Gronwll-Bellman Type Nonlinear Sums-Difference Inequalities and Applications in Difference Equations

Zizun LI
School of Mathematics, Sichuan University, Sichuan 610064, P. R. China

Abstract

In this paper, we establish some general sums-difference inequalities with two variables. The inequalities involve finite sum and every term contains the unknown function of the composite function with the power of p_{i}. In the end, we study boundedness of the solution of the difference equations as applications.

Keywords sum-difference inequality; power; monotonicity; boundary value problem; boundedness

MR(2010) Subject Classification 34B15; 26D15; 26D10

1. Introduction

Integral inequalities provide a very useful and important device in the study of many qualitative as well as quantitative properties of solutions of differential equations. Various generalizations of Gronwall-Bellman type inequality $[1,2]$ and their applications have attracted great interests of many mathematicians [3-11]. Some recent works can be found, e.g., in [12-14] and some references therein. Agarwal et al. [15] investigated the inequality

$$
u(t) \leq a(t)+\sum_{i=1}^{n} \int_{b_{i}\left(t_{0}\right)}^{b_{i}(t)} g_{i}(t, s) w_{i}(u(s)) \mathrm{d} s, \quad t_{0} \leq t<t_{1} .
$$

Chen et al. [16] studied the following retarded integral inequality

$$
\begin{aligned}
\psi(u(x, y)) \leq & c+\int_{\alpha\left(x_{0}\right)}^{\alpha(x)} \int_{\beta\left(y_{0}\right)}^{\beta(y)} g(s, t) u(s, t) \mathrm{d} t \mathrm{~d} s+ \\
& \int_{\gamma\left(x_{0}\right)}^{\gamma(x)} \int_{\delta\left(y_{0}\right)}^{\delta(y)} f(s, t) u(s, t) \varphi(u(s, t)) \mathrm{d} t \mathrm{~d} s
\end{aligned}
$$

where c is a constant. Wang et al. [17] investigated the inequality

$$
\begin{aligned}
\psi(u(x, y)) \leq & a(x, y)+\sum_{i=1}^{n}\left\{\int_{\alpha_{i}\left(x_{0}\right)}^{\alpha_{i}(x)} \int_{\beta_{i}\left(y_{0}\right)}^{\beta_{i}(y)} u^{q}(s, t) g_{i}(x, y, s, t) \mathrm{d} s \mathrm{~d} t+\right. \\
& \left.\int_{\delta_{i}\left(x_{0}\right)}^{\delta_{i}(x)} \int_{\gamma_{i}\left(y_{0}\right)}^{\gamma_{i}(y)} u^{q}(s, t) f_{i}(x, y, s, t) \varphi_{i}(u(s, t)) \mathrm{d} s \mathrm{~d} t\right\} .
\end{aligned}
$$

Received November 9, 2017; Accepted January 13, 2018
Supported by the National Natural Science Foundation of China (Grant No. 11561019) and the Fundamental Research Funds for the Central Universities (Grant No. 2012017yjsy141).
E-mail address: zzlqfnu@163.com

Zhou et al. [18] studied the following retarded integral inequality

$$
u(t) \leq a(t)+\sum_{i=1}^{n}\left\{\int_{b_{i}\left(t_{0}\right)}^{b_{i}(t)} f_{i}(t, s) \phi_{i}(u(s)) \mathrm{d} s\right\}^{p_{i}}
$$

where $p_{i} \geq 1, a, b_{i}, f_{i}, \phi_{i}, u$ are nonnegative continuous functions for $i=1,2, \ldots, n$.
With the progress of the theory of difference equations, more attentions are paid to some discrete versions of Gronwall type inequalities (e.g., [19, 20] for some early works). Some recent works can be found, e.g., in [21-26] and some references therein. Cheung [27] discussed the inequality

$$
u^{p}(m, n) \leq c+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} a(s, t) u(s, t)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} b(s, t) u(s, t) \varphi(u(s, t))
$$

where $c \geq 0$, and a, b are nonnegative real-valued functions in \mathbb{Z}_{+}^{2}, and φ is a continuous nondecreasing function with $\varphi(r)>0$, for $r>0$. Ma and Cheung [28] studied the inequality

$$
\psi(u(m, n)) \leq a(m, n)+c(m, n) \sum_{s=0}^{m-1} \sum_{t=n+1}^{\infty} \psi^{\prime}(u(s, t))[d(s, t) w(u(s, t))+e(s, t)]
$$

Wang et al. [29] investigated the inequality

$$
\psi(u(m, n)) \leq c(m, n)+\sum_{i=1}^{k} \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} f_{i}(m, n, s, t) \varphi_{i}(u(s, t)) .
$$

Zheng et al. [30] studied the inequality

$$
\begin{aligned}
u^{p}(m, n) \leq & c(m, n)+\sum_{i=1}^{l_{1}} \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1}\left[b_{i}(s, t, m, n) u^{q_{i}}(s, t)+\sum_{\xi=m_{0}}^{s} \sum_{\eta=n_{0}}^{t} c_{i}(\xi, \eta, m, n) u^{r_{i}}(\xi, \eta)\right]+ \\
& \sum_{i=1}^{l_{2}} \sum_{s=m_{0}}^{M-1} \sum_{t=n_{0}}^{N-1}\left[d_{i}(s, t, m, n) u^{h_{i}}(s, t)+\sum_{\xi=m_{0}}^{s} \sum_{\eta=n_{0}}^{t} e_{i}(\xi, \eta, m, n) u^{j_{i}}(\xi, \eta)\right] .
\end{aligned}
$$

Feng et al. [31] discussed the inequalities including four sums

$$
\begin{aligned}
u^{p}(m, n) \leq & c(m, n)+\sum_{s=m_{0}}^{m-1} w(s, n) u^{p}(m, n) \\
& \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1}\left[b(s, t, m, n) u^{q}(s, t)+\sum_{\xi=m_{0}}^{s} \sum_{\eta=n_{0}}^{t} c(\xi, \eta, m, n) u^{r}(\xi, \eta)\right]+ \\
& \sum_{s=m_{0}}^{M-1} \sum_{t=n_{0}}^{N-1}\left[d(s, t, m, n) u^{h}(s, t)+\sum_{\xi=m_{0}}^{s} \sum_{\eta=n_{0}}^{t} e(\xi, \eta, m, n) u^{j}(\xi, \eta)\right] .
\end{aligned}
$$

In this paper, we establish some new more general form of sums-difference inequalities, give the upper bound estimation and apply the obtained results to the boundedness of the solution of the difference equations.

