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Abstract In this paper, we study some cases when an amalgamated construction A ◃▹f I of
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1. Introduction

Throughout this paper all rings are associative with identity unless otherwise stated. Let

A and B be commutative rings with a ring homomorphism f : A → B and I be an ideal

of B. The amalgamation of A with B along an ideal I of B with respect to f (denoted by

A ◃▹f I) was introduced and studied in [1–3]. In [4], clean properties of amalgamated rings in

commutative case were studied. Also in [5], for a ring R and an ideal I, a case was studied when

an amalgamated duplication R ◃▹ I of R along an ideal I is quasi-Frobenius. Some homological

properties of amalgamated duplication of a ring along an ideal were investigated in [6]. Bezout

properties of amalgamated rings were studied in [7]. In the commutative case of rings, most of

properties of amalgamated duplications are investigated. Namely, Gorenstein global dimension

of an amalgamated duplication of a coherent ring along a regular principal ideal was observed

in [8] and it is proved that for a coherent ring R which contains a nonunit regular element x,

wGgldim(R ◃▹f xR) = wGgldim(R), and Ggldim(R ◃▹f xR) = Ggldim(R), and in [9], among

others, it was shown that for a CM local ring R, R ◃▹ I is Gorenstein if and only if I is a canonical

ideal of R.

Let A and B be two rings (not necessarily commutative) with identity, I an ideal of B and

f : A → B a ring homomorphism. In this setting, we consider the following subring of A × B
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(endowed with the usual componentwise operations):

A ◃▹f I := {(a, f(a) + i) | a ∈ A, i ∈ I}

which is called amalgamated construction of A with B along I with respect to f . This construc-

tion is a generalization of the amalgamated duplication of a ring along an ideal introduced and

studied in [1–3, 9]. Also in [10], the ideal extensions were defined and investigated for noncom-

mutative rings. In case A = B, I is an ideal and f is the identity homomorphism of A, then

amalgamated construction A ◃▹f I of A along I with respect to f is isomorphic to the ideal

extension E(A; I) of A by I in [10]. Motivated by these works, in this note we study primeness,

semiprimeness, semicommutativity, nil-semicommutativity and weakly semicommutativity of a-

malgamated construction A ◃▹f I of a ring A with a ring B along an ideal I of B with respect

to a ring homomorphism f from A to B.

A ring R is called semicommutative if for any a, b ∈ R, ab = 0 implies aRb = 0 (this ring

is also called a zero insertion(ZI) ring in [11–13]). The ring R is semicommutative if and only

if any right (left) annihilator over R is an ideal of R by [14, Lemma 1] or [15, Lemma 1.2].

Every commutative ring is semicommutative. Therefore, if A and B are commutative, then the

ring A × B is commutative, and so is A ◃▹f I as a subring of A × B. A ring R is called nil-

semicommutative [16] if ab = 0 implies aRb = 0 for every nilpotent elements a, b ∈ R. Every

semicommutative ring is nil-semicommutative. Another version of semicommutativity is weakly

semicommutativity. In [13] and [17], weakly semicommutative rings were investigated. The ring

R is called weakly semicommutative if for any a, b ∈ R, ab = 0 implies arb is nilpotent for any

r ∈ R. Clearly, semicommutative rings are weakly semicommutative. There is no implication

between nil-semicommutative rings and weakly semicommutative rings.

In what follows, by Z and Zn we denote, respectively, the ring of integers and the ring of

integers modulo n for a positive integer n and nil(R) will stand for the set of all nilpotent elements

of a ring R.

2. Reduced, prime and semiprime properties of amalgamated rings

We start this section by the following proposition which characterizes when the amalgamated

construction A ◃▹f I is a reduced ring. This proposition also generalizes [1, Proposition 5.4]

which is proved for commutative rings. Recall that a ring R is called reduced if it has no nonzero

nilpotent elements.

Proposition 2.1 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I

be a proper ideal of B. Then the following conditions are equivalent:

(1) A ◃▹f I is a reduced ring.

(2) A is a reduced ring and nil(B) ∩ I = (0).

In particular, if A and B are reduced, then A ◃▹f I is reduced.

Proof (1) ⇒ (2). Let a ∈ A with an = 0 for some positive integer n. Then (a, f(a))n = 0 in
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A ◃▹f I. By (1), (a, f(a)) = 0 or a = 0. Let b ∈ nil(B)∩ I. There exists a positive integer t such

that bt = 0. So (0, f(0) + b)t = 0. Hence (0, b) = 0 or b = 0.

