1
∂φi

∂n̄
(x1

j , y
1
j , t

1
j)u

σ
N (x1

j , y
1
j , t

1
j),

C̃2 :=
∑M

j=m1+1

(

uσ
N (x1

j , y
1
j , t

1
j)
)2

,

and i, k = 1, 2, . . . , N . Analogously, by differentiating L̃33 of (3.36) with respect to Λ, and setting

the derivatives to be zero, we can obtain the following system of equations by

Z̄Λ = q̄, (3.37)

where Z̄ =
∑2

i=1 Zi, and q̄ =
∑2

i=1 qi. According to Eqs. (3.13) and (3.14), combining with the

Tikhonov regularization technique, we can obtain the approximation solutions ũ(x, y, t) and f̃(t)

of u(x, y, t) and f(t), respectively.

 ! 

 !

"!

!

Figure 1 The plot of source domain ∂Ω̃

4. Numerical tests

In order to test the efficiency of the proposed scheme, we replace the exact data of the

original initial and Neumann boundary conditions by the measurement data contained noise

level σ as follows

ϕσ(x) = ϕ(x)(1 + σ(2 · rand()− 1)), (4.1)

where rand() is a pseudo-random value, which can be generated by using MATLAB rand. Simi-

larly, other boundary functions are constructed as (4.1) in this section. In addition, to demon-

strate the effectiveness of the proposed method in this paper, we compare with the numerical

results of other methods in terms of approximation accuracy, computation time and stability,

such as the method of fundamental solution raised by Wen [23] (denoted by MFS), the scheme

of radial basis functions devised by Zhang and Li [21] (denoted by RBFs) and the multiquadric

quasi-interpolation proposed by Chen and Wu [37,38] (denoted by MQQI).

In numerical computation, we consistently select the maximum time tmax = 1, and employ

uniform meshes in both spatial and temporal domains. β(·) denotes the regularization parameter

of corresponding matrix, which can be obtained practically by GCV criterion and the manual

correction. CPU(s) indicates the total time for processing instructions of a computer program,

and we define the unit of time by second (s). Furthermore, in order to show efficiency and
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accuracy of the approximation solutions, we propose the root-mean-square (RMS) error E2, the

maximum error E∞ and Ê2 (the maximum value of the RMS errors) by the following forms

E2u(tj) =
( 1

M

M
∑

i=1

|ũ(xi, tj)− u(xi, tj)|
2
)

1

2

, E∞u(tj) = max
1≤i≤M

|ũ(xi, tj)− u(xi, tj)|,

E2f =
( 1

N

N
∑

j=1

|f̃(tj)− f(tj)|
2
)

1

2

, E∞f = max
1≤j≤N

|f̃(tj)− f(tj)|, Ê2u = max
1≤j≤N

{E2u(tj)}.

Example 4.1 We consider 1-D IHCP for the rectangular domain, the exact solution of problem

(3.15)–(3.18) is given by

u(x, t) = exp(−t) sin(x)−
1

2
tx2 −

1

24
x4,

f(t) = t.
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Figure 2 The plot (a) of the maximum E2u, E∞u corresponding to the constant T ∈ [1.1, 4]; the

plot (b) of Ê2u with respect to the constant d, where the parameters {dj}
2

j=1 = d and d ∈ [0.01, 0.5] in

Example 4.1
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Figure 3 The condition number of resultant matrix with respect to the number N of the collocation

points and source points: (a) the parameters {mi}
3

i=1
= {ni}

3

i=1
= N ; (b) the parameters {mi}

3

i=1
=

N, {ni}
3

i=1
= 10 in red, and {ni}

3

i=1
= N, {mi}

3

i=1
= 10 in green, 10 ≤ N ≤ 100, for Example 4.1
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Figure 4 The plots of GCV function G(λ) with respect to the regularization parameter λ, the noise

levels (a) σ = 5% and (b) σ = 10% are added to the measured data in Example 4.1
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Figure 5 The 2-D distribution plot (a) of collocation points and source points, the exact function

f(t) and its approximation (b) with five different noise levels added to the measured data, where σ =

0.01%, σ = 0.1%, σ = 1%, σ = 5% and σ = 10% in Example 4.1
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Figure 6 The RMS error (a) of function u(x, t) and its maximum error (b) with tmax = 1, and five

different noise levels added to the measured data, namely σ = 0.01%, σ = 0.1%, σ = 1%, σ = 5% and

σ = 10%, in Example 4.1, L denotes time level corresponding to t = 0, 0.1, . . . , 1