2. Main result

Throughout this paper, \mathbb{R} denotes the set of all real numbers. Let $\mathbb{R}_{+}:=[0, \infty)$ and $\mathbb{N}_{0}:=$ $\{0,1, \ldots\} . m_{1}, n_{1} \in \mathbb{N}_{0} \cup \infty$ are given numbers, $I:=\left[0, m_{1}\right) \cap \mathbb{N}_{0}$ and $J:=\left[0, n_{1}\right) \cap \mathbb{N}_{0}$ are two fixed lattices of integer points in $\mathbb{R}, \Lambda:=I \times J \subset \mathbb{N}_{0}^{2}$. For any $(s, t) \in \Lambda$, let $\Lambda_{(s, t)}$ denote the sublattice $[0, s) \times[0, t) \cap \Lambda$ of Λ. For functions $w(m), z(m, n), m, n \in \mathbb{N}_{0}$, let $\Delta w(m):=w(m+1)-w(m)$ and $\Delta_{1} z(m, n):=z(m+1, n)-z(m, n)$. Obviously, the linear difference equation $\Delta x(m)=b(m)$ with the initial condition $x(0)=0$ has the solution $\sum_{s=0}^{m-1} b(s)$. For convenience, in the sequel we define that $\sum_{s=0}^{0-1} b(s)=0$.

Consider

$$
\psi(u(m, n)) \leq c(m, n)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} h_{i}(s, t, j, l) u^{q} \varphi_{i}^{p_{i}}(u(j, l)),
$$

and suppose that
$\left(\mathrm{H}_{1}\right) \quad \psi$ is a strictly increasing continuous function on $\mathbb{R}_{+}, \psi(u)>0$ for all $u>0$;
$\left(\mathrm{H}_{2}\right)$ All $\varphi_{i}(i=1,2, \ldots, k)$ are continuous functions on \mathbb{R}_{+}and positive on $(0, \infty)$;
$\left(\mathrm{H}_{3}\right) \quad c(m, n)>0$ on $I \times J$, and $c(m, n)$ is nondecreasing in each variable;
$\left(\mathrm{H}_{4}\right) \quad p_{i}>1, q>0$ are constants;
$\left(\mathrm{H}_{5}\right)$ All $h_{i}(i=1,2, \ldots, k)$ are nonnegative functions on $\Lambda \times \Lambda$.
We technically consider a sequence of functions $w_{i}(s)$, which can be calculated recursively by

$$
\left\{\begin{array}{l}
w_{1}(s):=\max _{\tau \in[0, s]} \varphi_{1}(\tau) \tag{2.1}\\
w_{i+1}(s):=\max _{\tau \in[0, s]}\left\{\frac{\varphi_{i+1}(\tau)}{w_{i}(\tau)}\right\} w_{i}(s), \quad i=1,2, \ldots, k-1
\end{array}\right.
$$

We define the functions:

$$
\begin{gather*}
\Psi(u):=\int_{0}^{u} \frac{\mathrm{~d} s}{\left(\psi^{-1}(s)\right)^{q}}, \quad u>0 \tag{2.2}\\
W_{i}(u):=\int_{1}^{u} \frac{\mathrm{~d} s}{w_{i}^{p_{i}}\left(\psi^{-1}\left(\Psi^{-1}(s)\right)\right)}, \quad i=1,2, \ldots, k, u>0 . \tag{2.3}
\end{gather*}
$$

Obviously, both Ψ and W_{i} are strictly increasing and continuous functions. Let Ψ^{-1}, W_{i}^{-1} denote Ψ, W_{i} inverse function, respectively. Then both Ψ^{-1} and W_{i}^{-1} are also continuous and increasing functions. Furthermore, let

$$
\begin{align*}
& \tilde{h}_{i}(m, n, s, t):=\max _{(\tau, \xi) \in[0, m] \times[0, n]} h_{i}(m, n, s, t), \tag{2.4}\\
& \tilde{f}_{i}(m, n, s, t):=\max _{(\tau, \xi) \in[0, m] \times[0, n]} f_{i}(m, n, s, t)
\end{align*}
$$

which are nondecreasing in m and n for each fixed s and t and satisfies

$$
\tilde{h}_{i}(m, n, s, t) \geq h_{i}(m, n, s, t) \geq 0, \text { for all } i=1,2, \ldots, k
$$

Lemma 2.1 Suppose w is continuous and positive functions on \mathbb{R}_{+}, f is nonnegative function on $\Lambda \times \Lambda, u$ is a nonnegative function on Λ, then we can obtain

$$
\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} f(s, t, j, l) w(u(j, l))=\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} w(u(s, t)) \sum_{j=s+1}^{m-1} \sum_{l=t+1}^{n-1} f(j, l, s, t)
$$

Proof We use mathematical induction with respect to m and n. If $m=n=2$, we obtain

$$
\begin{aligned}
& \sum_{s=0}^{1} \sum_{t=0}^{1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} f(s, t, j, l) w(u(j, l))=f(1,1,0,0) w(u(0,0)) \\
& \sum_{s=0}^{1} \sum_{t=0}^{1} w(u(s, t)) \sum_{j=s+1}^{1} \sum_{l=t+1}^{1} f(j, l, s, t)=w(u(0,0)) f(1,1,0,0)
\end{aligned}
$$

Thus

$$
\sum_{s=0}^{1} \sum_{t=0}^{1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} f(s, t, j, l) w(u(j, l))=\sum_{s=0}^{1} \sum_{t=0}^{1} w(u(s, t)) \sum_{j=s+1}^{1} \sum_{l=t+1}^{1} f(j, l, s, t)
$$

It means that the lemma is true for $m=n=2$. Suppose that the lemma is true for $m=m_{1}, n=$ n_{1}, that is

$$
\sum_{s=0}^{m_{1}-1} \sum_{t=0}^{n_{1}-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} f(s, t, j, l) w(u(j, l))=\sum_{s=0}^{m_{1}-1} \sum_{t=0}^{n_{1}-1} w(u(s, t)) \sum_{j=s+1}^{m_{1}-1} \sum_{l=t+1}^{n_{1}-1} f(j, l, s, t)
$$

Consider $m=m_{1}+1, n=n_{1}+1$, then we have

$$
\begin{aligned}
& \sum_{s=0}^{m_{1}} \sum_{t=0}^{n_{1}} w(u(s, t)) \sum_{j=s+1}^{m_{1}} \sum_{l=t+1}^{n_{1}} f(j, l, s, t) \\
& \quad=\sum_{s=0}^{m_{1}-1} \sum_{t=0}^{n_{1}-1} w(u(s, t)) \sum_{j=s+1}^{m_{1}} \sum_{l=t+1}^{n_{1}} f(j, l, s, t) \\
& \quad=\sum_{s=0}^{m_{1}-1} \sum_{t=0}^{n_{1}-1} w(u(s, t)) \sum_{j=s+1}^{m_{1}-1} \sum_{l=t+1}^{n_{1}-1} f(j, l, s, t)+\sum_{s=0}^{m_{1}-1} \sum_{t=0}^{n_{1}-1} w(u(s, t)) f\left(m_{1}, n_{1}, s, t\right) \\
& \quad=\sum_{s=0}^{m_{1}-1} \sum_{t=0}^{n_{1}-1} w(u(s, t)) \sum_{j=s+1}^{m_{1}-1} \sum_{l=t+1}^{n_{1}-1} f(j, l, s, t)+\sum_{j=0}^{m_{1}-1} \sum_{l=0}^{n_{1}-1} f\left(m_{1}, n_{1}, j, l\right) w(u(j, l)) \\
& \quad=\sum_{s=0}^{m_{1}} \sum_{t=0}^{n_{1}} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} f(s, t, j, l) w(u(j, l)) .
\end{aligned}
$$

