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Abstract A join graph denoted by G + H, is illustrated by connecting each vertex of graph

G to each vertex of graph H. In this paper, we prove the crossing number of join product of

K5 + Pn is Z(5, n) + 2n+ ⌊n
2
⌋+ 4 for n ≥ 2.
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1. Introduction

Let G be a simple graph, whose vertex set and edge set are denoted by V (G) and E(G),

respectively. A drawing of G is a representation of G in the plane such that its vertices are rep-

resented by distinct points and its edges by simple continuous arcs connecting the corresponding

point pairs. For simplicity, we assume that in a drawing (i) no edge crosses itself, (ii) no two

edges cross more than once, and (iii) no two edges are incident with the same vertex cross.

The crossing number, cr(G) is the smallest number of edge crossings in any drawing of G. It

is easy to see that a drawing with minimum number of crossings (an optimal drawing) is always

a good drawing. Let ϕ be a drawing of graph G. We denote the number of crossings in ϕ by

crϕ(G). For definitions not explained in this paper, readers are referred to [1]. By definition and

notation about crossing numbers, it is easy to get the following properties:

Property 1.1 Let D be a good drawing of G, and A,B,C be mutually edge-disjoint subgraphs

of G. Then

(1) crD(A ∪B,C) = crD(A,C) + crD(B,C);

(2) crD(A ∪B) = crD(A) + crD(A,B) + crD(B).

Property 1.2 (1) Let H be a subgraphs of G. Then cr(H) ≤ cr(G);

(2) If H is isomorphic to G. Then cr(H) = cr(G);

(3) Let H be the subdivision of G. Then cr(H) = cr(G).

In fact, computing the crossing number of a graph is NP-complete problem, and the exact

values are known only for very restricted classes of graphs. For example, these include the

complete bipartite graph Km,n (see [2,3]) and the complete tripartite graph Km,n,s (see [4]) and
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so on. As a very important result of Km,n, Kleitman [3] proved that:

cr(Km,n) = Z(m,n) = ⌊m
2
⌋⌊m− 1

2
⌋⌊n

2
⌋⌊n− 1

2
⌋, m ≤ 6, m ≤ n.

The join product of G and H, denoted by G + H, is illustrated by connecting each vertex

of graph G to each vertex of graph H. In 2007, Kleśč [5] obtained the crossing numbers of join

of Pn + Pn, Pn + Cn and Cn + Cn. And in [6] the crossing numbers of G + Pn and G + Cn

are also known for the special graph G of order six. Wang [7] proved the crossing numbers of

Sm + Pn (m = 3, 4) and Sm + Cn (m = 3, 4). The up to date results of crossing numbers of G

of order five with Pn are given in [8].

Let Pn be the path with n vertices and n − 1 edges. In this paper, using the result of

crossing number of cr(K5,n) = Z(5, n) by Kleitman, and together with the result of cr(K5 +

nK1) = Z(5, n) + 2n+ ⌊n
2 ⌋+ 1 by [9], we prove the crossing number of join product K5 + Pn is

Z(5, n) + 2n+ ⌊n
2 ⌋+ 4 for n ≥ 2.

Figure 1 A good drawing of K5 + Pn

2. Some lemmas

In the graph of K5 + Pn, denote V (K5 + Pn) = {x1, x2, x3, x4, x5} ∪ {t1, t2, . . . , tn}. Let for

i = 1, 2, . . . , n, T i denote the subgraph of K5,n which consists of the five edges incident with the

vertex ti. One can easily see that

K5 + Pn = K5 ∪ (

n∪
i=1

T i) ∪ Pn. (2.1)

Lemma 2.1 ([1]) Jordan Curve Theorem: Every Jordan curve divides the plane into an “inte-

rior” region bounded by the curve and an “exterior” region containing all of the nearby and far

away exterior points, so that every continuous path connecting a point of one region to a point

of the other intersects with that loop somewhere.

Lemma 2.2 ([9]) For n ≥ 1, we have cr(K5 + nK1) = Z(5, n) + 2n+ ⌊n
2 ⌋+ 1.