In Figure 2 (a), the results display the maximum values of E2u and E∞u with respect to

the constant T for all different time levels tj , here, we take mi = 100, ni = 15, i = 1, 2, 3, let

T be in the interval [1.1, 4] and the noise level σ = 5%, it is shown that the accuracy of the

approximation solutions are dependent on the parameter T . Figure 2 (b) shows that the plot
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of Ê2u with respect to the constant d for the case of noise level σ = 5%, where the parameters

{dj}
2
j=1 = d and d ∈ [0.01, 0.5]. In addition, the condition number of resultant matrix Ā is

related to the total number of collocation (or source) points by Figure 3. It shows that the

number N of the collocation points and source points is growing, i.e., {mi}
3
i=1 = {ni}

3
i=1 = N

in Figure 3 (a), it can be seen that the plot of the condition number of resultant matrix presents

a fluctuant state, but not generally increase, where 10 ≤ N ≤ 100. From Figure 3 (b), it can

be demonstrated that the condition number of Ā becomes larger, as the number N of source

points is growing, but this effect is not obvious when the number of collocation points becomes

bigger. Thus, we take consistently x∗ = 0.40, d1 = d2 = 0.02, τ = 0.03, mi = 100 and

ni = 15, i = 1, 2, 3, moreover, the condition numbers of Ā lie in the range of 1017 − 1019, for five

different noise levels added to the measured data, namely σ = 0.01%, σ = 0.1%, σ = 1%, σ = 5%

and σ = 10% in Example 4.1. Figure 4 shows that the plots of GCV function G(λ) with respect

to the regularization parameter λ, which has the same meaning as the above β(·), while two

noise levels are added to the measured valued, namely σ = 5% and σ = 10%, respectively. In

Figure 4 (a), λ = 1.14× 10−12 for the case of σ = 5%, and in Figure 4 (b), λ = 8.98× 10−13 for

the case of σ = 10%. The 2-D distribution of the collocation and source points is represented by

Figure 5 (a). According to Figures 5 (b), 6 (a)-(b) and Table 3, the numerical results are given

to show that the proposed scheme is accurate and faster, it is shown that the computation time

of CPU presented by [21] requires 2 times more than our technique in Table 3.

n

m
10 20 30 40 50 60

10 9.86× 1017 8.73 × 1017 1.22 × 1018 8.08× 1017 1.01× 1019 2.44 × 1018

20 6.85× 1018 3.73 × 1019 2.12 × 1019 4.17× 1018 2.07× 1019 9.06 × 1018

30 6.64× 1018 1.54 × 1019 2.93 × 1019 4.38× 1019 1.18× 1019 9.89 × 1018

40 5.21× 1019 1.35 × 1019 1.18 × 1019 2.23× 1019 6.13× 1019 5.98 × 1018

50 7.79× 1018 2.54 × 1020 1.05 × 1019 1.02× 1019 3.65× 1019 7.76 × 1018

60 9.77× 1018 1.46 × 1020 1.07 × 1019 4.82× 1018 1.20× 1019 8.07 × 1018

Table 1 The condition number of coefficient matrix with respect to the numbers of collocation

points and source points, where {mi}
3

i=1
= m, {ni}

3

i=1
= n respectively, in Example 4.1

n

m
10 20 30 40 50 60

10 1.12 × 10−2 6.37 × 10−3 2.09× 10−3 1.48 × 10−3 1.65 × 10−3 3.68× 10−3

20 1.11 × 10−2 8.26 × 10−3 2.76× 10−3 2.58 × 10−3 1.70 × 10−3 2.69× 10−3

30 1.42 × 10−2 7.87 × 10−3 2.36× 10−3 3.09 × 10−3 2.33 × 10−3 2.65× 10−3

40 9.13 × 10−3 1.48 × 10−2 1.83× 10−3 1.54 × 10−3 2.97 × 10−3 4.23× 10−3

50 9.86 × 10−3 4.39 × 10−3 3.63× 10−3 6.34 × 10−3 4.18 × 10−3 4.05× 10−3

60 6.11 × 10−3 6.74 × 10−3 3.81× 10−3 2.13 × 10−3 2.82 × 10−3 2.87× 10−3

Table 2 The condition number of coefficient matrix with respect to the numbers of collocation

points and source points, where {mi}
3

i=1
= m, {ni}

3

i=1
= n respectively, in Example 4.1
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σ = 0.01% σ = 0.1% σ = 1% σ = 5% σ = 10%