Using the inductive assumption, thus

$$
\sum_{s=0}^{m_{1}} \sum_{t=0}^{n_{1}} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} f(s, t, j, l) w(u(j, l))=\sum_{s=0}^{m_{1}} \sum_{t=0}^{n_{1}} w(u(s, t)) \sum_{j=s+1}^{m_{1}} \sum_{l=t+1}^{n_{1}} f(j, l, s, t)
$$

It implies that it is true for $m=m_{1}+1, n=n_{1}+1$. Therefore, it is true for any natural number $m \geq 2, n \geq 2$.

Theorem 2.2 Suppose that $\left(H_{1}-H_{5}\right)$ hold and $u(m, n)$ is a nonnegative function on Λ satisfying

$$
\begin{equation*}
\psi(u(m, n)) \leq c(m, n)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} h_{i}(s, t, j, l) u^{q} \varphi_{i}^{p_{i}}(u(j, l)) \tag{2.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
u(m, n) \leq \psi^{-1}\left\{\Psi^{-1}\left[W_{k}^{-1}\left(W_{k}\left(E_{k}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{k}(m, n, s, t)\right)\right]\right\} \tag{2.6}
\end{equation*}
$$

for $(m, n) \in \Lambda_{\left(M_{1}, N_{1}\right)}$, where

$$
\begin{aligned}
& E_{1}(m, n):=\Psi(c(m, n)) \\
& E_{i}(m, n):=W_{i-1}^{-1}\left(W_{i-1}\left(E_{i-1}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i-1}(m, n, s, t)\right), \quad i=2,3, \ldots, k
\end{aligned}
$$

and $\left(M_{1}, N_{1}\right) \in \Lambda$ is arbitrarily given on the boundary of the lattice

$$
\begin{aligned}
\mathcal{R}:= & \left\{(m, n) \in \Lambda: W_{i}\left(E_{i}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i}(m, n, s, t) \leq \int_{1}^{\infty} \frac{\mathrm{d} s}{w_{i}\left(\psi^{-1}\left(\Psi^{-1}(s)\right)\right)},\right. \\
& \left.W_{i}^{-1}\left(W_{i}\left(E_{i}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i}(m, n, s, t)\right) \leq \int_{1}^{\infty} \frac{\mathrm{d} s}{\left(\psi^{-1}(s)\right)^{q}}, i=1,2, \ldots, k\right\} .
\end{aligned}
$$

Proof We monotonize some given functions φ_{i} in the sums. The sequence $w_{i}(s)$ defined by $\varphi_{i}(s)$ in (2.1) are nondecreasing and nonnegative functions and satisfy $w_{i}^{p_{i}}(s) \geq \varphi_{i}^{p_{i}}(s), i=1,2, \ldots, k$. Moreover, the ratio $w_{i+1}^{p_{i}}(s) / w_{i}^{p_{i}}(s)$ are also nondecreasing, $i=1,2, \ldots, k$. By (2.4), (2.5), from (2.1), we have

$$
\begin{equation*}
\psi(u(m, n)) \leq c(m, n)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l) u^{q}(s, t) w_{i}^{p_{i}}(u(j, l)) . \tag{2.7}
\end{equation*}
$$

By H_{3}, from (2.7), we have

$$
\begin{equation*}
\psi(u(m, n)) \leq c(M, N)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l) u^{q}(s, t) w_{i}^{p_{i}}(u(j, l)), \tag{2.8}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$, where $0 \leq M \leq M_{1}$ and $0 \leq N \leq N_{1}$ are chosen arbitrarily. Let $z(m, n)$ denote the function on the right-hand side of (2.8), which is a nonnegative and nondecreasing function on $\Lambda_{(M, N)}$ and $z(0, n)=C(M, N)$. Then we obtain the equivalent form of (2.8)

$$
\begin{equation*}
u(m, n) \leq \psi^{-1}(z(m, n)), \quad \forall(m, n) \in \Lambda_{(M, N)} \tag{2.9}
\end{equation*}
$$

Since w_{i} is nondecreasing and satisfies $w_{i}(u)>0$, for $u>0$. By the definition of z and (2.9), from (2.8), we have

$$
\begin{align*}
\Delta_{1} z(m, n) & =\sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(m, t, j, l) u^{q}(m, t)\left(w_{i}(u(m, l))\right)^{p_{i}} \\
& \leq \sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(m, t, j, l)\left(\psi^{-1}(z(m, t))\right)^{q}\left(w_{i}\left(\psi^{-1}(z(m, l))\right)\right)^{p_{i}} \tag{2.10}
\end{align*}
$$

Using the monotonicity of ψ^{-1} and z, from (2.10), we have

$$
\begin{equation*}
\Delta_{1} z(m, n) \leq\left(\psi^{-1}(z(m, n))\right)^{q} \sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(m, t, j, l)\left(w_{i}\left(\psi^{-1}(z(m, l))\right)\right)^{p_{i}} \tag{2.11}
\end{equation*}
$$

That is

$$
\begin{equation*}
\frac{\Delta_{1} z(m, n)}{\left(\psi^{-1}(z(m, n))\right)^{q}} \leq \sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(m, t, j, l)\left(w_{i}\left(\psi^{-1}(z(m, l))\right)\right)^{p_{i}} \tag{2.12}
\end{equation*}
$$

By the mean-value theorem for integrals, for arbitrarily given $(m, n),(m+1, n) \in \Lambda_{(M, N)}$, in the open interval $(z(m, n), z(m+1, n))$, there exists ξ, which satisfies

$$
\begin{align*}
\Psi(z(m+1, n))-\Psi(z(m, n))= & \int_{z(m, n)}^{z(m+1, n)} \frac{\mathrm{d} s}{\left(\psi^{-1}(s)\right)^{q}}=\frac{\Delta_{1} z(m, n)}{\left(\psi^{-1}(\xi)\right)^{q}} \\
& \leq \frac{\Delta_{1} z(m, n)}{\left(\psi^{-1}(z(m, n))\right)^{q}} \tag{2.13}
\end{align*}
$$

where we use the definition of Ψ in (2.2). From (2.12) and (2.13), we obtain

$$
\begin{equation*}
\Psi(z(m+1, n)) \leq \Psi(z(m, n))+\sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(m, t, j, l)\left(w_{i}\left(\psi^{-1}(z(m, l))\right)\right)^{p_{i}} \tag{2.14}
\end{equation*}
$$