(2) ⇒ (1). Let (a, f(a) + x) ∈ A ◃▹f I with (a, f(a) + x)s = 0 for some positive integer

s. Then 0 = (as, (f(a) + x)s). Hence as = 0 and (f(a) + x)s = 0. By (2), a = 0. Since x ∈
nil(B) ∩ I, x = 0. So (a, f(a) + x) = 0. Thus A ◃▹f I is reduced. The rest is clear. �

The proof of the following lemma is obvious. We record it for an easy reference.

Lemma 2.2 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I be a

proper ideal of B. For any x ∈ I, {(0, f(0) + xy) | y ∈ B} is a right ideal of A ◃▹f I and for any

b ∈ B, {(0, f(0) + by) | y ∈ I} is a right ideal of A ◃▹f I.

Recall that a ring R is called prime if for any ideals (right or left) I and J of R, IJ = 0

implies I = 0 or J = 0, equivalently, for any r, s ∈ R, rRs = 0 implies r = 0 or s = 0, and

R is called semiprime if it has no nonzero nilpotent ideals, equivalently, aRa = 0 implies a = 0

for any a ∈ R. Obviously, every prime ring is semiprime. A proper ideal I of a ring R is called

semiprime if R/I is a semiprime ring.

Theorem 2.3 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I be

a proper ideal of B. Assume that B is a semicommutative ring and f is a monomorphism and

Im(f) ∩ I = 0. Then A ◃▹f I is a prime ring if and only if A and f(A) + I are prime rings.

Proof Necessity. Assume that A ◃▹f I is a prime ring. Let a, b ∈ A with aAb = 0. Then

f(a)f(b) = 0. Semicommutativity of B implies f(a)Bf(b) = 0. We use this fact to have

(a, f(a) + 0)(c, f(c) + y)(b, f(b) + 0) = 0 in A ◃▹f I for all c ∈ A and y ∈ I. By assumption,

(a, f(a)) = 0 or (b, f(b)) = 0. So a = 0 or b = 0. Hence A is prime. To prove f(A) + I is prime,

let f(a) + x, f(b) + y ∈ f(A) + I. Assume that (f(a) + x)(f(A) + I)(f(b) + y) = 0. Then for all

c ∈ A and z ∈ I,

(f(a) + x)(f(c) + z)(f(b) + y) = 0. (∗)

By (∗), we have f(acb) ∈ I and by hypothesis, acb = 0. Thus (a, f(a)+x)(c, f(c)+z)(b, f(b)+y) =

0 for all c ∈ A and z ∈ I. Primeness of A ◃▹f I implies (a, f(a) + x) = 0 or (b, f(b) + y) = 0.

Hence f(a) + x = 0 or f(b) + y = 0. It follows that f(A) + I is prime.

Sufficiency. Suppose that A and f(A) + I are prime rings. To prove A ◃▹f I is prime, let

(a, f(a) + x), (b, f(b) + y) ∈ A ◃▹f I. Assume that (a, f(a) + x)(A ◃▹f I)(b, f(b) + y) = 0.

Then aAb = 0 and (f(a) + x)(f(A) + I)(f(b) + y) = 0. By supposition, a = 0 or b = 0 and

f(a) + x = 0 or f(b) + y = 0. We consider some cases. In the cases (a = 0 and f(a) + x = 0)

or (b = 0 and f(b) + y = 0), the proof is clear. Assume that a = 0 and f(b) + y = 0. Then

f(b) = −y ∈ Im(f) ∩ I implies f(b) = 0 and y = 0. By hypothesis, b = 0. So (b, f(b) + y) = 0.

Similarly, the case b = 0 and f(a) + x = 0 implies that (a, f(a) + x) = 0. So A ◃▹f I is prime. �

Theorem 2.4 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I be a

proper ideal of B. Assume that B is a semicommutative ring. If A ◃▹f I is a prime ring, then A

is a prime ring and nil(B) ∩ I = (0).
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Proof To prove A is prime, let a, b ∈ A with aAb = 0. Then f(a)f(b) = 0. By semi-

commutativity of B, we have f(a)Bf(b) = 0. Hence (a, f(a) + 0)(A ◃▹f I)(b, f(b) + 0) = 0.

It implies that a = 0 or b = 0. Hence A is prime. Let x ∈ nil(B) ∩ I with xn = 0

for some positive integer n. By semicommutativity of B, we have xn−1Bxn−1 = 0. Then

(0, f(0) + xn−1)(A ◃▹f I)(0, f(0) + xn−1) = {(0, f(0) + xn−1(f(a) + y)xn−1) | a ∈ A, y ∈ I} = 0.