T 1.2 1.2 1.2 1.5 1.8

CPU(s) 38.79 38.12 38.25 38.01 39.12

E2f 3.46 × 10−3 3.43× 10−3 3.70 × 10−3 4.87× 10−3 1.48 × 10−2

E∞f 7.40 × 10−3 7.71× 10−3 8.68 × 10−3 8.89× 10−3 3.03 × 10−2

β(Ā) 0.30 × 10−12 0.30× 10−12 0.30 × 10−12 1.14× 10−12 8.98 × 10−13

CPU(s)(RBFs) 78.56 78.69 78.18 77.58 85.22

E2f (RBFs) 8.57 × 10−4 1.25× 10−3 6.98 × 10−3 8.83× 10−3 3.76 × 10−2

E∞f (RBFs) 1.56 × 10−3 3.01× 10−3 1.24 × 10−2 1.85× 10−2 9.33 × 10−2

CPU(s)(MQQI) 44.56 48.64 47.61 47.13 46.26

E2f (MQQI) 5.65 × 10−2 4.06× 10−2 5.67 × 10−2 5.62× 10−2 5.82 × 10−2

E∞f (MQQI) 7.17 × 10−2 8.33× 10−2 7.47 × 10−2 7.16× 10−2 9.82 × 10−2

Table 3 The results of T , CPU(s), E2f , E∞f and β(Ā) with various error levels, namely σ =

0.01%, σ = 0.1%, σ = 1%, σ = 5% and σ = 10% in Example 4.1, compared with the results of [21,37,38]

Example 4.2 The exact solution of problem (3.15)–(3.18) is given by

u(x, t) = x2 + 2t+ sin(2πt),

f(t) = 2π cos(2πt).
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Figure 7 The plot (a) of the maximum E2u, E∞u corresponding to the constant T ∈ [1.1, 4]; the

plot (b) of Ê2u with respect to the constant d, where the parameters {dj}
2

j=1 = d and d ∈ [0.01, 0.5] in

Example 4.2

Similar to Example 4.1, it is shown that the accuracy of approximation solutions is related to

the constant T by Figure 7 (a), in this case, we takemi = 100, ni = 10 and the noise level σ = 5%,

where i = 1, 2, 3. Figure 7 (b) shows the plot of Ê2u with respect to d for the case of noise level

σ = 5%, namely {dj}
2
j=1 = d, d ∈ [0.01, 0.5]. Figure 8 shows the condition number of coefficient

matrix with respect to the number N of the collocation points and source points. By Figure 8

(a), as number N of the points is growing, the plot of the condition number of resultant matrix

displays fluctuant, but generally does not increase. In Figure 8 (b), we obtain the analogous

conclusion to Example 4.1 above, with the growing of the total number of source points, the

change of the condition number becomes more obvious than the case of collocation points. Tables
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4 and 5 show the condition numbers of coefficient matrix and the numerical results of Ê2u, with

respect to the numbers of the collocation points and source points, respectively. Further, we take

consistently x∗ = 0.25, d1 = d2 = 0.02, τ = 0.03, mi = 100 and ni = 10, i = 1, 2, 3, moreover,

the condition numbers of Ā lie between 1017 − 1018, for five different noise levels added to the

measured data, namely σ = 0.01%, σ = 0.1%, σ = 1%, σ = 5% and σ = 10% in Example 4.2.

In Figure 9, the plots of GCV function G(λ) with respect to the regularization parameter λ,

when different noise levels σ = 5% and σ = 10% are added to the measured data. In Figure

9 (a), λ = 0.60 × 10−12 for the case of σ = 5%, and in Figure 9 (b), λ = 0.60 × 10−12 for the

case of σ = 10%. The locations of collocation and source points are shown in Figure 10 (a).

Combined with the numerical results of Example 4.1, the proposed technique is effective and

quite satisfactory by Figures 10 (b), 11 (a)-(b) and Table 6. Moreover, the running time of CPU

obtained by [21] is 3 times more than our scheme in Table 6. According to the approximation

solutions of f(t) in Tables 3 and 6, our provided technique is more robust to solve 1-D IHCPs,

since the regularization parameters β(Ā) are only needed to choose very small values and remain

basically unchanged to obtain good numerical results, for five different noise levels added to the

measured data.
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Figure 8 The condition number of resultant matrix with respect to the number N of the collocation

points and source points: (a) the parameters {mi}
3

i=1
= {ni}

3

i=1
= N ; (b) the parameters {mi}

3

i=1
=

N, {ni}
3

i=1
= 10 in red, and {ni}

3

i=1
= N, {mi}

3

i=1
= 10 in green, 10 ≤ N ≤ 100, for Example 4.2
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Figure 9 The plots of GCV function G(λ) with respect to the regularization parameter λ, the noise

levels (a) σ = 5% and (b) σ = 10% are added to the measured data in Example 4.2
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Figure 10 The 2-D distribution plot (a) of collocation points and source points, the exact function

f(t) and its approximation (b) with five different noise levels added to the measured data, where σ =