Lemma 2.3 Let K5 + P2 = K5 ∪ T 1 ∪ Pn and K5 + P3 = K5 ∪ T 1 ∪ T 2 ∪ Pn. Then, we have

cr(K5 + P2) = 9 and cr(K5 + P3) = 15.

Proof Since K5 + P2 is isomorphic to K7 and K5 + P3 is isomorphic to K8 − e, and in [2]

and [10], cr(K7) = 9 and cr(K8 − e) = 15. So by Property 1.2, we have cr(K5 + P2) = 9 and

cr(K5 + P3) = 15. �
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Lemma 2.4 Let D be a good drawing of the graph K5 ∪ T 1 ∪ T 2. If crD(T 1, T 2) = 0, then

crD(K5, T
1 ∪ T 2) ≥ 5.

Proof Since T 1∪T 2 is isomorphic to K2,5 and crD(T 1∪T 2) = 0, the subgraph T 1∪T 2 induced

by D is isomorphic to Figure 2(a). Obviously, there are two vertices on the boundary of each

region, so no matter whether the edges of C5 belong to K5 cross each other, by Lemma 2.1, the

edges of (K5 − C5) cross the edges of T 1 ∪ T 2 at least five times, hence crD(K5, T
1 ∪ T 2) ≥ 5

and this completes the proof. �

Lemma 2.5 ([11]) Let ϕ and φ be the good drawings of graph Km,n. Then there always holds

crϕ(Km,n) ≡ crφ(Km,n) (mod 2), where both m and n are odd.

Lemma 2.6 LetD be a good drawing ofK5+P4, in which for all ti (1 ≤ i ≤ 4), crD(K5, T
i) ≥ 3,

and for two different i, j ∈ {1, 2, 3, 4}, crD(T i, T j) ≥ 1. Then crD(K5 + P4) ≥ 22.

Proof Since crD(K5, T
i) ≥ 3, crD(K5,

∪4
i=1 T

i) ≥ 3 · 4 = 12. As
∪4

i=1 T
i is isomorphic to K4,5,

we have crD(
∪4

i=1 T
i) ≥ cr(K4,5) = 8. Moreover, as crD(K5) ≥ 1, according to Properties 1.1

and 1.2, we have crD(K5+P4) ≥ crD(K5∪(
∪4

i=1 T
i)∪P4) = crD(

∪4
i=1 T

i)+crD(K5,
∪4

i=1 T
i)+

crD(K5) + crD(K5 ∪ (
∪4

i=1 T
i), P4) ≥ 8 + 3 · 4 + 1 = 21.

t1 t2

(a) (b)

t1 t2

1

2

Figure 2 Two drawings of T 1 ∪ T 2

To complete the proof of lemma, only proving “≥” of the last formula cannot get “=”. If

“=” holds, then we have crD(
∪4

i=1 T
i) = 8, crD(K5, T

i) = 3 (1 ≤ i ≤ 4), crD(K5) = 1 and

crD(K5∪ (
∪4

i=1 T
i), P4) = 0 are all satisfied. As (

∪4
i=1 T

i) = K3,5∪T i, and according to Lemma

2.5, we have crD(K3,5) = 4 or crD(K3,5) ≥ 6. The following are divided into two cases.

Case 1 crD(K3,5) = 4. Since crD(T i, T j) ≥ 1, there exist T i and T j , such that crD(T i, T j) = 1

(otherwise crD(
∪4

i=1 T
i) ≥ 2C2

4 = 12 > 8). Without loss of generality, let crD(T 1, T 2) = 1. Then

the only drawing of T 1∪T 2 is shown in Figure 2(b). Obviously, t3, t4 are only placed in the regions

which are marked with 1 and 2 (otherwise crD(T 1 ∪ T 2, T 3) ≥ 5, thus crD(T 1 ∪ T 2 ∪ T 3) ≥ 6,

turn to the following Case 2). When t3 is placed in the region 1 or 2, T 3 must satisfy that

crD(T 1, T 3) ≥ 1 and crD(T 2, T 3) ≥ 2, or crD(T 1, T 3) ≥ 2 and crD(T 2, T 3) ≥ 1. Then adding

the edges of T 4 (t4 also is only placed in the region 1 or 2), by Lemma 2.1, we always have

crD(T 1 ∪ T 2 ∪ T 3, T 4) ≥ 5. So crD(
∪4

i=1 T
i) ≥ 9 > 8.