Hence xn−1 = 0. By continuing in this way, we have x = 0. �
There are rings not satisfying the converse statement in Theorem 2.4 as the following example

shows.

Example 2.5 Let A = Z2 and B =

[
Z2 0

0 Z2

]
be the rings and I =

[
0 0

0 Z2

]
be the ideal of B

and f : A → B be a ring homomorphism defined by f(a) =

[
a 0

0 a

]
where a ∈ Z2. Then A is a

prime ring, B is semicommutative and nil(B) ∩ I = (0). And

A ◃▹f I =

{
(0,

[
0 0

0 0

]
), (0,

[
0 0

0 1

]
), (1,

[
1 0

0 1

]
), (1,

[
1 0

0 0

]
)

}
is not prime.

Theorem 2.6 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I be a

proper ideal of B. Then the following hold.

(1) If B is a semicommutative ring, f is a monomorphism, Im(f) ∩ I = (0) and A ◃▹f I is a

semiprime ring, then A and f(A) + I are semiprime rings.

(2) If A and f(A) + I are semiprime rings, then A ◃▹f I is semiprime.

Proof (1) Assume that A ◃▹f I is a semiprime ring. Let a ∈ A with aAa = 0. Semicommutativ-

ity of B implies f(a)Bf(a) = 0. We use this fact to have (a, f(a)+0)(c, f(c)+y)(a, f(a)+0) = 0

in A ◃▹f I for all c ∈ A and y ∈ I. By assumption, (a, f(a)) = 0. So a = 0. Hence A is

semiprime. To prove f(A) + I is semiprime, let f(a) + x ∈ f(A) + I. Assume that for any c ∈ A

and z ∈ I,

(f(a) + x)(f(c) + z)(f(a) + x) = 0. (∗∗)

Then (∗∗) implies f(a)f(a) = −(xf(a) + f(a)x + x2) ∈ Im(f) ∩ I. Hence f(a)f(a) = 0. By

semicommutativity of B and being f monomorphism, we have aAa = 0. Since A is semiprime, we

have a = 0. From (∗∗), we have x4 = 0. Hence x2Bx2B = 0. Let X = {(0, f(0) + x2b) | b ∈ B}.
Then X is a right ideal of A ◃▹f I with X2 = 0. By hypothesis, X = 0. So x2 = 0. Again by

semicommutativity of B, we have xBx = 0. We define Y = {(0, f(0) + xb) | b ∈ B}. Then Y is

a right ideal of A ◃▹f I with Y 2 = 0. By hypothesis Y = 0. So x = 0. Hence f(a) + x = 0 and

so f(A) + I is semiprime.

(2) Suppose that A and f(A) + I are semiprime. To prove A ◃▹f I is semiprime, let

(a, f(a) + x) ∈ A ◃▹f I. Assume that (a, f(a) + x)(A ◃▹f I)(a, f(a) + x) = 0. Then aAa = 0 and

(f(a) + x)(f(A) + I)(f(a) + x) = 0. By supposition, a = 0 and f(a) + x = 0. This completes

the proof. �
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Proposition 2.7 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I

be a proper ideal of B. Then the following hold.

(1) If A and B are semiprime rings, B is semicommutative, then A ◃▹f I is semiprime.

(2) If I is a semiprime ideal of B, B is semicommutative and A ◃▹f I is semiprime, then A

and B are semiprime.

Proof (1) Assume that A and B are semiprime rings. To prove A ◃▹f I is semiprime, let

(a, f(a)+x) ∈ A ◃▹f I with (a, f(a)+x)(A ◃▹f I)(a, f(a)+x) = 0 in A ◃▹f I. Then aAa = 0 and

(f(a)+x)(f(A)+I)(f(a)+x) = 0. By assumption, a = 0 and f(a) = 0. Hence x(f(A)+I)x = 0

and so x2 = 0. By semicommutativity and the semiprimeness of B, we have x = 0. Thus

f(a) + x = 0.

(2) Suppose that I is a semiprime ideal of B, B is semicommutative and A ◃▹f I is semiprime.

Let a ∈ A with aAa = 0. Then (a, f(a) + 0)(A ◃▹f I)(a, f(a) + 0) = 0. Hence (a, f(a) + 0) = 0.

Thus a = 0. To prove B is semiprime, let x ∈ B with xBx = 0. By assumption, x ∈ I. From

xBx = 0, we have (0, f(0)+x)(A ◃▹f I)(0, f(0)+x) = 0. Again by assumption, (0, f(0)+x) = 0

and so x = 0. �

Theorem 2.8 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I be

a proper ideal of B. Assume that B is a semicommutative ring. Then the following conditions

are equivalent:

(1) A ◃▹f I is a semiprime ring.

