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Abstract In this paper, the concepts of the essential topology and the density topology of dcpos

are generalized to the setting of general posets. Basic properties of the essential topology and
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1. Introduction

The notion of continuous lattices as a model for the semantics of programming languages was

introduced by Scott in [1]. Later, a more general notion of continuous directed complete partially

ordered sets (i.e., continuous dcpos or domains) was introduced and extensively studied [2, 3].

Since some naturally arisen posets are important but fail to be directed complete, there are

more and more occasions to study posets which miss suprema of directed sets [4–9]. Lawson [3]

gave a remarkable characterization that a dcpo is continuous iff its Scott topology is completely

distributive. By the technique of embedded bases and sobrification via the Scott topology, Xu [6]

successfully embedded continuous posets into continuous domains and proved that a poset is

continuous iff its Scott topology is completely distributive.

Martin [10] introduced a new intrinsic topology called µ topology on continuous dcpos and

proved that the µ topology can be induced by measurements with certain conditions. Later,

Xu [7] introduced the concept of the measurement topology of posets, a generalization of the µ

topology, and studied properties of the measurement topology. In order to provide a topological
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interpretation of bases of continuous dcpos, Rusu and Ciobanu [11] introduced the concepts of

the essential topology and the density topology of dcpos and proved that bases are just dense

sets in the density topology of continuous dcpos. In this paper, we manage to generalize the

concepts of the essential topology and the density topology of dcpos to the setting of general

posets. We investigate properties of the essential topology and relations with other intrinsic

topologies. We make comparisons between the density topology and the measurement topology.

Via the essential topology, the density topology and the measurement topology, we obtain several

properties and characterizations of bases of continuous posets. We also provide new conditions

for a continuous poset to be an algebraic poset.

2. Preliminaries

We quickly recall some basic notions and results [2, 5, 6].

Let (L, 6) be a poset. A principal ideal (resp., principal filter) is a set of the form ↓x = {y ∈
L|y 6 x} (resp., ↑ x = {y ∈ L|x 6 y}). For A ⊆ L, we write ↓A = {y ∈ L|∃x ∈ A, y 6 x},
↑A = {y ∈ L|∃x ∈ A, x 6 y}. A subset A is a lower set (resp., an upper set) if A =↓A (resp.,

A =↑A). We say that z is a lower bound (resp., an upper bound) of A if A ⊆↑z (resp., A ⊆↓z).
The supremum of A is denoted by

∨
A or supA. The infimum of A is denoted by

∧
A or inf A.

A subset M of L is called order convex if x, z ∈ M and z 6 y 6 x implies y ∈ M . A nonempty

subset D of L is directed if every finite subset of D has an upper bound in D. A poset L is

a directed complete partially ordered set (dcpo, for short) if every directed subset of L has a

supremum. A complete lattice is a poset in which every subset has a supremum.

In a poset L, we say that x approximates y, written x ≪ y if whenever D is a directed set

that has a supremum supD > y, then x 6 d for some d ∈ D. We say that x is compact if x

approximates itself, i.e., x ≪ x. The set of all compact elements is denoted by K(L). For x ∈ L,

we write ↓↓x = {z ∈ L|z ≪ x} and ↑↑x = {z ∈ L|x ≪ z}. The poset L is said to be continuous

(resp., algebraic) if every element is the directed supremum of all (resp., compact) elements that

approximate it, i.e., for all x ∈ L, the set ↓↓x (resp., ↓x ∩K(L)) is directed and x =
∨
↓↓x (resp.,

x =
∨
(↓x∩K(L))). A continuous poset (resp., an algebraic poset) which is also a dcpo is called

a continuous domain (resp., an algebraic domain).

Proposition 2.1 ([2,8]) If L is a continuous poset, then the approximating relation ≪ has the

interpolation property: x ≪ z =⇒ ∃ y ∈ L such that x ≪ y ≪ z.

Definition 2.2 ([2,10]) A subset B of a poset L is called a basis for L if for each x ∈ L, B ∩ ↓↓x
contains a directed subset with supremum x.

Lemma 2.3 ([2, 10]) A poset is continuous if and only if it has a basis. Moreover, a poset is

algebraic if and only if its compact elements form a basis.

In the context of continuous posets, there is another characterization of bases.

Proposition 2.4 Let L be a continuous poset. A subset B is a basis if and only if given x ≪ y
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in L, there exists b ∈ B such that x ≪ b ≪ y.