Case 2 crD(K3,5) ≥ 6. Since crD(T i, T j) ≥ 1, we have crD(
∪3

i=1 T
i, T 4) ≥ 3. So crD(

∪4
i=1 T

i) ≥
6 + 3 = 9 > 8.
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Thus crD(K5 + P4) ≥ 22. This completes the proof. �

3. The main theorem and proof

Theorem 3.1 For n ≥ 2, we have cr(K5 + Pn) = Z(5, n) + 2n+ ⌊n
2 ⌋+ 4.

Proof The drawing in Figure 1 shows that cr(K5 + Pn) ≤ Z(5, n) + 2n + ⌊n
2 ⌋ + 4 and that

the theorem is true if the equality holds. We prove the reverse inequality by induction on

n. By Lemma 2.3, the theorem is true for n = 2 and n = 3. Suppose now that for n ≥ 4,

cr(K5 + Pn−2) = Z(5, n − 2) + 2(n − 2) + ⌊n−2
2 ⌋ + 4, and consider such an optimal drawing D

of K5 + Pn that

crD(K5 + Pn) ≤ Z(5, n) + 2n+ ⌊n
2
⌋+ 3. (3.1)

Claim 1 The path Pn crosses at most two times.

Since K5 ∪ (
∪n

i=1 T
i) is isomorphic to K5 + nK1, by Lemma 2.2 and Properties 1.1 and 1.2,

we have crD(K5 ∪ (
∪n

i=1 T
i)) ≥ Z(5, n) + 2n + ⌊n

2 ⌋ + 1. Moreover, using equality (2.1) and

Properties 1.1 and 1.2, we have

crD(K5 + Pn) = crD(K5 ∪ (
n∪

i=1

T i)) + crD(K5 ∪ (
n∪

i=1

T i), Pn) + crD(Pn)

≥ Z(5, n) + 2n+ ⌊n
2
⌋+ 1 + crD(K5 ∪ (

n∪
i=1

T i), Pn) + crD(Pn).

This together with the assumption (3.1), implies that crD(K5∪(
∪n

i=1 T
i), Pn)+crD(Pn) ≤ 2.

Hence the path Pn crosses at most two times.

Claim 2 For every 1 ≤ i < j ≤ n, there holds crD(T i, T j) ≥ 1.

Assume Tn and Tn−1, crD(Tn−1, Tn) = 0. Using Lemma 2.5, crD(K5, T
n−1 ∪ Tn) ≥ 5. By

cr(K3,5) = 4, and therefore crD(T i, Tn−1 ∪ Tn) ≥ 4 for i = 1, 2, . . . , n − 2. This, together with

Eq. (2.1), leads to

crD (K5 + Pn) ≥crD(K5 + Pn−2) +

n−2∑
i=1

cr(T i, Tn−1 ∪ Tn)+

crD(K5, T
n−1 ∪ Tn) + crD(Tn−1 ∪ Tn, Pn)

≥Z(5, n− 2) + 2(n− 2) + ⌊n− 2

2
⌋+ 4 + 4(n− 2) + 5

>Z(5, n) + 2n+ ⌊n
2
⌋+ 3.

This contradicts the assumption (3.1). Hence crD(T i, T j) ≥ 1.

Next we will divide 4 cases to discuss.

Case 1 There exists a vertex ti (1 ≤ i ≤ n) such that crD(K5, T
i) = 0.

Without loss of generality, let crD(K5, T
n) = 0. Then we consider the subdrawing of K5∪Tn

induced by D. As crD(K5, T
n) = 0, there is a disk such that the vertices of K5 are all placed on

the boundary of disk. Assume the vertex tn placed in the external of the disk, and the edges of
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K5 are all placed in the inner. As K5 is a complete graph, the subdrawing of K5 ∪ Tn is shown

in Figure 3(a).