(2) A is a semiprime ring and nil(B) ∩ I = (0).

Proof (1) ⇒ (2). Let a ∈ A with aAa = 0. Then f(a)f(a) = 0. By semicommutativity of B, we

have f(a)Bf(a) = 0. So (a, f(a) + 0)(A ◃▹f I)(a, f(a) + 0) = (aAa, f(a)(f(A) + I)f(a)) = 0 in

A ◃▹f I. By (1), (a, f(a)+0) = 0. Hence a = 0 and so A is semiprime. To prove nil(B)∩I = (0),

let b ∈ nil(B) ∩ I. As in the proof of Theorem 2.4, it can be shown that b = 0.

(2) ⇒ (1). To prove A ◃▹f I is semiprime, let (a, f(a) + x) ∈ A ◃▹f I. Assume that

(a, f(a) + x)(A ◃▹f I)(a, f(a) + x) = 0. Then aAa = 0 and (f(a) + x)(f(A) + I)(f(a) + x) = 0.

Hence a = 0 and xIx = 0, in particular x3 = 0. So x ∈ nil(B)∩I or x = 0. Hence (a, f(a)+x) = 0.

Thus A ◃▹f I is semiprime. �

Proposition 2.9 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I

be a proper ideal of B. Assume that f−1(I) ∩ nil(A) = (0) and f(A) + I is a semiprime ring.

Then A ◃▹f I is a semiprime ring.

Proof To prove A ◃▹f I is semiprime, let (a, f(a)+x) ∈ A ◃▹f I. Assume that (a, f(a)+x)(A ◃▹f

I)(a, f(a)+x) = 0. Then aAa = 0 and (f(a)+x)(f(A)+ I)(f(a)+x) = 0. From semiprimeness

of f(A) + I, we have f(a) + x = 0. The equation aAa = 0 gives rise a to be nilpotent in A from

which we have a ∈ f−1(I) ∩ nil(A). It follows that a = 0, so f(a) = 0 and x = 0. Therefore

(a, f(a) + x) = 0 in A ◃▹f I. Hence A ◃▹f I is a semiprime ring. �
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3. Semicommutativity of amalgamated rings

Our next theorem states necessary and sufficient conditions under which the amalgamated

construction A ◃▹f I is a semicommutative ring. An ideal I of a ring R is called semicommutative

if it is considered as a semicommutative ring without identity.

Theorem 3.1 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I be a

proper ideal of B. Then the following hold.

(1) If A ◃▹f I is semicommutative, then so is A.

(2) If A and f(A) + I are semicommutative, then so is A ◃▹f I.

(3) Assume that I ∩S ̸= ∅ where S is the set of regular central elements of B. Then A ◃▹f I

is a semicommutative ring if and only if f(A) + I and A are semicommutative rings.

(4) Assume that f−1(I)∩ nil(A) = (0). If f(A) + I is a semicommutative ring, then A ◃▹f I

is a semicommutative ring.

(5) If f(A) + I is a semicommutative ring and f is a monomorphism, then A and I are

semicommutative.

Proof (1) Assume that A ◃▹f I is semicommutative. Let x, y ∈ A such that xy = 0. Then

(x, f(x))(y, f(y)) = 0 in A ◃▹f I. By assumption, (x, f(x))(A ◃▹f I)(y, f(y)) = 0. Hence

xAy = 0.

(2) Let (a, f(a)+x), (b, f(b)+y) ∈ A ◃▹f I. Assume that (a, f(a)+x)(b, f(b)+y) = 0. Then

ab = 0 nd (f(a)+x)(f(b)+y) = 0. By hypothesis, aAb = 0 and (f(a)+x)(f(A)+I)(f(b)+y) = 0.

Hence arb = 0 for any r ∈ A, (f(a) + x)(f(c) + z)(f(b) + y) = 0 for any f(c) + z ∈ f(A) + I. So

(a, f(a) + x)(c, f(c) + z)(b, f(b) + y) = 0. Thus A ◃▹f I is semicommutative.