A subset A of a poset L is Scott closed if ↓A = A and for any directed set D ⊆ A, supD ∈ A

whenever supD exists. The complements of the Scott closed sets form a topology, called the

Scott topology and denoted by σ(L). It is well-known that for a continuous poset the Scott

topology has a base of all sets of the form ↑↑x = {z ∈ L|x ≪ z}. The topology generated by

the complements of all principal filters ↑x (resp., principal ideals ↓x) is called the lower topology

(resp., upper topology) and is denoted by ω(L) (resp., ν(L)). The topology of all upper sets

(resp., lower sets) is called the Alexandroff topology (resp., the dual Alexandroff topology) and

is denoted by α(L) (resp., α∗(L)). The common refinement σ(L) ∨ ω(L) of the Scott topology

and the lower topology is called the Lawson topology and is denoted by λ(L).

Definition 2.5 ([7]) Let L be a poset. The common refinement σ(L) ∨ α∗(L) of the Scott

topology and the dual Alexandroff topology is called the measurement topology and is denoted

by µ(L).

Proposition 2.6 ([7]) Let L be a continuous poset. Then Bµ = {↑↑x∩ ↓ y|x, y ∈ L} is a base

for the measurement topology µ(L).

Remark 2.7 ([7]) By Proposition 2.6, the measurement topology coincides with the µ topology

in [10] on continuous domains.

3. The essential topology

In this section, the concept of the essential topology of dcpos in [11] is generalized to the

setting of general posets and some basic properties of the essential topology are obtained.

Definition 3.1 Let L be a poset. We use P(L) to denote the powerset of L. Let ↓↓ : P(L) →
P(L) be the operator defined by ↓↓A =

∪
x∈A ↓↓x for all A ∈ P(L). Let ↑↑ : P(L) → P(L) be the

operator defined by ↑↑A =
∪

x∈A
↑↑x for all A ∈ P(L).

Proposition 3.2 Let L be a poset. Then for all A, B ∈ P(L) and {Aα}α∈Γ ⊆ P(L):

(1) ↓↓∅ = ∅, ↑↑∅ = ∅;
(2) ↓↓(

∪
α∈Γ Aα) =

∪
α∈Γ ↓↓Aα, ↑↑(

∪
α∈Γ Aα) =

∪
α∈Γ

↑↑Aα;

(3) A ⊆ B =⇒ ↓↓A ⊆ ↓↓B, A ⊆ B =⇒ ↑↑A ⊆ ↑↑B;

(4) ↓↓A\↓↓B ⊆ ↓↓(A\B), ↑↑A\↑↑B ⊆ ↑↑(A\B);

(5) ↓↓(↓↓A) ⊆ ↓↓A, ↑↑(↑↑A) ⊆ ↑↑A.

Proof Straightforward. �

Definition 3.3 Let L be a poset and A ⊆ L. The subset A is called an e-open set if ↓↓A ⊆ A.

The complement of an e-open set is called an e-closed set.

Proposition 3.4 Let L be a poset. Then

(1) All the e-open sets of L form a topology, called the essential topology and denoted by
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τe(L). Moreover, the intersection of any family of e-open sets is e-open;

(2) The family of sets {{x} ∪ ↓↓x | x ∈ L} is a base for τe(L);

(3) F ⊆ L is e-closed if and only if ↑↑F ⊆ F ;

(4) For all A ∈ P(L), ↓↓A is e-open, ↑↑A is e-closed;

(5) Every lower set is e-open and every upper set is e-closed;

(6) The essential topology τe(L) is finer than the dual Alexandroff topology α∗(L), i.e.,

α∗(L) ⊆ τe(L).

Proof (1) The proof is similar to that of [11, Proposition 2] and hence omitted.

(2) Straightforward.

(3) Assume that F is e-closed. Then L\F is e-open and thus ↓↓(L\F ) ⊆ L\F . Suppose that

↑↑F ̸⊆ F . There is x ∈ ↑↑F such that x ̸∈ F . This shows that there exists y ∈ F such that y ≪ x

and x ∈ L\F . So, y ∈ ↓↓(L\F ) ⊆ L\F , a contradiction to y ∈ F . Therefore, ↑↑F ⊆ F . Conversely,

assume that ↑↑F ⊆ F . We only need to show that ↓↓(L\F ) ⊆ L\F . Suppose that ↓↓(L\F ) ̸⊆ L\F .