Now consider the subgraphs ofK5∪Tn∪T i. By Claim 1, crD(K5∪(
∪n

i=1 T
i), Pn)+crD(Pn) ≤

2, this implies that the vertices t1, t2, . . . , tn−1 just placed in the regions which are marked with

1, 2 and 3 (otherwise by Lemma 2.1, crD(K5 ∪ (
∪n

i=1 T
i), Pn) ≥ 3, this contradicts the Claim 1).

When ti is placed in the region 1, we have crD(T i,K5∪Tn) ≥ 4, if and only if crD(T i, Tn) = 4

and the equality crD(T i,K5) = 0 holds. When ti is placed in the region 2 and 3, we have

crD(T i,K5 ∪ Tn) ≥ 6.

Subcase 1.1 If there does not exist the vertex ti which satisfies crD(T i,K5 ∪Tn) = 4 in region

1, then all of ti are placed in the regions 1, 2 and 3, and in this case we have crD(T i,K5∪Tn) ≥ 5.

By Eq. (2.1), we have

crD(K5 + Pn) ≥crD(
n−1∪
i=1

T i) + crD(K5 ∪ Tn,
n−1∪
i=1

T i) + crD(K5 ∪ Tn)

≥Z(5, n− 1) + 5(n− 1) + 4

>Z(5, n) + 2n+ ⌊n
2
⌋+ 3.

This contradicts the assumption (3.1).

Subcase 1.2 If there exists a vertex ti which satisfies crD(T i,K5 ∪ Tn) = 4 in region 1. Let x

be the number of vertices ti which satisfy crD(T i,K5∪Tn) = 4 (then crD(T i, Tn) = 4). So there

are (n− 1−x) vertices ti placed in the regions marked 1, 2 and 3, we have crD(T i,K5 ∪Tn) ≥ 5

(then by claim 2, we have crD(T i, Tn) ≥ 1). So using Eq. (2.1), we have

crD(K5 + Pn) ≥crD(K5 + Pn−1) + crD((

n−1∪
i=1

T i), Tn)

≥Z(5, n− 1) + 2(n− 1) + ⌊n− 1

2
⌋+ 4 + 4x+ (n− 1− x)

≥Z(5, n− 1) + ⌊n− 1

2
⌋+ 3n+ 3x+ 1 n ≥ 4.

This together with assumption (3.1), implies that x ≤ n
3 . And as (

∪n−1
i=1 T i) is isomorphic to

K5,n−1, so using Eq. (2.1) and together with x ≤ n
3 , we have

crD(K5 + Pn) ≥crD(
n−1∪
i=1

T i) + crD(K5 ∪ Tn,
n−1∪
i=1

T i) + crD(K5 ∪ Tn)

≥Z(5, n− 1) + 4x+ 5(n− 1− x) + 5

>Z(5, n) + 2n+ ⌊n
2
⌋+ 3.

This contradicts the assumption (3.1).

Case 2 For every 1 ≤ i < j ≤ n, there holds crD(K5, T
i) ≥ 1, and there exists a vertex

ti (1 ≤ i ≤ n), such that crD(K5, T
i) = 1.

Without loss of generality, assume crD(K5, T
n) = 1. Now consider the good drawings of



336 Zhenhua SU

K5 ∪ Tn. Next we will explain there is only a good drawing of K5 ∪ Tn.

3

11111

2

2

2 2

2

tn

3

3

3

3

(a)

x2 x5

x1

(b)

α

tn

x3 x4

Figure 3 Two drawings of K5 ∪ Tn

First assume the edge tnx1 crosses with the edge x3x4. We can suppose the vertices of

tn, x1, x3, x4 are placed on the plane R2 as Figure 3(b), and the other 3 vertices of K5 are placed

around the vertices tn, x1, x3, x4. But as there is no cross on the other edges incident with vertex

tn, so tn and x1, x2, x3, x4, x5 will be connected as shown in Figure 3(b). And there is no cross on

the edge x2x3, otherwise the edge x2x3 crosses the edge tnx1 at least once, thus crD(K5, T
n) ≥ 2.