0.01%, σ = 0.1%, σ = 1%, σ = 5% and σ = 10% in Example 4.2
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Figure 11 The RMS error (a) of function u(x, t) and its maximum error (b) with tmax = 1, and five

different noise levels added to the measured data, namely σ = 0.01%, σ = 0.1%, σ = 1%, σ = 5% and

σ = 10%, in Example 4.2, L denotes time level corresponding to t = 0, 0.1, . . . , 1

n

m
10 20 30 40 50 60

10 5.00× 1018 3.93 × 1018 4.53 × 1017 1.14× 1018 1.12× 1019 1.62 × 1018

20 7.91× 1018 1.22 × 1019 7.63 × 1018 1.36× 1018 2.73× 1018 6.53 × 1017

30 4.17× 1018 8.33 × 1018 7.05 × 1018 9.19× 1018 1.63× 1019 1.09 × 1019

40 3.30× 1019 9.30 × 1018 7.19 × 1018 1.62× 1020 4.54× 1018 1.08 × 1019

50 3.67× 1019 6.39 × 1019 1.49 × 1019 7.12× 1019 8.81× 1018 1.03 × 1019

60 2.47× 1019 4.06 × 1020 3.57 × 1019 5.27× 1018 1.82× 1019 8.00 × 1018

Table 4 The condition number of coefficient matrix with respect to the numbers of collocation

points and source points, where {mi}
3

i=1
= m, {ni}

3

i=1
= n respectively, in Example 4.2
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n

m
10 20 30 40 50 60

10 2.56 × 10−2 5.07 × 10−3 8.10× 10−3 1.56 × 10−3 6.43 × 10−3 4.55× 10−3

20 1.53 × 10−2 8.93 × 10−3 7.57× 10−3 4.04 × 10−3 3.32 × 10−3 3.60× 10−3

30 1.61 × 10−2 1.01 × 10−2 2.04× 10−3 4.26 × 10−3 1.64 × 10−3 4.52× 10−3

40 6.58 × 10−3 1.20 × 10−2 2.82× 10−3 6.47 × 10−3 4.75 × 10−3 5.18× 10−3

50 1.66 × 10−2 9.36 × 10−3 6.53× 10−3 7.39 × 10−3 6.93 × 10−3 2.00× 10−3

60 1.54 × 10−2 9.37 × 10−3 1.13× 10−2 5.38 × 10−3 3.80 × 10−3 7.19× 10−3

Table 5 The results of Ê2u with respect to the numbers of collocation points and source points,

where {mi}
3

i=1
= m, {ni}

3

i=1
= n respectively, in Example 4.2

σ = 0.01% σ = 0.1% σ = 1% σ = 5% σ = 10%

T 1.5 1.5 1.5 1.8 1.8

CPU(s) 23.75 22.23 22.58 22.97 23.32

E2f 2.61 × 10−3 2.66× 10−3 4.13 × 10−3 5.87× 10−3 1.82 × 10−2

E∞f 7.63 × 10−3 7.60× 10−3 2.00 × 10−2 1.51× 10−2 7.80 × 10−2

β(Ā) 0.50 × 10−12 0.50× 10−12 0.50 × 10−12 0.60× 10−12 0.60 × 10−12

CPU(s)(RBFs) 85.07 84.57 85.05 84.06 99.05

E2f (RBFs) 1.74 × 10−3 1.81× 10−3 7.09 × 10−3 9.89× 10−3 3.04 × 10−2

E∞f (RBFs) 1.18 × 10−2 1.43× 10−2 5.28 × 10−2 8.85× 10−2 1.79 × 10−1

CPU(s)(MQQI) 44.49 42.26 39.54 39.37 41.38

E2f (MQQI) 3.18 × 10−1 2.32× 10−1 2.33 × 10−1 2.41× 10−1 2.47 × 10−1

E∞f (MQQI) 6.75 × 10−1 4.68× 10−1 4.72 × 10−1 5.53× 10−1 5.92 × 10−1

Table 6 The results of T , CPU(s), E2f , E∞f and β(Ā) with various error levels, namely σ =

0.01%, σ = 0.1%, σ = 1%, σ = 5% and σ = 10% in Example 4.2, compared with the results of [21,37,38]

Example 4.3 We consider the following exact solution of 2-D IHCPs, including Case 1. (3.23)–

(3.27) and Case 2. (3.31)–(3.34), is given by

u(x, y, t) = exp(−t)(sinx+ cos y) + t2 −
t3

2
,

f(t) =2t−
3t2

2
.