Keep n fixed and substitute m with s in (2.14). Then, taking the sums on both sides of (2.14) over $s=0,1, \ldots, m-1$, we have

$$
\begin{align*}
\Psi(z(m, n)) & \leq \Psi(z(0, n))+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l)\left(w_{i}\left(\psi^{-1}(z(j, l))\right)\right)^{p_{i}} \\
& \leq \Psi(c(M, N))+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l)\left(w_{i}\left(\psi^{-1}(z(j, l))\right)\right)^{p_{i}} \\
& =C_{k}(M, N)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l)\left(w_{i}\left(\psi^{-1}(z(j, l))\right)\right)^{p_{i}}, \tag{2.15}
\end{align*}
$$

where

$$
\begin{equation*}
C_{k}(M, N)=\Psi(c(M, N)) \tag{2.16}
\end{equation*}
$$

Let

$$
\begin{equation*}
v(m, n)=\Psi(z(m, n)) . \tag{2.17}
\end{equation*}
$$

From (2.15), we have

$$
\begin{equation*}
v(m, n) \leq C_{k}(M, N)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l)\left(w_{i}\left(\psi^{-1}\left(\Psi^{-1}(v(j, l))\right)\right)\right)^{p_{i}} \tag{2.18}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$. Using Lemma 2.1, (2.18) can be written as

$$
\begin{equation*}
v(m, n) \leq C_{k}(M, N)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i}(m, n, s, t)\left(w_{i}\left(\psi^{-1}\left(\Psi^{-1}(v(s, t))\right)\right)\right)^{p_{i}} \tag{2.19}
\end{equation*}
$$

where $\tilde{g}_{i}(m, n, s, t)=\sum_{j=s+1}^{m-1} \sum_{l=t+1}^{n-1} \tilde{h}_{i}(j, l, s, t)$. Obviously, $\tilde{g}_{i}(m, n, s, t), i=1,2, \ldots, k$ are nondecreasing in m and n for each fixed s and t and $\tilde{g}_{i}(m, n, s, t) \geq 0$. Then from (2.19), we have

$$
\begin{equation*}
v(m, n) \leq C_{k}(M, N)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i}(M, N, s, t) w_{i}^{p_{i}}\left(\psi^{-1}\left(\Psi^{-1}(v(s, t))\right)\right) \tag{2.20}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$.

From (2.20), we can conclude that

$$
\begin{equation*}
v(m, n) \leq W_{k}^{-1}\left(W_{k}\left(E_{k}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{k}(M, N, s, t)\right) \tag{2.21}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$, where

$$
\begin{align*}
& E_{i}(M, N):=W_{i-1}^{-1}\left(W_{i-1}\left(E_{i-1}(M, N)\right)+\sum_{s=0}^{M-1} \sum_{t=0}^{N-1} \tilde{g}_{i-1}(M, N, s, t)\right), \quad i=2, \ldots, k \tag{2.22}\\
& E_{1}(M, N):=C_{1}(M, N)
\end{align*}
$$

For $k=1$, let $z_{1}(m, n)$ denote the function on the right-hand side of (2.20), which is a nonnegative and nondecreasing function on $\Lambda_{(M, N)}, z_{1}(0, n)=C_{1}(M, N)$ and $v(m, n) \leq z_{1}(m, n)$. Then we get

$$
\begin{align*}
\Delta_{1} z_{1}(m, n) & =\sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, s, t)\left(w_{1}\left(\psi^{-1}\left(\Psi^{-1}(v(s, t))\right)\right)\right)^{p_{1}} \\
& \leq \sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, s, t)\left(w_{1}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{1}(s, t)\right)\right)\right)\right)^{p_{1}} \tag{2.23}
\end{align*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$. From (2.23), we have

$$
\begin{equation*}
\frac{\Delta_{1} z_{1}(m, n)}{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{1}(m, n)\right)\right)\right)} \leq \sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, m, t) . \tag{2.24}
\end{equation*}
$$

By the mean-value theorem for integrals, there exists ξ in the open interval $\left(z_{1}(m, n), z_{1}(m+\right.$ $1, n)$), for arbitrarily given $(m, n),(m+1, n) \in \Lambda_{(M, N)}$, such that

$$
\begin{align*}
& W_{1}\left(z_{1}(m+1, n)\right)-W_{1}\left(z_{1}(m, n)\right)=\int_{z_{1}(m, n)}^{z_{1}(m+1, n)} \frac{\mathrm{d} s}{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi^{-1}(s)\right)\right)} \\
& \quad=\frac{\Delta_{1} z_{1}(m, n)}{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi^{-1}(\xi)\right)\right)} \leq \frac{\Delta_{1} z_{1}(m, n)}{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{1}(m, n)\right)\right)\right)} \tag{2.25}
\end{align*}
$$

From (2.24) and (2.25), we have

$$
\begin{equation*}
W_{1}\left(z_{1}(m+1, n)\right) \leq W_{1}\left(z_{1}(m, n)\right)+\sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, m, t) \tag{2.26}
\end{equation*}
$$

Keep n fixed and substitute m with s in (2.26). Then, taking the sums on both sides of (2.26) over $s=0,1, \ldots, m-1$, we have

$$
\begin{align*}
W_{1}\left(z_{1}(m, n)\right) & \leq W_{1}\left(z_{1}(0, n)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, s, t) \\
& =W_{1}\left(C_{1}(M, N)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, s, t) \tag{2.27}
\end{align*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$. Using $v(m, n) \leq z_{1}(m, n)$, from (2.27), we get

$$
\begin{equation*}
v(m, n) \leq z_{1}(m, n) \leq W_{1}^{-1}\left(W_{1}\left(C_{1}(M, N)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, s, t)\right) \tag{2.28}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$. This proves that (2.21) is true for $k=1$.
Next, we make the inductive assumption that (2.21) is true for $k=l$, then

$$
\begin{equation*}
v(m, n) \leq W_{l}^{-1}\left(W_{l}\left(E_{l}(M, N)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{l}(M, N, s, t)\right) \tag{2.29}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$, where

$$
\begin{aligned}
& E_{1}(M, N):=C_{l}(M, N), \\
& E_{i}(M, N):=W_{i-1}^{-1}\left(W_{i-1}\left(E_{i-1}(M, N)\right)+\sum_{s=0}^{M-1} \sum_{t=0}^{N-1} \tilde{g}_{i-1}(M, N, s, t)\right), i=2,3, \ldots, l .
\end{aligned}
$$

Now we consider

$$
\begin{equation*}
v(m, n) \leq C_{l+1}(M, N)+\sum_{i=1}^{l+1} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i}(M, N, s, t) w_{i}^{p_{i}}\left(\psi^{-1}\left(\Psi^{-1}(v(s, t))\right)\right) \tag{2.30}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$. Let $z_{2}(m, n)$ denote the nonnegative and nondecreasing function of the right-hand of (2.30). Then $z_{2}(0, n)=C_{l+1}(M, N)$ and $v(m, n) \leq z_{2}(m, n)$.