(3) Assume that I ∩ S ̸= ∅ where S is the set of regular central elements of B and A ◃▹f I

is a semicommutative ring. By (1), A is semicommutative. To prove that f(A) + I is semicom-

mutative, let f(a) + x, f(b) + y ∈ f(A) + I with (f(a) + x)(f(b) + y) = 0. For 0 ̸= s ∈ I ∩ S,

(0, f(0)+ s(f(a)+x))(0, f(0)+ s(f(b)+ y)) = 0. By hypothesis, (0, f(0)+ s(f(a)+x))(0, f(0)+

s(f(c)+z))(0, f(0)+s(f(b)+y)) = 0 for all f(c)+z ∈ f(A)+I. So s3(f(a)+x)(f(c)+z)(f(b)+y) =

0 since s is central. Regularity of s implies that (f(a) + x)(f(c) + z)(f(b) + y) = 0. So f(A) + I

is semicommutative. The converse is clear by (2).

(4) Assume that f−1(I) ∩ nil(A) = (0) and f(A) + I is a semicommutative ring. To prove

the semicommutativity of A ◃▹f I, we first prove the semicommutativity of A. For if a, b ∈ A

and ab = 0, then f(a)f(b) = 0. By hypothesis, for each c ∈ A, f(a)f(c)f(b) = 0. For each

c ∈ A, bacba = 0 since (bacba)2 = 0 and f(bacba) = 0 and bacba ∈ f−1(I) ∩ nil(A) = (0). Then

(acb)3 = 0. This and f(acb) = 0 imply acb = 0. Hence A is semicommutative. By (2), the

semicommutativity of f(A) + I and A imply that of A ◃▹f I.

(5) Suppose that f(A) + I is a semicommutative ring. Let a, b ∈ A with ab = 0. Then

f(a)f(b) = 0 in f(A) + I. By hypothesis, f(a)(f(A) + I)f(b) = 0. In particular, f(a)(f(c) +

0)f(b) = 0. So f(acb) = 0 for all c ∈ A. Hence acb = 0 for all c ∈ A since f is a monomorphism.

Thus A is semicommutative. The rest is clear since every subring of a semicommutative ring is
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semicommutative. �
The converse implication in (1) of Theorem 3.1 does not hold in general.

Example 3.2 Let A = Z2 and X =

[
Z2 Z2

Z2 Z2

]
, Y =

[
Z2 0

Z2 Z2

]
and B =

[
X 0

0 Y

]
, I =

[
X 0

0 0

]
and let eij denote the matrix unit in B, that is, eij is a 4×4 matrix whose entries are all 0 except

the (i, j) entry, that it is 1. Let f : A → B be a ring homomorphism defined by f(a) = aI4

where I4 is the identity matrix of B. Then A is semicommutative, B is not semicommutative.

Let a = e11 + e12 + e33 + e44, b = e12 + e22, c = e21 ∈ f(A) + I. Then ab = 0 but acb ̸= 0.

Hence f(A) + I is not semicommutative. Let x = (1, f(1) + e11 + e21), y = (0, e11 + e21),

z = (1, f(1) + e22) ∈ A ◃▹f I. Then xy = 0 but xzy = (0, e21). Hence A ◃▹f I is not

semicommutative.

4. Nil-Semicommutativity of amalgamated rings

In this section, we investigate nil-semicommutativity of amalgamated rings. In [16], a ring

R is called nil-semicommutative if for every a, b ∈ nil(R), ab = 0 implies aRb = 0. Every

semicommutative ring is nil-semicommutative. We study the conditions under which A ◃▹f I is

nil-semicommutative. We start with the following example for motivation.

Example 4.1 Let A = Z2 and B =

[
Z2 Z2

0 Z2

]
be the rings and I =

[
0 Z2

0 0

]
be the ideal of B

and f : A → B be a ring homomorphism defined by f(a) =

[
a 0

0 a

]
where a ∈ Z2. Then f is a

monomorphism, B is not semicommutative but nil-semicommutative and nil(B) ∩ I ̸= (0). Also

A ◃▹f I =

{
(0,

[
0 0

0 0

]
), (0,

[
0 1

0 0

]
), (1,

[
1 0

0 1

]
), (1,

[
1 1

0 1

]
)

}
,

f(A) + I =

{[
0 0

0 0

]
,

[
0 1

0 0

]
,

[
1 0

0 1

]
,

[
1 1

0 1

]}
.

Then A, A ◃▹f I and f(A) + I are nil-semicommutative.

An ideal I of a ringR is called nil-semicommutative if it is considered as a nil-semicommutative

ring without identity.

Theorem 4.2 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I be a

proper ideal of B. Then the following hold.

(1) If A ◃▹f I is a nil-semicommutative ring, then so is A.

(2) If A and f(A) + I are nil-semicommutative rings, then so is A ◃▹f I.