In Example 4.3, we should propose the above problems involving some different physical

domains (such as the rectangular domain and the non-rectangular domain with smooth bound-

ary) to demonstrate the effectiveness of the presented schemes. Compared with the accuracy of

numerical results obtained by using the techniques of [21,23], including the computation time,

there are two types of the non-rectangular domain (the Circular-domain and the Peanut-domain)

to be developed as investigated objects.

Domain type 1: Example 4.3 in the rectangular domain
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Figure 12 The plots of GCV function G(λ) with respect to the regularization parameter λ, when

the noise level σ = 10% is added to the measured data of three different domains: (a) the Rectangular-

domain case, (b) the Circular -domain case, (c) the Peanut-domain case in Example 4.3
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Figure 13 The plot (a) of the maximum E2u, E∞u corresponding to the constant T ∈ [1.1, 4]; the

plot (b) of Ê2u with respect to the constant d, where the parameters {dj}
4

j=1 = d and d ∈ [0.01, 0.5], for

the rectangular domain case of Example 4.3
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Figure 14 The condition number of resultant matrix with respect to the number N of the collocation

points and source points: (a) the parameters {mi}
5

i=1
= {ni}

5

i=1
= N ; (b) the parameters {mi}

5

i=1
=

N, {ni}
5

i=1
= 9 in red, and {ni}

5

i=1
= N, {mi}

5

i=1
= 9 in green, 9 ≤ N ≤ 100, for the rectangular domain

case of Example 4.3
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Figure 15 The 3-D distribution plot (a) of collocation points and source points, the exact function

f(t) and its approximation (b) with five different noise levels added to the measured data, where σ =

0.01%, σ = 0.1%, σ = 1%, σ = 5% and σ = 10% for the rectangular domain case of Example 4.3
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Figure 16 The RMS error (a) of function u(x, y, t) and its maximum error (b) with tmax = 1, and

five different noise levels added to the measured data, namely σ = 0.01%, σ = 0.1%, σ = 1%, σ = 5%

and σ = 10%, for the rectangular domain case of Example 4.3, L denotes time level corresponding to

t = 0, 0.1, . . . , 1

n

m
9 16 25 36 49 64

9 2.60 × 10−2 8.43 × 10−3 8.75× 10−3 8.60 × 10−3 8.47 × 10−3 6.05× 10−3

16 2.79 × 10−2 1.25 × 10−2 1.70× 10−2 5.99 × 10−3 5.52 × 10−3 5.78× 10−3

25 6.54 × 10−2 1.56 × 10−2 1.09× 10−2 5.05 × 10−3 1.23 × 10−2 6.45× 10−3

36 6.72 × 10−2 1.13 × 10−2 1.25× 10−2 1.33 × 10−2 7.10 × 10−3 6.50× 10−3

49 3.39 × 10−2 1.25 × 10−2 1.64× 10−2 1.26 × 10−2 1.12 × 10−2 4.00× 10−3

64 2.12 × 10−2 1.04 × 10−2 1.35× 10−2 8.79 × 10−3 1.18 × 10−2 6.19× 10−3

Table 7 The results of Ê2u with respect to the numbers of collocation points and source

points, where {mi}
5
i=1 = m, {ni}

5
i=1 = n, respectively, for the rectangular domain case of Exam-

ple 4.3
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σ = 0.01% σ = 0.1% σ = 1% σ = 5% σ = 10%