There exists a ∈ ↓↓(L\F ) such that a ̸∈ L\F . This shows that there exists b ∈ L\F such that

a ≪ b and a ∈ F . So, b ∈ ↑↑F ⊆ F , a contradiction to b ∈ L\F . Therefore, ↓↓(L\F ) ⊆ L\F and

L\F is e-open.

(4) Follows from (3), Definition 3.3 and Proposition 3.2(5).

(5) Straightforward.

(6) Follows immediately from (5). �

Proposition 3.5 Let L be a poset. For all A ∈ P(L), we have

(1) cle(A) = A ∪ ↑↑A, where cle(A) is the closure of A in the topology τe(L);

(2) inte(A) = A\↑↑(L\A), where inte(A) is the interior of A in the topology τe(L);

(3) ↑↑cle(A) = cle(↑↑A).

Proof The proof is similar to that of [11, Proposition 3] and hence omitted. �

Lemma 3.6 Let L be a continuous poset. Then the operators ↓↓ and ↑↑ are idempotent, i.e., for

all A ∈ P(L), ↓↓(↓↓A) = ↓↓A, ↑↑(↑↑A) = ↑↑A.

Proof Follows from Proposition 3.2(5), the continuity of L and Proposition 2.1. �
We can characterize the bases of a continuous poset via the essential topology.

Theorem 3.7 Let L be a continuous poset and B ⊆ L. Then for all x ∈ L, A ⊆ L and for all

e-closed set F , the following conditions are equivalent:

(1) B is a basis of L;

(2) ↑↑(↑↑x ∩B) = ↑↑x;
(3) ↑↑(↑↑A ∩B) = ↑↑A;
(4) ↑↑(F ∩B) = ↑↑F ;

(5) cle(↑↑A ∩B) = ↑↑A;
(6) For all U ∈ σ(L), G ∈ τe(L), U ∩G ̸= ∅ implies U ∩G ∩B ̸= ∅.
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Proof The proof is similar to that of [11, Theorem 1] and hence omitted. �
In the context of continuous posets, we can characterize the algebraicity of the posets via the

essential topology.

Theorem 3.8 A continuous poset L is algebraic if and only if cle(F ∩K(L)) = ↑↑F for every

e-closed set F .

Proof The proof is similar to that of [11, Proposition 8] and hence omitted. �

4. Comparisons between measurement topology and density topology

We generalize the density topology of dcpos in [11] to the setting of general posets. We

make comparisons between the measurement topology and the density topology and give more

properties of the measurement topology and the density topology.

Definition 4.1 Let L be a poset. The common refinement σ(L) ∨ τe(L) of the Scott topology

and the essential topology is called the density topology and is denoted by ρ(L).

Proposition 4.2 Let L be a poset. Then σ(L) ⊆ λ(L) ⊆ µ(L) ⊆ ρ(L).

Proof The conclusion follows from Definition 2.5, Definition 4.1 and Proposition 3.4(6). �

Proposition 4.3 Let L be a poset. Then

(1) Every Scott open set is a clopen set in µ(L) and ρ(L);

(2) The spaces (L, µ(L)) and (L, ρ(L)) are both Hausdorff.

Proof (1) Let U be a Scott open set. It follows from Proposition 4.2 that U is µ(L)-open and

ρ(L)-open. Since L\U is a lower set, we have L\U ∈ α∗(L) ⊆ τe(L). This shows that L\U is

µ(L)-open and ρ(L)-open. So, every Scott open set is a clopen set in µ(L) and ρ(L).

(2) Suppose that x ̸= y in L, and assume that x ̸6 y. Then x ∈ L\ ↓ y. Note that

L\ ↓y is a Scott (hence, µ(L)) open neighbourhood of x and ↓y is an α∗(L) (hence, µ(L)) open

neighbourhood of y. Clearly these two neighbourhoods are disjoint. So, (L, µ(L)) is Hausdorff.

By Proposition 4.2, (L, ρ(L)) is Hausdorff. �

Proposition 4.4 Let L be a continuous poset. Then Bρ = {↑↑x∩ ({y}∪ ↓↓y)|x, y ∈ L} is a base

for the density topology ρ(L).

Proof The conclusion follows from the continuity of L and Proposition 3.4(2). �

Lemma 4.5 Let L be a continuous poset. Then for all U ∈ σ(L) and all G ∈ τe(L), one has

↑(U ∩G) ∈ σ(L). Particularly, for any U ∈ σ(L) and any lower set C, one has ↑(U ∩C) ∈ σ(L).