(3) If f−1(I) = (0) and A ◃▹f I is nil-semicommutative, then f(A)+I is nil-semicommutative.

(4) Assume that nil(B)∩ I = (0). Then A ◃▹f I is a nil-semicommutative ring if and only if

A is a nil-semicommutative ring.
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(5) Assume that f is a monomorphism and B is semicommutative. If f(A) + I is a nil-

semicommutative ring, then A ◃▹f I is a nil-semicommutative ring.

(6) If f(A) + I is a nil-semicommutative ring and f is a monomorphism, then the rings A

and I are nil-semicommutative.

Proof (1) Assume that A ◃▹f I is a nil-semicommutative ring. Let a, b ∈ nil(A) with ab =

0. Then (a, f(a)) and (b, f(b)) are nilpotent and (a, f(a))(b, f(b)) = 0 in A ◃▹f I. Hence

(a, f(a))(c, f(c) + x)(b, f(b)) = 0 for all c ∈ A and x ∈ I, in particular, acb = 0 for every c ∈ A.

Thus A is nil-semicommutative.

(2) Suppose that A and f(A)+I are nil-semicommutative rings. Let (a, f(a)+x), (b, f(b)+y)

be nilpotent and (a, f(a) + x)(b, f(b) + y) = 0 in A ◃▹f I. Then a, b are nilpotent, ab = 0 and

aAb = 0; and f(a)+x and f(b)+y are nilpotent, (f(a)+x)(f(c)+z)(f(b)+y) = 0 for all f(c)+z ∈
f(A) + I. Then (a, f(a) + x)(c, f(c) + z)(b, f(b) + y) = (acb, (f(a) + x)(f(c) + z)(f(b) + y)) = 0

for all (c, f(c) + z) ∈ A ◃▹f I. Hence A ◃▹f I is nil-semicommutative.

(3) Assume that f−1(I) = (0) and A ◃▹f I is nil-semicommutative. Let a, b ∈ A and x,

y ∈ I. Assume that f(a) + x and f(b) + y are nilpotent and (f(a) + x)(f(b) + y) = 0. Say

(f(a)+x)s = 0 and (f(b)+y)t = 0 where s and t are positive integers. Then as, bt, ab ∈ f−1(I).

Hence a and b are nilpotent and ab = 0. Then (a, f(a)+x)(b, f(b)+y) = 0. Clearly, (a, f(a)+x)

and (b, f(b) + y) are nilpotent. By assumption, (a, f(a) + x)(A ◃▹f I)(b, f(b) + y) = 0. It follows

that (f(a) + x)(f(A) + I)(f(b) + y) = 0. Hence f(A) + I is nil-semicommutative.

(4) Assume that nil(B) ∩ I = (0). If A ◃▹f I is a nil-semicommutative ring, by (1), A

is a nil-semicommutative ring. Conversely, assume that A is a nil-semicommutative ring. Let

(a, f(a) + x), (b, f(b) + y) be nilpotent with (a, f(a) + x)(b, f(b) + y) = 0 in A ◃▹f I, so there

exist positive integers m,n such that (a, f(a) + x)n = 0, (b, f(b) + y)m = 0. Then an = 0 and

bm = 0 and ab = 0 in A; and (f(a) + x)n = 0 and (f(b) + y)m = 0 and (f(a) + x)(f(b) + y) = 0

in f(A) + I. Then f(b)If(a) = 0 since f(b)If(a) ⊆ nil(B) ∩ I = (0). Also f(an−1)If(an−1) = 0

since f(an−1)If(an−1) ⊆ nil(B)∩ I = (0). Hence (f(an−1)z)2 = 0 for each z ∈ I. Continuing in

this way, f(a)I = 0. Similarly, If(a) = 0, f(b)I = 0 and If(b) = 0. Also, if r, s ∈ I with rs = 0,

then we claim rBs = 0. Then (sr)2 = 0, and so sr ∈ nil(B) ∩ I = 0, hence sr = 0. For any

t ∈ B, srt = 0. Then (rts)2 = 0. This implies that rts ∈ nil(B)∩ I = 0. Thus rBs = 0. For any

f(c) + z ∈ f(A) + I we have (f(a) + x)(f(c) + z)(f(b) + y) = f(acb) + f(a)zf(b) + xf(c)f(b) +

f(a)f(c)y + f(a)zy + xf(c)y + xzf(b) + xzy = 0 since as noted, aAb = 0, If(a) = 0, f(a)I = 0,

f(b)I = 0, If(b) = 0 and xBy = 0.