Let

$$
\begin{equation*}
\phi_{i+1}(u):=\frac{w_{i+1}(u)}{w_{1}^{p_{1} / p_{i+1}}(u)}, \quad i=1,2, \ldots, l . \tag{2.31}
\end{equation*}
$$

By (2.1), we conclude that $\phi_{i}, i=1,2, \ldots, l+1$ are nondecreasing functions.
From (2.30), we have

$$
\begin{align*}
& \frac{\Delta_{1} z_{2}(m, n)}{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{2}(m, n)\right)\right)\right)} \\
& =\frac{\sum_{i=1}^{l+1} \sum_{t=0}^{n-1} \tilde{g}_{i}(M, N, m, t) w_{i}^{p_{i}}\left(\psi^{-1}\left(\Psi^{-1}(v(m, t))\right)\right)}{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{2}(m, n)\right)\right)\right)} \\
& \leq \frac{\sum_{i=1}^{l+1} \sum_{t=0}^{n-1} \tilde{g}_{i}(M, N, m, t) w_{i}^{p_{i}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{2}(m, t)\right)\right)\right)}{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{2}(m, n)\right)\right)\right)} \\
& \leq \sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, m, t)+\sum_{i=2}^{l+1} \sum_{t=0}^{n-1} \tilde{g}_{i}(M, N, m, t) \phi_{i}^{p_{i}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{2}(m, t)\right)\right)\right) \\
& =\sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, m, t)+\sum_{i=1}^{l} \sum_{t=0}^{n-1} \tilde{g}_{i+1}(M, N, m, t) \phi_{i+1}^{p_{i+1}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{2}(m, t)\right)\right)\right) \tag{2.32}
\end{align*}
$$

By the mean-value theorem for integrals, there exists ξ in the open interval $\left(z_{2}(m, n), z_{2}(m+\right.$ $1, n)$), for arbitrarily given $(m, n),(m+1, n) \in \Lambda_{(M, N)}$, then, we obtain

$$
\begin{align*}
& W_{1}\left(z_{2}(m+1, n)\right)-W_{1}\left(z_{2}(m, n)\right)=\int_{z_{2}(m, n)}^{z_{2}(m+1, n)} \frac{\mathrm{d} s}{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi^{-1}(s)\right)\right)} \\
& \quad=\frac{\Delta_{1} z_{2}(m, n)}{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi^{-1}(\xi)\right)\right)} \leq \frac{\Delta_{1} z_{2}(m, n)}{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{2}(m, n)\right)\right)\right)} . \tag{2.33}
\end{align*}
$$

From (2.32) and (2.33), we get

$$
\begin{align*}
& W_{1}\left(z_{2}(m+1, n)\right)-W_{1}\left(z_{2}(m, n)\right) \\
& \quad \leq \sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, m, t)+\sum_{i=1}^{l} \sum_{t=0}^{n-1} \tilde{g}_{i+1}(M, N, m, t) \phi_{i+1}^{p_{i+1}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{2}(m, t)\right)\right)\right) \tag{2.34}
\end{align*}
$$

Substitute m with s in (2.34) and keep n fixed, then taking the sum on both sides of (2.34) over $s=0,1, \ldots, m-1$, we have

$$
\begin{align*}
W_{1}\left(z_{2}(m, n)\right) \leq & W_{1}\left(C_{l+1}(M, N)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{1}(M, N, s, t)+ \\
& \sum_{i=1}^{l} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i+1}(M, N, s, t) \phi_{i+1}^{p_{i+1}}\left(\psi^{-1}\left(\Psi^{-1}\left(z_{2}(s, t)\right)\right)\right) \tag{2.35}
\end{align*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$.
Let

$$
\begin{gather*}
\theta(m, n)):=W_{1}\left(z_{2}(m, n)\right), \tag{2.36}\\
\rho_{1}(M, N):=W_{1}\left(C_{l+1}(M, N)\right)+\sum_{s=0}^{M-1} \sum_{t=0}^{N-1} \tilde{g}_{1}(M, N, s, t) . \tag{2.37}
\end{gather*}
$$

Using (2.36) and (2.37), from (2.35) we have, for $\forall(m, n) \in \Lambda_{(M, N)}$,

$$
\begin{equation*}
\theta(m, n)) \leq \rho_{1}(M, N)+\sum_{i=1}^{l} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i+1}(M, N, s, t) \phi_{i+1}^{p_{i+1}}\left[\psi^{-1}\left(\Psi^{-1}\left(W_{1}^{-1}(\theta(s, t))\right)\right)\right] . \tag{2.38}
\end{equation*}
$$

It has the same form as (2.20). We are ready to use the inductive assumption for (2.38). Let $\delta(s):=\psi^{-1}\left(\Psi^{-1}\left(W_{1}^{-1}(s)\right)\right)$. Since $\psi^{-1}, \Psi^{-1}, W_{1}^{-1}, \phi_{i}$ are continuous, nondecreasing and positive on $(0, \infty)$, each $\phi_{i}(\delta(s))$ is continuous and nondecreasing on $(0, \infty)$. Moreover

$$
\frac{\phi_{i+1}^{p_{i+1}}(\delta(s))}{\phi_{i}^{p_{i}}(\delta(s))}=\frac{w_{i+1}^{p_{i+1}}(\delta(s))}{w_{i}^{p_{i}}(\delta(s))}=\max _{\tau \in[0, \delta(s)]}\left\{\frac{\varphi_{i+1}(\tau)}{w_{i}(\tau)}\right\}, \quad i=2, \ldots, l,
$$

which is also continuous and nondecreasing on $[0, \infty)$ and positive on $(0, \infty)$. Therefore, by the inductive assumption in (2.29), from (2.38), we have

$$
\begin{equation*}
\theta(m, n) \leq \Phi_{l+1}^{-1}\left(\Phi_{l+1}\left(\rho_{l}(M, N)\right)+\sum_{s=0}^{m-1} \sum_{n=0}^{n-1} \tilde{g}_{l+1}(M, N, s, t)\right) \tag{2.39}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$, where

$$
\begin{gather*}
\Phi_{i+1}(u):=\int_{0}^{u} \frac{\mathrm{~d} s}{\phi_{i+1}^{p_{i+1}}\left(\psi^{-1}\left(\Psi^{-1}\left(W_{1}^{-1}(s)\right)\right)\right)}, \quad u>0, i=1,2, \ldots, l, \tag{2.40}\\
\rho_{i}(M, N):=\Phi_{i-1}^{-1}\left(\Phi_{i-1}\left(\rho_{i-1}(M, N)\right)+\sum_{s=0}^{M-1} \sum_{n=0}^{N-1} g_{i}(M, N, s, t)\right), \quad i=2,3, \ldots, l . \tag{2.41}
\end{gather*}
$$