T 1.5 1.5 1.5 2.0 2.0

CPU(s) 20.06 19.81 19.90 19.93 19.50

E2f 1.16 × 10−3 1.18× 10−3 2.15 × 10−3 9.94× 10−3 1.67 × 10−2

E∞f 8.54 × 10−3 7.79× 10−3 4.83 × 10−3 1.57× 10−2 3.44 × 10−2

β(Q̄) 0.10 × 10−12 0.10× 10−12 0.10 × 10−12 0.30× 10−12 0.11 × 10−13

CPU(s)(RBFs) 19.92 19.90 19.99 19.87 20.18

E2f (RBFs) 1.07 × 10−3 1.61× 10−3 2.46 × 10−3 1.04× 10−2 1.27 × 10−2

E∞f (RBFs) 3.36 × 10−3 4.64× 10−3 9.31 × 10−3 3.53× 10−2 7.74 × 10−2

CPU(s)(MFS) 35.75 35.94 37.00 36.86 36.79

E2f (MFS) 8.92 × 10−4 1.92× 10−3 6.71 × 10−3 1.44× 10−2 1.80 × 10−2

E∞f (MFS) 2.55 × 10−3 1.03× 10−2 4.47 × 10−2 4.99× 10−2 4.40 × 10−2

CPU(s)(MQQI) 92.35 94.07 92.86 93.52 93.60

E2f (MQQI) 2.72 × 10−2 2.73× 10−2 2.07 × 10−2 2.80× 10−2 8.42 × 10−2

E∞f (MQQI) 3.55 × 10−2 3.55× 10−2 3.04 × 10−2 3.60× 10−2 9.51 × 10−2

Table 8 The results of T , CPU(s), E2f , E∞f and β(Q̄) with various error levels, namely σ =

0.01%, σ = 0.1%, σ = 1%, σ = 5% and σ = 10% for the rectangular domain case of Example 4.3,

compared with the results of [21,23,37,38]

The plots of GCV function G(λ) are proposed in Figure 12, with respect to the regularization

parameter λ. The maximum values of E2u, E∞u are dependent on the choice of T in the interval

[1.1, 2], but it is unobvious that the change of approximation solutions are related to the value

T in the domain [2, 4] by Figure 13 (a), where mi = 25, ni = 9, i = 1, . . . , 5 in Eqs. (3.28) and

(3.29), and the noise level σ = 5%. Similarly, the condition number has been greater impact on

the number of source points by Figure 14 (b), so we take consistently x∗ = y∗ = 0.5, mi = 25,

ni = 9, dj = 0.02 and τ = 0.03, where i = 1, . . . , 5, j = 1, . . . , 4. Furthermore, the condition

numbers of resultant matrix Q̄ lie between 1017−1018. In Figure 15 (a) describes the distribution

of collocation and source points. It is shown that the presented scheme is accurate and quite

satisfactory by Figures 15 (b), 16 (a)-(b) and Table 8.

Domain type 2: Example 4.3 in the non-rectangular domain with smooth boundary

In this part, we present two types of the non-rectangular domain with smooth boundary, such

as the Circular-domain and the Peanut-domain respectively, to investigate 2-D IHCPs with the

Neumann boundary condition corresponding to the subsection 3.3 in this paper. The following

Circular-domain is given in [21]

∂Ω = {(x, y, t) : x = ρ cos(θ), y = ρ sin(θ), 0 ≤ t ≤ tmax, ρ > 0,−π ≤ θ ≤ π}, (4.2)

and the Peanut-domain is obtained as follows [21,39]

∂Ω = {(x, y, t) : x = ρ(θ) cos(θ), y = ρ(θ) sin(θ), 0 ≤ t ≤ tmax,−π ≤ θ ≤ π}, (4.3)

where

ρ(θ) = (cos(2θ) +

√

1.1− sin2(2θ))
1

2 .
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Figure 17 The 3-D distribution plots of collocation points and source points for the non-rectangular

of Example 4.3
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Figure 18 The plots of the maximum E2u, E∞u corresponding to the constant T for the non-

rectangular of Example 4.3
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Figure 19 The plots of Ê2u with respect to the constant d, where the parameters {d1} = d and

d ∈ [0.01, 0.5], for the non-rectangular of Example 4.3
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Figure 20 The condition number of resultant matrix with respect to the number of collocation

points and source points: (a)
∑

2

i=1
mi = N ,

∑
2

i=1
ni = 50 in red, and

∑
2

i=1
ni = N ,

∑
2

i=1
mi = 50

in green; (b)
∑

2

i=1
mi = N ,

∑
2

i=1
ni = 50 in red, and

∑
2

i=1
ni = N ,

∑
2

i=1
mi = 50 in green, where

15 ≤ N ≤ 100, for the non-rectangular of Example 4.3
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Figure 21 The condition number of resultant matrix with respect to the numbers of the collocation