Proof Let U ∈ σ(L) and G ∈ τe(L). Suppose that D is a directed subset for which supD exists

and satisfies supD ∈↑(U ∩G). Then there is x ∈ U ∩G such that x 6 supD. By the continuity

of L and the Scott openness of U , there is t ∈ U such that t ≪ x 6 supD. Thus, there exists
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d ∈ D such that t 6 d. Since G ∈ τe(L), we have t ∈ ↓↓x ⊆ ↓↓G ⊆ G. This shows that t ∈ U ∩G

and thus d ∈↑(U ∩G). Therefore, ↑(U ∩G) is Scott open. �

Theorem 4.6 Let L be a continuous poset.

(1) An upper set U is ρ(L)-open if and only if U is Scott open;

(2) If W ∈ ρ(L), then ↑W ∈ σ(L);

(3) For all x ∈ L, x is compact if and only if {x} is ρ(L)-open;

(4) Every µ(L)-closed set is closed under directed suprema.

Proof (1) Let U be an upper set. Clearly, every Scott open set is ρ(L)-open. Suppose that U is

ρ(L)-open. Let t ∈ U . By Proposition 4.4, there exist x, y ∈ L such that t ∈ ↑↑x∩ ({y}∪↓↓y) ⊆ U .

Hence, t ∈↑(↑↑x ∩ ({y} ∪ ↓↓y)) ⊆↑U = U . By Lemma 4.5, we have ↑(↑↑x ∩ ({y} ∪ ↓↓y)) ∈ σ(L). By

the arbitrariness of t, U is Scott open.

(2) Let W ∈ ρ(L). For all t ∈↑W , there exists a ∈ W such that a 6 t. By the continuity

of L and Proposition 4.4, there exist x, y ∈ L such that a ∈ ↑↑x ∩ ({y} ∪ ↓↓y) ⊆ W . Hence,

t ∈↑ a ⊆↑ (↑↑x ∩ ({y} ∪ ↓↓y)) ⊆↑W . It follows from Lemma 4.5 that ↑ (↑↑x ∩ ({y} ∪ ↓↓y)) is Scott

open. By the arbitrariness of t, we have ↑W ∈ σ(L).

(3) Let x ∈ L. Suppose that x is compact. It is easy to see that ↑x is Scott open. Hence,

{x} =↑ x∩ ↓ x is ρ(L)-open. Conversely, suppose that {x} is ρ(L)-open. By (2), ↑ x is Scott

open. This shows that x is compact.

(4) Let D be a directed subset of a µ(L)-closed set F with existing supD. Suppose that

supD ̸∈ F . Then supD ∈ L\F and L\F is µ(L)-open. By Proposition 2.6, there exist x,

y ∈ L such that supD ∈ ↑↑x∩ ↓ y ⊆ L\F . By Proposition 2.1, there is z ∈ L such that

x ≪ z ≪ supD 6 y. This shows that there is d ∈ D such that x ≪ z 6 d 6 y. Hence,

D ∩ (L\F ) ̸= ∅, a contradiction to D ⊆ F . �

Corollary 4.7 Let L be a continuous poset.

(1) If X is an upper set, then intσ(X) = intλ(X) = intµ(X) = intρ(X);

(2) If X is a lower set, then clσ(X) = clλ(X) = clµ(X) = clρ(X).

Proof (1) Let X be an upper set. It follows from Proposition 4.2 that intσ(X) ⊆ intλ(X) ⊆
intµ(X) ⊆ intρ(X). By Theorem 4.6(2), ↑ intρ(X) ∈ σ(L). It follows from ↑ intρ(X) ⊆↑X = X

that intρ(X) ⊆↑ intρ(X) ⊆ intσ(X). So, intσ(X) = intλ(X) = intµ(X) = intρ(X).

(2) The conclusion follows immediately from (1). �
The following example shows that the ρ(L)-closed set on a completely distributive lattice

need not be closed under directed suprema.