(5) Assume that f is a monomorphism, B is semicommutative and f(A)+I is nil-semicommu-

tative. Let (a, f(a)+x) and (b, f(b)+ y) be nilpotent in A ◃▹f I with (a, f(a)+x)(b, f(b)+ y) =

0. Then ab = 0 and (f(a) + x)(f(b) + y) = 0. So f(a)f(b) = 0. Semicommutativity of B

implies f(a)Bf(b) = 0 and (f(a) + x)B(f(b) + y) = 0. In particular, f(a)f(A)f(b) = 0 and

(f(a) + x)(f(A) + I)(f(b) + y) = 0. Since f is a monomorphism, aAb = 0. It follows that

(a, f(a) + x)(A ◃▹f I)(b, f(b) + y) = 0. Hence A ◃▹f I is nil-semicommutative.

(6) Assume that f(A) + I is a nil-semicommutative ring. Let a, b be nilpotent in A with
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ab = 0. Then f(a) and f(b) are nilpotent and f(a)f(b) = 0 in f(A) + I. By assumption,

f(a)(f(A) + I)f(b) = 0. In particular, for any c ∈ A, f(acb) = 0. Then acb = 0 for c ∈ A since

f is a monomorphism. Hence A is nil-semicommutative. The rest is clear. �

5. Weakly semicommutativity of amalgamated rings

In this section, weakly semicommutativity of amalgamated rings is investigated under some

conditions. In [13], weakly semicommutative rings were defined and studied. A ring R is called

weakly semicommutative if for any a, b ∈ R, ab = 0 implies arb is nilpotent for any r ∈ R.

Clearly, semicommutative rings are weakly semicommutative. We first mention an easy result

that subrings of weakly semicommutative rings are weakly semicommutative.

Lemma 5.1 Every subring and every isomorphic copy of a weakly semicommutative ring are

weakly semicommutative.

An ideal I of a ring R is called weakly semicommutative if it is considered as a weakly

semicommutative ring without identity.

Theorem 5.2 Let A and B be a pair of rings, f : A → B be a ring homomorphism and I be a

proper ideal of B. Then the following hold.

(1) If A ◃▹f I is weakly semicommutative, then so is A.

(2) If A and f(A) + I are weakly semicommutative, then so is A ◃▹f I.

(3) Assume that I ∩S ̸= ∅ where S is the set of regular central elements of B. Then A ◃▹f I

is a weakly semicommutative ring if and only if f(A) + I and A are weakly semicommutative

rings.

(4) Assume that f(A) ∩ I = (0) and f is a monomorphism. If A ◃▹f I is weakly semicom-

mutative, then f(A) + I is weakly semicommutative.

(5) Assume that f is a monomorphism. If f(A)+I is weakly semicommutative, then A ◃▹f I,

A and I are weakly semicommutative.

(6) Assume that f−1(I) ⊆ nil(A). If f(A) + I is weakly semicommutative, then A ◃▹f I, A

and I are weakly semicommutative.

Proof (1) Assume that A ◃▹f I is weakly semicommutative. Let a, b ∈ A with ab = 0. Then

(a, f(a))(b, f(b)) = 0 in A ◃▹f I. By assumption, (a, f(a))(A ◃▹f I)(b, f(b)) is nil. Hence aAb is

nil. Thus A is weakly semicommutative.

(2) Suppose that A and f(A)+I are weakly semicommutative. Let (a, f(a)+x), (b, f(b)+y) ∈
A ◃▹f I with (a, f(a) + x)(b, f(b) + y) = 0. Then ab = 0 and (f(a) + x)(f(b) + y) = 0. By

supposition, atb is nilpotent for each t ∈ A and (f(a)+x)(f(c)+z)(f(b)+y) is nilpotent for each

c ∈ A and z ∈ I. If (atb)r = 0 and ((f(a)+x)(f(c)+z)(f(b)+y))s = 0 for some positive integers

r and s, let m = max{r, s}. Then ((a, f(a) + x)(c, f(c) + z)(b, f(b) + y))m = 0. So A ◃▹f I is

weakly semicommutative.

(3) Let I ∩ S ̸= ∅ where S is the set of regular central elements of B. To complete the

proof of (3), by (1) and (2), if A ◃▹f I is a weakly semicommutative ring, we show that f(A) + I
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is weakly semicommutative. So let (f(a) + x)(f(b) + y) = 0 in f(A) + I and 0 ̸= s ∈ I ∩ S.