Note that

$$
\begin{align*}
\Phi_{i+1}(u) & =\int_{0}^{u} \frac{w_{1}^{p_{1}}\left(\psi^{-1}\left(\Psi_{p}^{-1}\left(W_{1}^{-1}(s)\right)\right)\right) \mathrm{d} s}{w_{i+1}^{p_{i+1}}\left(\psi^{-1}\left(\Psi_{p}^{-1}\left(W_{1}^{-1}(s)\right)\right)\right)}=\int_{1}^{W_{1}^{-1}(u)} \frac{\mathrm{d} s}{w_{i+1}^{p_{i+1}}\left(\psi^{-1}\left(\Psi_{p}^{-1}(s)\right)\right)} \\
& =W_{i+1}\left(W_{1}^{-1}(u)\right), \quad i=1,2, \ldots, l . \tag{2.42}
\end{align*}
$$

Thus, from (2.36), (2.39) and (2.42), we have

$$
\begin{align*}
v(m, n) & \leq z_{2}(m, n)=W_{1}^{-1}(\theta(m, n)) \\
& \leq W_{1}^{-1}\left(\Phi_{l+1}^{-1}\left(\Phi_{l+1}\left(\rho_{l}(M, N)\right)+\sum_{s=0}^{m-1} \sum_{n=0}^{n-1} \tilde{g}_{l+1}(M, N, s, t)\right)\right) \\
& =W_{l+1}^{-1}\left(W_{l+1}\left(W_{1}^{-1}\left(\rho_{l}(M, N)\right)\right)+\sum_{s=0}^{m-1} \sum_{n=0}^{n-1} \tilde{g}_{l+1}(M, N, s, t)\right) \tag{2.43}
\end{align*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$. We can prove that the term of $W_{1}^{-1}\left(\rho_{l}(M, N)\right)$ in (2.43) is just the same as $E_{l+1}(M, N)$ defined in (2.22). Let $\tilde{\rho}_{i}(M, N):=W_{1}^{-1}\left(\rho_{i}(M, N)\right)$. By (2.37), we have

$$
\tilde{\rho}_{1}(M, N)=W_{1}^{-1}\left(\rho_{1}(M, N)\right)=W_{1}^{-1}\left(W_{1}\left(C_{l+1}(M, N)\right)+\sum_{s=0}^{M-1} \sum_{t=0}^{N-1} \tilde{g}_{1}(M, N, s, t)\right)=E_{2}(M, N) .
$$

Then using (2.41) and (2.42), we get

$$
\begin{align*}
\tilde{\rho}_{i}(M, N) & =W_{1}^{-1}\left(\Phi_{i-1}^{-1}\left(\Phi_{i-1}\left(\rho_{i-1}(M, N)\right)+\sum_{s=0}^{M-1} \sum_{t=0}^{N-1} \tilde{g}_{i}(M, N, s, t)\right)\right) \\
& =W_{i}^{-1}\left[W_{i}\left(W_{1}^{-1}\left(\rho_{i-1}(M, N)\right)\right)+\sum_{s=0}^{M-1} \sum_{t=0}^{N-1} \tilde{g}_{i}(M, N, s, t)\right] \\
& =W_{i}^{-1}\left[W_{i}\left(\tilde{\rho}_{i-1}(M, N)\right)+\sum_{s=0}^{M-1} \sum_{t=0}^{N-1} \tilde{g}_{i}(M, N, s, t)\right] \\
& =E_{i+1}(M, N), \quad i=2,3 \ldots, l . \tag{2.44}
\end{align*}
$$

This proves that $W_{1}^{-1}\left(\rho_{l}(M, N)\right)$ in (2.43) is just the same as $E_{l+1}(M, N)$ defined in (2.22). Hence (2.43) can be equivalently written as

$$
\begin{equation*}
v(m, n) \leq W_{l+1}^{-1}\left(W_{l+1}\left(E_{l+1}(M, N)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{l+1}(M, N, s, t)\right), \quad \forall(m, n) \in \Lambda_{(M, N)} \tag{2.45}
\end{equation*}
$$

The estimation (2.21) of unknown function v in the inequality (2.18) is proved by induction. By (2.9), (2.21) and (2.45), we have

$$
\begin{align*}
u(m, n) & \leq \psi^{-1}(z(m, n)) \leq \psi^{-1}\left(\Psi^{-1}(v(m, n))\right) \\
& \leq \psi^{-1}\left(\Psi^{-1}\left(W_{k}^{-1}\left(W_{k}\left(E_{k}(M, N)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{k}(M, N, s, t)\right)\right)\right) \tag{2.46}
\end{align*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$. Let $m=M, n=N$. From (2.46), we have

$$
u(M, N) \leq \psi^{-1}\left(\Psi^{-1}\left(W_{k}^{-1}\left(W_{k}\left(E_{k}(M, N)\right)+\sum_{s=0}^{M-1} \sum_{t=0}^{N-1} \tilde{g}_{k}(M, N, s, t)\right)\right)\right)
$$

This proves (2.6), since M and N are chosen arbitrarily.
This completes the proof of Theorem 2.2.
Corollary 2.3 Suppose that $\left(H_{1}-H_{5}\right)$ hold and $u(m, n)$ is a nonnegative function on Λ satisfying

$$
\begin{equation*}
\psi(u(m, n)) \leq c(m, n)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} h_{i}(s, t, j, l) \varphi_{i}^{p_{i}}(u(j, l)) \tag{2.47}
\end{equation*}
$$

Then

$$
\begin{equation*}
u(m, n) \leq \psi^{-1}\left[W_{k}^{-1}\left(W_{k}\left(E_{k}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{k}(m, n, s, t)\right)\right] \tag{2.48}
\end{equation*}
$$

for $(m, n) \in \Lambda_{\left(M_{1}, N_{1}\right)}$, where

$$
\begin{aligned}
& E_{1}(m, n):=c(m, n) \\
& E_{i}(m, n):=W_{i-1}^{-1}\left(W_{i-1}\left(E_{i-1}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i-1}(m, n, s, t)\right), \quad i=2,3, \ldots, k
\end{aligned}
$$

and $\left(M_{1}, N_{1}\right) \in \Lambda$ is arbitrarily given on the boundary of the lattice

$$
\begin{aligned}
\mathcal{R}:= & \left\{(m, n) \in \Lambda: W_{i}\left(E_{i}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i}(m, n, s, t) \leq \int_{1}^{\infty} \frac{\mathrm{d} s}{w_{i}\left(\psi^{-1}(s)\right)},\right. \\
& \left.W_{i}^{-1}\left(W_{i}\left(E_{i}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i}(m, n, s, t)\right) \leq \int_{1}^{\infty} \frac{\mathrm{d} s}{\psi^{-1}(s)}, i=1,2, \ldots, k\right\} .
\end{aligned}
$$

The proof of Corollary 2.3 is similar to the argument in the proof of Theorem 2.2 with appropriate modification. We omit the details here.