This contradicts the Case 2. The similar discussion can be made with the edges x2x5 and x4x5.

So the rest edges x2x4, x3x5 can also be connected as shown in Figure 3(b).

In Figure 3(b), according to Claim 1, the vertices t1, t2, . . . , tn−1 will be placed in the regions

except α (otherwise by Lemma 2.1, crD(K5 ∪ (
∪n

i=1 T
i), Pn) ≥ 3, leading to a contradiction).

Then crD(T i,K5∪Tn) ≥ 5. As (
∪n−1

i=1 T i) is isomorphic to K5,n−1, together with crD(K5∪Tn) =

4, proceeding with the similar calculating to Case 1.1, we get crD(K5 + Pn) ≥ crD(
∪n−1

i=1 T i) +

crD(K5 ∪ Tn,
∪n−1

i=1 T i) + crD(K5 ∪ Tn) ≥ Z(5, n− 1) + 5(n− 1) + 4 > Z(5, n) + 2n+ ⌊n
2 ⌋+ 3.

This contradicts the assumption (3.1).

Case 3 For every 1 ≤ i < j ≤ n, there holds crD(K5, T
i) ≥ 2, and there exists a vertex ti, such

that crD(K5, T
i) = 2.

Without loss of generality, let crD(K5, T
n) = 2. Next we divide the subdrawings of K5 ∪ Tn

into 3 cases:

(i) Two edges of Tn cross with one of the edge of K5. As the other edges of K5 do not cross

Tn, together with the structure of K5. Then, there is only a good drawing of K5∪Tn, see Figure

4(a).

(ii) One edge of Tn crosses with two edges of K5. If one edge of Tn crosses two adjacent

edges of K5, the drawing of K5 ∪ Tn is shown in Figure 4(b). If one edge of Tn crosses with

two unadjacent edges e1 and e2 of K5, where e1 and e2 cross each other, the drawing of K5 ∪Tn

is shown in Figure 4(c); If one edge of Tn crosses with two unadjacent edges e1 and e2 of K5,

where e1 and e2 do not cross each other, the drawing of K5 ∪ Tn is not a good drawing.

(iii) Two edges of Tn cross with two edges of K5. Then there is only a good drawing of

K5 ∪ Tn, see Figure 4(d).
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Figure 4 Some drawings of K5 ∪ Tn

Subcase 3.1 The subdrawing of K5 ∪Tn is isomorphic to Figure 4(a). No matter which region

the vertex ti is placed in, by Claim 2, crD(T i, T j) ≥ 1, there always holds crD(T i,K5 ∪Tn) ≥ 5.

As (
∪n−1

i=1 T i) is isomorphic to K5,n−1, crD(K5∪Tn) = 5. Carrying out the similar calculating to

Case 1(1), we can obtain that crD(K5+Pn) ≥ Z(5, n−1)+5(n−1)+5 > Z(5, n)+2n+⌊n
2 ⌋+3.

This contradicts the assumption (3.1).

Subcase 3.2 The subdrawing of K5 ∪ Tn is isomorphic to Figure 4(b). If ti is placed in the

region 1, we have crD(T i,K5 ∪ Tn) ≥ 4 (if and only if crD(T i,K5) = 2 and crD(T i, Tn) = 2 the

equality holds). On the other regions, by Claim 2 and together with crD(K5, T
i) ≥ 2, it is easy

to obtain that crD(T i,K5 ∪ Tn) ≥ 5.

Subcase 3.2.1 If there exist the vertices ti placed in the region 1 which satisfy crD(T i,K5 ∪
Tn) = 4. Without loss of generality, let crD(Tn−1,K5 ∪ Tn) = 4. Thus the drawing of K5 ∪
Tn ∪ Tn−1 is shown in Figure 4(b). When tj(1 ≤ j ≤ n − 2) is placed in the region 2, we

have crD(T i,K5 ∪ Tn ∪ Tn−1) ≥ 6. When tj is placed in the other regions, there always holds

crD(T i,K5∪Tn∪Tn−1) ≥ 8. Let x be the number of vertices tj , which satisfy that crD(T i,K5∪
Tn ∪ Tn−1) ≥ 6. By Eq. (2.1), we have

crD(K5 + Pn) ≥crD(
n−2∪
i=1

T i) + crD(K5 ∪ Tn ∪ Tn−1,
n−2∪
i=1

T i)+

crD(K5 ∪ Tn ∪ Tn−1) + crD(K5 ∪ (
n∪

i=1

T i), Pn)