Example 4.8 Let I = [0, 1] be the unit interval and let SI = {[a, b]|a, b ∈ I}. Define a partial

order “ 6 ” on SI : ∀ [a, b], [c, d] ∈ SI , [a, b] 6 [c, d] ⇐⇒ a 6 c and b 6 d. Then

sup{[aj , bj ] | j ∈ J} = [sup{aj}j∈J , sup{bj}j∈J ]

for any family {[aj , bj ]|j ∈ J} and [a, b] ≪ [c, d] ⇐⇒ a < c and b < d for all [a, b], [c, d] ∈ SI .
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It is straightforward to prove that (SI ,6) is a completely distributive lattice [12, Theorem 2.4].

Let x = [ 12 ,
3
4 ] and y = [ 23 , 1]. Pick an increasing sequence {an}n∈N+ such that a1 > 1

2 and

limn→∞ an = 2
3 . Let D = {[an, 1]|n ∈ N+}. Then D is a directed subset of SI . Clearly, the set

U = ↑↑x ∩ ({y} ∪ ↓↓y) is ρ(SI) open and D ∩ U = ∅. Thus, L\U is ρ(SI) closed and D ⊆ L\U .

However, we have supD = [ 23 , 1] ∈ U .

Proposition 4.9 Let L be a continuous poset. If ρ(L) is compact, then ρ(L) = µ(L).

Proof Let L be a continuous poset with a compact ρ(L) topology. By Proposition 4.2 and

Proposition 4.3(2), both ρ(L) and µ(L) are compact Hausdorff. It follows from the exactness of

compact Hausdorff topology [13, P.181, Exercise 1] that ρ(L) = µ(L). �

Proposition 4.10 Let L be a continuous poset. If the set Ax =↓x\({x} ∪ ↓↓x) is finite for all

x ∈ L, then ρ(L) = µ(L).

Proof By Proposition 4.2, we have µ(L) ⊆ ρ(L). Suppose that W is ρ(L)-open. Let z ∈ W .

By Proposition 4.4, there exist x, y ∈ L such that z ∈ ↑↑x ∩ ({y} ∪ ↓↓y) ⊆ W . Hence, z ∈
↑↑x ∩ ({z} ∪ ↓↓z) ⊆ ↑↑x ∩ ({y} ∪ ↓↓y) ⊆ W . By the continuity of L, we have z =

∨
↓↓z. Then for all

t ∈ Az =↓ z\({z} ∪ ↓↓z), there exists xt ≪ z such that xt ̸6 t. By the finiteness of Az and the

directedness of ↓↓z, there is h ∈ ↓↓z such that x 6 h and xt 6 h for all t ∈ Az. Hence, h ̸6 t for

all t ∈ Az. This shows that ↑↑h∩ ↓z ∩Az = ∅. Therefore, z ∈ ↑↑h∩ ↓z ⊆ ↑↑x∩ ({z} ∪ ↓↓z) ⊆ W . By

Proposition 2.6 and the arbitrariness of z, W is µ(L)-open and hence ρ(L) ⊆ µ(L). �

The following example shows that the density topology does not coincide with the measure-

ment topology on completely distributive lattices.

Example 4.11 Let (SI ,6) be the poset defined in Example 4.8. Pick x = [ 12 ,
3
4 ] and y = [ 23 , 1].

Clearly, x, y ∈ SI and x ≪ y. Then y ∈ ↑↑x∩ ({y}∪↓↓y) and ↑↑x∩ ({y}∪ ↓↓y) is a basic ρ(SI) open

set by Proposition 4.4. Suppose that ↑↑x∩({y}∪↓↓y) is also µ(SI) open. By Proposition 2.6, there

is z = [c, d] ∈ SI such that y ∈ ↑↑z∩ ↓y ⊆ ↑↑x∩({y}∪↓↓y). This shows that z = [c, d] ≪ [ 23 , 1] = y.

Thus, c < 2
3 and d < 1. There exists r such that c < r < 2

3 . Let h = [r, 1]. Then h ∈ ↑↑z∩ ↓y but

h ̸∈ ↑↑x∩ ({y}∪↓↓y), a contradiction to the assumption that ↑↑z∩ ↓y ⊆ ↑↑x∩ ({y}∪↓↓y). Therefore,
ρ(SI) ̸⊆ µ(SI).

Proposition 4.12 Let L be a continuous poset and W ⊆ L an order convex subset. Then W

is µ(L)-open if and only if W is ρ(L)-open.

Proof =⇒. Apply Proposition 4.2.