Remark 2.4 If $p_{i}=1$ and $h_{i}(s, t, j, l)=h_{i}(m, n, s, t)$, Corollary 2.3 reduces to [29, Theorem 1].
Remark 2.5 If $k=l_{1}+l_{2}$ and $\varphi_{i}(u)=u$, Corollary 2.3 reduces to [30, Theorem 1] and [31, Theorem 1].

Theorem 2.6 Suppose that $\left(H_{1}-H_{5}\right)$ hold and all $f_{i}(i=1,2, \ldots, k)$ are nonnegative functions on $\Lambda \times \Lambda, p>q \geq 0 . u(m, n)$ is a nonnegative function on Λ satisfying

$$
\begin{align*}
\psi(u(m, n)) \leq & c(m, n)+\sum_{i=1}^{k}\left(\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} f_{i}(s, t, j, l) u^{p}(s, t)+\right. \\
& \left.\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} h_{i}(s, t, j, l) u^{q}(s, t) \varphi_{i}^{p_{i}}(u(j, l))\right) . \tag{2.49}
\end{align*}
$$

Then

$$
\begin{equation*}
u(m, n) \leq \psi^{-1}\left\{\Psi_{p}^{-1}\left[W_{k}^{-1}\left(W_{k}\left(E_{k}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{k}(m, n, s, t)\right)\right]\right\} \tag{2.50}
\end{equation*}
$$

for $(m, n) \in \Lambda_{\left(M_{1}, N_{1}\right)}$, where

$$
\begin{equation*}
\Psi_{p}(u)=\int_{0}^{u} \frac{\mathrm{~d} s}{\left(\psi^{-1}(s)\right)^{p}} \tag{2.51}
\end{equation*}
$$

$$
\begin{aligned}
& W_{i}(u)=\int_{1}^{u} \frac{\mathrm{~d} s}{w_{i}\left(\psi^{-1}\left(\Psi_{p}^{-1}(s)\right)\right)} \\
& E_{1}(m, n)=\Psi_{q}(c(m, n))+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(s, t, j, l) \\
& E_{i}(m, n)=W_{i-1}^{-1}\left(W_{i-1}\left(E_{i-1}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i-1}(m, n, s, t)\right), \quad i=2,3, \ldots, k,
\end{aligned}
$$

and $\left(M_{1}, N_{1}\right) \in \Lambda$ is arbitrarily given on the boundary of the lattice

$$
\begin{aligned}
\mathcal{R}= & \left\{(m, n) \in \Lambda: W_{i}\left(E_{i}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i}(m, n, s, t) \leq \int_{1}^{\infty} \frac{\mathrm{d} s}{w_{i}\left(\psi^{-1}\left(\Psi_{p}^{-1}(s)\right)\right)},\right. \\
& \left.W_{i}^{-1}\left(W_{i}\left(E_{i}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{g}_{i}(m, n, s, t)\right) \leq \int_{1}^{\infty} \frac{\mathrm{d} s}{\psi^{-1}(s)}, i=1,2, \ldots, k\right\} .
\end{aligned}
$$

Proof First of all, we monotonize some given functions φ_{i} in the sums. Obviously, the sequence $w_{i}(s)$ defined by $\varphi_{i}(s)$ in (2.1) are nondecreasing and nonnegative functions and satisfy $w_{i}^{p_{i}}(s) \geq$ $\varphi_{i}^{p_{i}}(s), i=1,2, \ldots, k$. Moreover, the ratio $w_{i+1}^{p_{i}}(s) / w_{i}^{p_{i}}(s)$ are also nondecreasing, $i=1,2, \ldots, k$. By (2.49), from (2.1), we have

$$
\begin{align*}
\psi(u(m, n)) \leq & c(m, n)+\sum_{i=1}^{k}\left(\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(s, t, j, l) u^{p}(s, t)+\right. \\
& \left.\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l) u^{q}(s, t) w_{i}^{p_{i}}(u(j, l))\right) . \tag{2.52}
\end{align*}
$$

By H_{3}, from(2.52), we have

$$
\begin{align*}
\psi(u(m, n)) \leq & c(M, N)+\sum_{i=1}^{k}\left(\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(s, t, j, l) u^{p}(s, t)+\right. \\
& \left.\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l) u^{q}(s, t) w_{i}^{p_{i}}(u(j, l))\right) \tag{2.53}
\end{align*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$, where $0 \leq M \leq M_{1}$ and $0 \leq N \leq N_{1}$ are chosen arbitrarily. Let $z(m, n)$ denote the function on the right-hand side of (2.53), which is a nonnegative and nondecreasing function on $\Lambda_{(M, N)}$ and $z(0, n)=c(M, N)$. Then we obtain

$$
\begin{equation*}
u(m, n) \leq \psi^{-1}(z(m, n)), \quad \forall(m, n) \in \Lambda_{(M, N)} \tag{2.54}
\end{equation*}
$$

Since w_{i} is nondecreasing and satisfies $w_{i}(u)>0$, for $u>0$. By the definition of z and (2.54), we have

$$
\begin{aligned}
\Delta_{1} z(m, n)= & \sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(m, t, j, l) u^{p}(m, t)+ \\
& \sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(m, t, j, l) u^{q}(m, t) w_{i}^{p_{i}}(u(j, l))
\end{aligned}
$$

$$
\begin{align*}
\leq & \sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(m, t, j, l)\left(\psi^{-1}(z(m, t))\right)^{p}+ \\
& \sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(m, t, j, l)\left(\psi^{-1}(z(m, t))\right)^{q} w_{i}^{p_{i}}\left(\psi^{-1}(z(j, l))\right) . \tag{2.55}
\end{align*}
$$