≥Z(5, n− 2) + 6x+ 8(n− 2− x) + 9 + 2

≥Z(5, n− 2) + 8n− 2x− 5
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This together with the assumeption (3.1) results in x ≥ 3n
4 . As (

∪n−1
i=1 T i) is isomorphic to

K5,n−1, by Eq. (2.1) and x ≥ 3n
4 , we get

crD(K5 + Pn) ≥crD(

n−1∪
i=1

T i) + crD(K5 ∪ Tn,

n−1∪
i=1

T i) + crD(K5 ∪ Tn)

≥Z(5, n− 1) + 5x+ 4(n− 1− x) + 5

>Z(5, n) + 2n+ ⌊n
2
⌋+ 3

This contradicts the assumption (3.1).

Subcase 3.2.2 There does not exist the vertex ti placed in the region 1 which satisfies

crD(T i,K5 ∪ Tn) = 4. Then for all vertices ti, there always holds crD(T i,K5 ∪ Tn) ≥ 5.

As (
∪n−1

i=1 T i) is isomorphic to K5,n−1, crD(K5 ∪ Tn) = 4. Carrying out the similar calculating

to case 1(1), we have crD(K5 + Pn) ≥ Z(5, n− 1) + 5(n− 1) + 4 > Z(5, n) + 2n+ ⌊n
2 ⌋+ 3. This

contradicts the assumption (3.1).

Subcase 3.3 The subdrawing of K5 ∪ Tn is isomorphic to Figure 4(c). If ti is placed in the

region 1, we have crD(T i,K5 ∪ Tn) ≥ 4 (if and only if crD(T i,K5) = 2 and crD(T i, Tn) = 2 the

equality holds). In the other regions, there always holds crD(T i,K5 ∪ Tn) ≥ 5. So using the

similar method to Figure 4(b), we can get the contradiction with the assumption (3.1).

Subcase 3.4 The subdrawing of K5∪Tn is isomorphic to Figure 4(d). By Claim 1, the vertices

ti are only placed in the regions marked with 1-4 (otherwise crD(K5 ∪ (
∪n

i=1 T
i), Pn) ≥ 3).

(i) If ti is placed in the region 1, there holds crD(T i,K5 ∪ Tn) ≥ 6.

(ii) If ti is placed in the region 2, there holds crD(T i,K5 ∪ Tn) ≥ 5.

(iii) If ti is placed in the region 3, there holds crD(T i,K5 ∪ Tn) ≥ 4, if and only if

crD(T i,K5) = 1 and the equality crD(T i, Tn) = 3 holds. Together with crD(T i,K5) ≥ 2,

we always have crD(T i,K5 ∪ Tn) ≥ 5.

(iv) If ti is placed in the region 4, there holds crD(T i,K5 ∪ Tn) ≥ 4, if and only if

crD(T i,K5) = 2 and crD(T i, Tn) = 2 or crD(T i,K5) = 3 and the equality crD(T i, Tn) = 1

holds.

Subcase 3.4.1 If there exists a vertex ti which is placed in the region 2, then the other vertices

tj can only be placed in the region 1 and 2 (otherwise crD(K5∪ (
∪n

i=1 T
i), Pn) ≥ 3). So for all ti,

there always holds crD(T i,K5 ∪ Tn) ≥ 5. As (
∪n−1

i=1 T i) is isomorphic to K5,n−1, together with

crD(K5 ∪ Tn) = 3 and crD(K5, Pn) ≥ 1, carrying out the similar calculating to Subcase 1.1, we

have crD(K5 + Pn) ≥ Z(5, n− 1) + 5(n− 1) + 3 + 1 > Z(5, n) + 2n+ ⌊n
2 ⌋+ 3. This contradicts

the assumption (3.1).