⇐=. Suppose that W is ρ(L)-open. Let t ∈ W . By Proposition 4.4, there exist x, y ∈ L

such that t ∈ ↑↑x ∩ ({y} ∪ ↓↓y) ⊆ W . This shows that y ∈ W and x ≪ t 6 y. By the continuity

of L and Proposition 2.1, there is s ∈ L such that x ≪ s ≪ t 6 y. This shows that s ∈ W .

Since W is order convex and s, y ∈ W , we have t ∈ ↑↑s∩ ↓y ⊆ W . By the arbitrariness of t and

Proposition 2.6, W is µ(L)-open. �
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Theorem 4.13 Let L be a poset and consider the following conditions:

(1) L is a continuous poset;

(2) W =
∪
{↑↑x ∩ ({y} ∪ ↓↓y)|x, y ∈ W} for all order convex ρ(L)-open set W ;

(3) W =
∪
{↑↑x∩ ↓ y|x, y ∈ W} for all order convex µ(L)-open set W .

Then (1) =⇒ (2) ⇐⇒ (3). Moreover, if L is a sup semilattice, then all three conditions are

equivalent.

Proof (1) =⇒ (2). Let W be an order convex ρ(L)-open set. It is easy to see that∪
{↑↑x ∩ ({y} ∪ ↓↓y)|x, y ∈ W} ⊆ W.

Let t ∈ W . By Proposition 4.4, there exist x, y ∈ L such that t ∈ ↑↑x ∩ ({y} ∪ ↓↓y) ⊆ W . So,

x ≪ t 6 y. By the continuity of L and Proposition 2.1, there is s ∈ L such that x ≪ s ≪ t 6 y.

This shows that s ∈ W . Therefore, t ∈ ↑↑s ∩ ({t} ∪ ↓↓t) ⊆
∪
{↑↑x ∩ ({y} ∪ ↓↓y)|x, y ∈ W}. By the

arbitrariness of t, we have W ⊆
∪
{↑↑x ∩ ({y} ∪ ↓↓y) | x, y ∈ W} and thus

W =
∪

{↑↑x ∩ ({y} ∪ ↓↓y)|x, y ∈ W}.

(2)⇐⇒(3). Apply Proposition 4.12.

Let L be a sup semilattice. Then for all x ∈ L, the set ↓↓x is directed. Clearly, x is an

upper bound of the set ↓↓x. Let z be any upper bound of the set ↓↓x. Suppose that x ̸6 z.

Then x ∈ L\ ↓ z. Since L\ ↓ z is order convex µ(L)-open, there exist u, v ∈ L\ ↓ z such that

x ∈ ↑↑u∩ ↓v ⊆ L\ ↓z by (3). This shows that u ≪ x but u ̸6 z, a contradiction to the assumption

that z is an upper bound of the set ↓↓x. So, x 6 z. By the arbitrariness of z, we have x =
∨
↓↓x.

Thus, L is a continuous poset. �
We can characterize bases of continuous posets via the density topology.

Theorem 4.14 The following are equivalent for a continuous poset L and B ⊆ L:

(1) B is a basis of L;

(2) B is a ρ(L) dense subset of L;

(3) B is a µ(L) dense subset of L.

Proof (1) =⇒ (2). Let B be a basis of L and consider a nonempty basic ρ(L)-open set

↑↑x∩ ({y} ∪ ↓↓y). It follows from Theorem 3.7 that ↑↑x∩ ({y} ∪ ↓↓y)∩B ̸= ∅. This shows that B is

a ρ(L) dense subset of L.

(2)=⇒(3). Apply Proposition 4.2.

(3)=⇒(1). Let B be a µ(L) dense subset of L. Given x ≪ y in L. By Proposition 2.1, there

exist s, t ∈ L such that x ≪ s ≪ t ≪ y. Since ↑↑s∩ ↓ t is a nonempty basic µ(L)-open set, we

have ↑↑s∩ ↓ t∩B ̸= ∅. Thus, there is b ∈ B such that x ≪ s ≪ b 6 t ≪ y. By Proposition 2.4, B

is a basis of L. �

Corollary 4.15 Let L be a continuous poset. Then the following are equivalent:

(1) σ(L) is second countable;

(2) L has a countable basis;
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(3) ρ(L) is separable;

(4) µ(L) is separable.

Proof (1)=⇒(2). Let B be a countable base for σ(L). Let A = {(U1, U2)|U1, U2 ∈ B, ∃ b ∈ L

such that U2 ⊆ ↑↑b ⊆↑ b ⊆ U1}. Clearly, the set A is countable. For all α = (U1, U2) ∈ A, pick

bα ∈ L such that U2 ⊆ ↑↑bα ⊆↑ bα ⊆ U1. Let B = {bα|α ∈ A}. Then B is also a countable set.