points and source points, i.e.,
∑

2

i=1
(mi + ni) = N (18 ≤ N ≤ 180), for the non-rectangular of Example

4.3
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Figure 22 The exact function f(t) and its approximation with five different noise levels added to

the measured data, where σ = 0.01%, σ = 0.1%, σ = 1%, σ = 5% and σ = 10% for the non-rectangular

domain of Example 4.3
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Figure 23 The RMS error of function u(x, y, t) and its maximum error with tmax = 1, and five

different noise levels added to the measured data, namely σ = 0.01%, σ = 0.1%, σ = 1%, σ = 5%

and σ = 10%, for the non-rectangular domain of Example 4.3, L denotes time level corresponding to

t = 0, 0.1, . . . , 1

N

M
30 50 70 90 110 130

25 1.03 × 10−1 1.87 × 10−1 1.09× 10−1 6.25 × 10−2 8.21× 10−2 7.15× 10−2

45 8.48 × 10−2 7.92 × 10−2 1.93× 10−2 3.43 × 10−2 2.69× 10−2 2.31× 10−2

Cir. 65 1.45 × 10−1 1.66 × 10−1 6.07× 10−2 3.14 × 10−2 2.89× 10−2 4.51× 10−2

85 1.86 × 10−1 2.13 × 10−1 7.63× 10−2 2.45 × 10−2 4.09× 10−2 5.03× 10−2

105 2.33 × 10−1 2.15 × 10−1 4.36× 10−2 2.88 × 10−2 6.71× 10−2 2.44× 10−2

125 1.82 × 10−1 1.86 × 10−1 5.15× 10−2 5.79 × 10−2 4.06× 10−2 2.47× 10−2

25 1.93 × 10−2 1.53 × 10−2 7.10× 10−3 8.44 × 10−3 1.21× 10−2 1.34× 10−2

40 2.13 × 10−2 1.44 × 10−2 1.52× 10−2 6.23 × 10−3 1.16× 10−2 1.02× 10−2

Pea. 55 1.36 × 10−2 1.15 × 10−2 1.13× 10−2 6.48 × 10−3 1.07× 10−2 1.09× 10−2

70 1.64 × 10−2 1.51 × 10−2 1.16× 10−2 1.49 × 10−2 9.91× 10−3 1.25× 10−2

85 1.92 × 10−2 1.40 × 10−2 2.35× 10−2 2.48 × 10−2 1.03× 10−2 1.31× 10−2

100 2.73 × 10−2 1.18 × 10−2 2.02× 10−2 1.48 × 10−2 8.10× 10−3 1.07× 10−2

Table 9 The results of Ê2u with respect to the numbers of collocation points
∑

2

i=1
mi = M , and

source points
∑

2

i=1
ni = N , in the Circular-domain (called Cir.) and the Peanut-domain (called Pea.)

settings, respectively, for Example 4.3
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σ = 0.01% σ = 0.1% σ = 1% σ = 5% σ = 10%