Then (0, s(f(a) + x))(0, s(f(b) + y)) = 0. Hence (0, s(f(a) + x))(c, f(c) + z)(0, s(f(b) + y)) is

nilpotent in A ◃▹f I, for all f(c) + z ∈ f(A) + I. The element s being central implies that

s2(f(a) + x)(f(c) + z)(f(b) + y) is nilpotent for all f(c) + z ∈ f(A) + I. Since s is regular,

(f(a) + x)(f(c) + z)(f(b) + y) is nilpotent for all f(c) + z ∈ f(A) + I. Thus f(A) + I is weakly

semicommutative.

(4) Assume that f(A) ∩ I = (0), f is a monomorphism and A ◃▹f I is weakly semicom-

mutative. To prove f(A) + I is weakly semicommutative, let f(a) + x, f(b) + y ∈ f(A) + I

with (f(a) + x)(f(b) + y) = 0. Then f(a)f(b) ∈ f(A) ∩ I. By assumption, f(ab) = 0 and so

ab = 0. Hence (a, f(a) + x)(b, f(b) + y) = 0. Weakly semicommutativity of A ◃▹f I implies that

(a, f(a) + x)(A ◃▹f I)(b, f(b) + y) is nil. It follows that (f(a) + x)(f(A) + I)(f(b) + y) is nil. So

f(A) + I is weakly semicommutative.

(5) Assume that f is a monomorphism and f(A) + I is a weakly semicommutative ring.

Let (a, f(a) + x), (b, f(b) + y) ∈ A ◃▹f I with (a, f(a) + x)(b, f(b) + y) = 0. Then ab = 0 and

(f(a) + x)(f(b) + y) = 0. So f(a)f(b) = 0. By assumption, we have f(a)(f(c) + z)f(b) and

(f(a) + x)(f(c) + z)(f(b) + y) are nilpotent for each c ∈ A and z ∈ I. Then f(a)f(c)f(b) is

nilpotent for each c ∈ A. Again by assumption, acb is nilpotent for each c ∈ A. It follows

that (a, f(a) + x)(A ◃▹f I)(b, f(b) + y) is a nil subset of A ◃▹f I. Hence A ◃▹f I is weakly

semicommutative. On the other hand, f(A) and I are weakly semicommutative as subrings of

f(A) + I by Lemma 5.1 and A is weakly semicommutative as it is isomorphic to f(A).

(6) Assume that f−1(I) ⊆ nil(A) and f(A)+I is weakly semicommutative. To prove A ◃▹f I

is weakly semicommutative, let (a, f(a)+x), (b, f(b)+y) ∈ A ◃▹f I with (a, f(a)+x)(b, f(b)+y) =

0. Then ab = 0 and (f(a) + x)(f(b) + y) = 0. So f(a)f(b) = 0. By assumption, f(a)f(A)f(b)

and (f(a)+x)(f(A)+ I)(f(b)+y) are nil subsets of f(A)+ I. On the other hand, for any c ∈ A,

f(acb)n = 0 for some positive integer n. Hence (acb)n ∈ f−1(I). Since f−1(I) ⊆ nil(A), (acb)n

therefore acb is nilpotent. Thus (a, f(a) + x)(A ◃▹f I)(b, f(b) + y) is a nil set. The rest is clear.

This completes the proof. �
The following example shows that the converse implication of (1) in Theorem 5.2 does not

hold in general. Also the statement “f(A) + I is weakly semicommutative” in (2) of Theorem

5.2 is not superfluous.

Example 5.3 Let A = Z3, X =

[
Z3 Z3

Z3 Z3

]
, Y =

[
Z3 0

Z3 Z3

]
and B =

[
X 0

0 Y

]
, I =

[
X 0

0 0

]
and f : A → B be a ring homomorphism defined by f(a) = aI4 where I4 is the identity matrix

of B. Then A is weakly semicommutative but A ◃▹f I is not weakly semicommutative. Let

a = (1, f(1) + 2e11 + e21 + e22 + 2e33 + 2e44), b = (0, e11 + e12 + e21 + e22), c = (0, e11 + 2e12 +

2e21 + 2e22) ∈ A ◃▹f I. Then ab = 0 but acb = (0, 2e21 + 2e22) is not nilpotent in A ◃▹f I. Thus

A ◃▹f I is not weakly semicommutative. Let x = 2e11 + e12 + e33 + e44, y = e11 + e12 + e21 + e22,

z = e11 + 2e12 + 2e21 + 2e22 ∈ f(A) + I. Then xy = 0 but xzy = 2e11 + 2e12 is not nilpotent in

f(A) + I. Thus f(A) + I is not weakly semicommutative.
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