Given x ≪ y in L. Since ↑↑x ∈ σ(L) and B is a countable base for σ(L), there is V1 ∈ B such

that y ∈ V1 ⊆ ↑↑x. By the continuity of L and the Scott openness of V1, there is t ∈ V1 such that

y ∈ ↑↑t ⊆↑ t ⊆ V1 ⊆ ↑↑x. Since ↑↑t ∈ σ(L) and B is a countable base for σ(L), there is V2 ∈ B such

that y ∈ V2 ⊆ ↑↑t ⊆↑ t ⊆ V1 ⊆ ↑↑x. This shows that β = (V1, V2) ∈ A. So, there is bβ ∈ B such

that y ∈ V2 ⊆ ↑↑bβ ⊆↑bβ ⊆ V1 ⊆ ↑↑x. By Proposition 2.4, B is a countable basis of L.

(2)=⇒(1). Let B be a countable basis of L. It is straightforward to prove that the family

{↑↑b|b ∈ B} is a countable base for the Scott topology σ(L). Hence, σ(L) is second countable.

(2)=⇒(3). Apply Theorem 4.14.

(3)=⇒(4). Apply Proposition 4.2.

(4)=⇒(2). Apply Theorem 4.14. �
In the context of continuous posets, we can characterize the algebraicity of the posets via the

measurement topology and the density topology.

Theorem 4.16 Let L be a continuous poset. Then the following are equivalent:

(1) L is algebraic;

(2) The intersection of ρ(L) dense sets is ρ(L) dense;

(3) The intersection of µ(L) dense sets is µ(L) dense.

Proof (1)=⇒(2). Let L be an algebraic poset. Then K(L) is the smallest basis of L. By

Theorem 4.14, K(L) is the smallest ρ(L) dense set of L. Hence, the intersection of ρ(L) dense

sets contains K(L) and is ρ(L) dense.

(2)=⇒(3). Apply Theorem 4.14.

(3)=⇒(1). Let B be the intersection of all µ(L) dense sets of L. By (3) and Theorem 4.14,

B is the smallest µ(L) dense set of L and hence the smallest basis of L. It is straightforward to

prove that B = K(L). So, L is algebraic. �

Acknowledgements We thank the referees for their time and comments.

References

[1] D. SCOTT. Continuous Lattices. Lecture Notes in Mathematics 274, Springer-Verlag, Berlin, 1972.

[2] G. GIERZ, K. HOFMANN, K. KEIMEL, et al. Continuous Lattices and Domains. Cambridge University

Press, Cambridge, 2003.

[3] J. LAWSON. The duality of continuous posets. Houston J. Math., 1979, 5(3): 357–394.

[4] J. LAWSON, Luoshan XU. Posets having continuous intervals. Theoret. Comput. Sci., 2004, 316(1-3): 89–

103.

[5] Xuxin MAO, Luoshan XU. Quasicontinuity of posets via Scott topology and sobrification. Order, 2006,

23(4): 359–369.



350 Xuxin MAO, Luoshan XU

[6] Luoshan XU. Continuity of posets via Scott topology and sobrification. Topology Appl., 2006, 153(11):

1886–1894.

[7] Luoshan XU. Measurement topology and full measure on posets. Mohu Xitong yu Shuxue, 2007, 21(1):

28–35. (in Chinese)

[8] Han ZHANG. A note on continuous partially ordered sets. Semigroup Forum, 1993, 47(1): 101–104.

[9] Bin ZHAO, Yihui ZHOU. The category of supercontinuous poset. J. Math. Anal. Appl., 2006, 320(2): 632–

641.

[10] K. MARTIN. A Foundation for Computation. Thesis (Ph.D.)-Tulane University, 2000.

[11] D. RUSU, G. CIOBANU. Essential and density topologies of continuous domains. Ann. Pure Appl. Logic.,

2016, 167(9): 726–736.

[12] Luoshan XU. Intrinsic topologies of the interval number system and their metric representations. J. Yangzhou

Univ. Nat. Sci. Ed., 1999, 2(1): 1–5. (in Chinese)

[13] J. R. MUNKRES. Topology: A First Course. Prentice-Hall, Inc, 1975.