T 3.5 3.5 4.0 4.4 5.0

CPU(s) 43.81 43.84 44.05 44.22 45.33

E2f 1.08× 10−3 7.55 × 10−4 1.54 × 10−3 4.46× 10−3 9.66 × 10−3

E∞f 1.60× 10−3 1.16 × 10−3 2.29 × 10−3 1.01× 10−2 1.76 × 10−2

β(Z̄) 0.10× 10−12 0.10 × 10−12 0.50 × 10−12 0.50× 10−12 0.50 × 10−13

Cir. CPU(s)(RBFs) 39.84 35.89 34.59 35.45 34.37

E2f (RBFs) 3.18× 10−3 7.32 × 10−3 5.11 × 10−3 2.33× 10−2 2.83 × 10−2

E∞f (RBFs) 7.34× 10−3 2.02 × 10−2 3.61 × 10−2 4.90× 10−2 8.69 × 10−2

CPU(s)(MFS) 72.63 67.24 67.00 66.63 78.94

E2f (MFS) 5.56× 10−3 4.17 × 10−3 1.16 × 10−2 4.41× 10−2 3.40 × 10−2

E∞f (MFS) 1.76× 10−2 1.43 × 10−2 2.24 × 10−2 7.54× 10−2 4.14 × 10−2

T 2.1 2.1 2.1 1.7 2.1

CPU(s) 33.19 32.66 32.73 32.78 33.89

E2f 1.41× 10−3 1.49 × 10−3 3.90 × 10−3 1.86× 10−2 1.35 × 10−2

E∞f 3.52× 10−3 3.48 × 10−3 9.77 × 10−3 5.84× 10−2 4.91 × 10−2

β(Z̄) 0.30× 10−12 0.30 × 10−12 0.10 × 10−12 0.10× 10−12 0.17 × 10−13

Pea. CPU(s)(RBFs) 41.06 43.25 41.49 42.10 43.20

E2f (RBFs) 3.48× 10−3 3.46 × 10−3 1.18 × 10−2 2.78× 10−2 4.50 × 10−2

E∞f (RBFs) 5.65× 10−3 9.23 × 10−3 7.37 × 10−2 8.09× 10−2 2.20 × 10−1

CPU(s)(MFS) 66.69 66.74 68.60 68.17 72.98

E2f (MFS) 5.03× 10−4 1.41 × 10−3 1.01 × 10−2 1.72× 10−2 2.70 × 10−2

E∞f (MFS) 1.21× 10−3 1.09 × 10−2 5.83 × 10−2 7.64× 10−2 6.65 × 10−2

Table 10 The results of T , CPU(s), E2f , E∞f and β(Z̄) with various error levels, namely σ =

0.01%, σ = 0.1%, σ = 1%, σ = 5% and σ = 10% for Example 4.3, in the Circular-domain (called Cir.)

and the Peanut-domain (called Pea.) settings, compared with the results of [21,23], respectively

Figure 17 shows that the 3-D distribution plots of the collocation points and source points

for two types of the non-rectangular domain of Example 4.3. Similarly, it is known that the

accuracy of desired approximation solutions is dependent on the selection of T by Figure 18.

In Figure 20, the condition number of resultant matrices can be changed with the increasing

number of collocation points (or source points). In this paper, we take ρ = 5, x∗ = 5 cos(π3 ), y
∗ =

5 sin(π3 ), τ = 0.02, the number of the boundary collocation points M = 120, and the number

of the source points N = 55, the condition numbers of matrix Z̄ lie between 1018 − 1019 in the

Circular-domain setting. Analogously, we take x∗ = ρ(π3 ) cos(
π
3 ), y

∗ = ρ(π3 ) sin(
π
3 ), τ = 0.02, the

number of the collocation points M = 153, and the number of the source points N = 35, all the

condition numbers of Z̄ are 1020 in the peanut-domain case. According to Figures 22, 23 and

Table 10, the numerical results developed by the proposed techniques are accurate and effective.

In addition, Figures 2 (b), 7 (b), 13 (b) and 19 show the plots of Ê2u with respect to the

constant d, we can see that the approximation solutions ũ(x, t) of u(x, t) are stable and effective,

and the accuracy orders remain basically unchanged for selecting any small dj > 0 on certain

interval. According to Figures 3 (a), 8 (a), 14 (a), 21, and Tables 1, 2, 4, 5, 7, 9, the condition
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numbers of resultant matrix and the numerical results of Ê2u are presented, with respect to

the numbers of the collocation points and source points, and we consistently take the case of

the noise level σ = 5%. Further, when the numbers of the collocation points and source points

increase, we note that the condition numbers not always become bigger.

In general, compared with the results of numerical examples in literatures [21,23], including

CPU(s) and the computation accuracy, the presented schemes are more robust and stable. Since

there are several constants (such as T , the number of collocation points, etc.) to be determined

in our presented methods, we only compute the total computation time of algorithms, but not

include the time cost for selecting these values. All desired parameters are given in advance, and

all programs are running in Intel’s I7-3520M CPU @ 2.90GHz in this paper.

5. Conclusions

In this paper, we develop a general form of the PDE-constrained optimization method for

solving IHCPs, with the time-dependent heat source term and Neumann boundary condition,

which is an effective meshless numerical method. The approximation solution of identified tem-

perature is constructed by using the fundamental solution as basis function. Since the resulting

equations system is badly ill-conditioned, we apply the Tikhonov regularization technique with

GCV criterion to obtain more stable numerical solutions. Meanwhile, due to the use of funda-

mental solution, the computation complexity can be reduced by avoiding computation of the

Lagrange multiplier term. In practice, we can choose a few source points and more collocation

points, to obtain effective and satisfactory numerical solutions. In addition, the proposed tech-

niques are more robust by the above examples, since the regularization parameters β are selected

very small values and remain basically unchanged to obtain good numerical results, when the

noise level σ becomes bigger. However, it is our future work for the suitable choice of parameter

T , and the ingenious design of collocation and source points in practical problems.
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