Subcase 3.4.2 If there exists a vertex ti which is placed in the region 3, then the other ver-

tices tj can only placed in the region 1 and 3 (otherwise crD(K5 ∪ (
∪n

i=1 T
i), Pn) ≥ 3). So for

all ti, there always holds crD(T i,K5 ∪ Tn) ≥ 5. As (
∪n−1

i=1 T i) is isomorphic to K5,n−1, yet

crD(K5 ∪ Tn) = 3, crD(K5, Pn) ≥ 2, so carrying out the similar calculating to Subcase 3.4.1, we
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can get the contradiction .

Subcase 3.4.3 If there exists a vertex ti which is placed in the region 4, and there does not exist

the vertex ti which satisfies crD(T i,K5 ∪ Tn) = 4, then we have crD(T i,K5 ∪ Tn) ≥ 5. And the

other vertices tj can only be placed in the region 1 and 4 (otherwise crD(K5∪(
∪n

i=1 T
i), Pn) ≥ 3).

So for all ti, there always holds crD(T i,K5 ∪ Tn) ≥ 5. As (
∪n−1

i=1 T i) is isomorphic to K5,n−1,

and also crD(K5 ∪ Tn) = 3, crD(K5, Pn) ≥ 2, so carrying out the similar calculating to Subcase

3.4.1, we can get the contradiction.

Subcase 3.4.4 If there exists a vertex ti which is placed in the region 4 which satisfies

crD(T i,K5∪Tn) = 4, then we have two cases crD(T i,K5) = 2, crD(T i, Tn) = 2 and crD(T i,K5) =

3, crD(T i, Tn) = 1. Assume the vertex tn−1 satisfies crD(Tn−1,K5 ∪ Tn) = 4. Then, the sub-

drawings of K5 ∪ Tn ∪ Tn−1 is shown in Figures 4(e) and (f).

As the other vertices can only be placed in the region 1 and 4, so for all ti, there always holds

crD(T i,K5 ∪ Tn ∪ Tn−1) ≥ 7. As (
∪n−2

i=1 T i) is isomorphic to K5,n−2, and also crD(K5 ∪ Tn ∪
Tn−1) = 7, crD(K5, Pn) ≥ 2, so we get

crD(K5 + Pn) ≥crD(

n−2∪
i=1

T i) + crD(K5 ∪ Tn ∪ Tn−1,

n−2∪
i=1

T i)+

crD(K5 ∪ Tn ∪ Tn−1) + crD(K5, Pn)

≥Z(5, n− 2) + 7(n− 2) + 7 + 2

>Z(5, n) + 2n+ ⌊n
2
⌋+ 3

This contradicts the assumption (3.1).

Subcase 3.4.5 If the vertices ti are all placed in the region 1, we have crD(T i,K5 ∪ Tn) ≥ 6.

By Eq. (2.1), we have

crD(K5 + Pn) ≥crD(
n−1∪
i=1

T i) + crD(K5 ∪ Tn,
n−1∪
i=1

T i) + crD(K5 ∪ Tn)

≥Z(5, n− 1) + 6(n− 1) + 3

>Z(5, n) + 2n+ ⌊n
2
⌋+ 3.

This contradicts the assumption (3.1).

Case 4 For every 1 ≤ i < j ≤ n, such that crD(K5, T
i) ≥ 3.

By Lemmas 2.3 and 2.6, the theorem is true for n = 2, 3 and 4. For n ≥ 5, together with

Eq. (2.1) and crD(K5) ≥ 1, we have

crD(K5 + Pn) ≥crD(

n∪
i=1

T i) + crD(K5,

n∪
i=1

T i) + crD(K5)

≥Z(5, n) + 3n+ 1

>Z(5, n) + 2n+ ⌊n
2
⌋+ 3, n ≥ 5
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This contradicts the assumption (3.1). Now the theorem is completed.

Finally, we give a conjecture about the crossing number of join product of K5 + Cn.

Conjecture 3.2 For n ≥ 3, we have cr(K5 + Cn) = Z(5, n) + 2n+ ⌊n
2 ⌋+ 7.
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