Let $\psi^{-1}(z(m, t))>1$. Then $\left(\psi^{-1}(z(m, n))\right)^{p}>\left(\psi^{-1}(z(m, n))\right)^{q}$. Using the monotonicity of ψ^{-1} and z, from (2.55), we have

$$
\begin{align*}
\Delta_{1} z(m, n) \leq & \left(\psi^{-1}(z(m, n))\right)^{p}\left(\sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(m, t, j, l)+\right. \\
& \left.\sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(m, t, j, l) w_{i}^{p_{i}}\left(\psi^{-1}(z(j, l))\right)\right) . \tag{2.56}
\end{align*}
$$

That is

$$
\begin{align*}
\frac{\Delta_{1} z(m, n)}{\left(\psi^{-1}(z(m, n))\right)^{p}} \leq & \left(\sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(m, t, j, l)+\right. \\
& \left.\sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(m, t, j, l) w_{i}^{p_{i}}\left(\psi^{-1}(z(j, l))\right)\right) . \tag{2.57}
\end{align*}
$$

On the other hand, by the mean-value theorem for integrals, for arbitrarily given $(m, n),(m+$ $1, n) \in \Lambda_{(M, N)}$, in the open interval $(z(m, n), z(m+1, n))$, there exists ξ, which satisfies

$$
\begin{align*}
\Psi_{p}(z(m+1, n))-\Psi_{p}(z(m, n)) & =\int_{z(m, n)}^{z(m+1, n)} \frac{\mathrm{d} s}{\left(\psi^{-1}(s)\right)^{p}}=\frac{\Delta_{1} z(m, n)}{\left(\psi^{-1}(\xi)\right)^{p}} \\
& \leq \frac{\Delta_{1} z(m, n)}{\left(\psi^{-1}(z(m, n))\right)^{p}} \tag{2.58}
\end{align*}
$$

We use the definition of Ψ_{p} in (2.51). From (2.57) and (2.58), we obtain

$$
\begin{align*}
\Psi_{p}(z(m+1, n)) \leq & \Psi_{p}(z(m, n))+\left(\sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(m, t, j, l)+\right. \\
& \left.\sum_{i=1}^{k} \sum_{t=0}^{n-1} \sum_{j=0}^{m-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(m, t, j, l) w_{i}^{p_{i}}\left(\psi^{-1}(z(j, l))\right)\right) . \tag{2.59}
\end{align*}
$$

Keep n fixed and substitute m with s in (2.59). Then, taking the sums on both sides of (2.59) over $s=0,1, \ldots, m-1$, we have

$$
\begin{aligned}
\Psi_{p}(z(m, n)) \leq & \Psi_{p}(z(0, n))+\sum_{i=1}^{k}\left(\sum_{s=0}^{m} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(s, t, j, l)+\right. \\
& \left.\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l) w_{i}^{p_{i}}\left(\psi^{-1}(z(j, l))\right)\right) \\
\leq & \Psi_{p}(c(M, N))+\sum_{i=1}^{k}\left(\sum_{s=0}^{M-1} \sum_{t=0}^{N-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(s, t, j, l)+\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l) w_{i}^{p_{i}}\left(\psi^{-1}(z(j, l))\right)\right) \\
= & C_{k}(M, N)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l) w_{i}^{p_{i}}\left(\psi^{-1}(z(j, l))\right), \tag{2.60}
\end{align*}
$$

where

$$
\begin{equation*}
C_{k}(M, N)=\Psi_{p}(c(M, N))+\sum_{i=1}^{k} \sum_{s=0}^{M-1} \sum_{t=0}^{N-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{f}_{i}(s, t, j, l) . \tag{2.61}
\end{equation*}
$$

Let $v(m, n)=\Psi_{p}(z(m, n))$. From (2.60), we have

$$
\begin{equation*}
v(m, n) \leq C_{k}(M, N)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \sum_{j=0}^{s-1} \sum_{l=0}^{t-1} \tilde{h}_{i}(s, t, j, l) w_{i}^{p_{i}}\left(\psi^{-1}\left(\Psi_{p}^{-1}(v(j, l))\right)\right), \tag{2.62}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$.
(2.62) has the same form of (2.47), from Corollary 2.3, we can obtain the estimation (2.50). This completes the proof of Theorem 2.6.

3. Applications

In this section, we apply our results to study the boundedness of the solutions of difference equations.

Example 3.1 We consider the difference equation

$$
\begin{equation*}
v(m, n)=1+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} 2^{-s} \sqrt{|v(s, t)|}+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} s 3^{-s} v(s, t)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \frac{s 2^{-s}}{20000} e^{v(s, t)}, \tag{3.1}
\end{equation*}
$$

for all $(m, n) \in \Lambda$, where Λ is defined as in Section 2. From (3.1), we have

$$
|v(m, n)| \leq 1+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} 2^{-s} \sqrt{|v(s, t)|}+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} s 3^{-s}|v(s, t)|+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \frac{s 2^{-s}}{20000} e^{|v(s, t)|}
$$

Let $|v(m, n)|=u(m, n)$. We obtain

$$
\begin{equation*}
u(m, n) \leq 1+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} 2^{-s} \sqrt{u(s, t)}+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} s 3^{-s} u(s, t)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \frac{s 2^{-s}}{20000} e^{u(s, t)} \tag{3.2}
\end{equation*}
$$

where $c(m, n)=1, f_{1}(m, n, s, t)=2^{-s}, w_{1}(u)=\sqrt{u}, f_{2}(m, n, s, t)=s 3^{-s}, w_{2}(u)=u$, $f_{3}(m, n, s, t)=\frac{s 2^{-s}}{20000}, w_{3}(u)=e^{u}$. We can conclude that $\frac{w_{3}}{w_{2}}=\frac{e^{u}}{u}$ and $\frac{w_{2}}{w_{1}}=\frac{u}{\sqrt{u}}$ are nondecreasing for $u>0$, then, we have

$$
\begin{aligned}
& E_{1}(m)=\tilde{c}(m)=1, \\
& \tilde{f}_{i}(m, n, s, t)=f_{i}(m, n, s, t), \quad i=1,2,3, \\
& W_{1}(u)=\int_{1}^{u} \frac{\mathrm{~d} s}{\sqrt{s}}=2(\sqrt{u}-1), \quad W_{1}^{-1}(u)=\left(\frac{u}{2}+1\right)^{2}, \\
& W_{2}(u)=\int_{1}^{u} \frac{\mathrm{~d} s}{s}=\ln u, \quad W_{2}^{-1}(u)=e^{u},
\end{aligned}
$$

$$
\begin{equation*}
W_{3}(u)=\int_{1}^{u} \frac{\mathrm{~d} s}{e^{s}}=e^{-1}-e^{-u}, \quad W_{3}^{-1}(u)=\ln \frac{1}{e^{-1}-u} \tag{3.3}
\end{equation*}
$$

From (3.3), we have

$$
\begin{aligned}
E_{2}(m, n) & =W_{1}^{-1}\left[W_{1}\left(E_{1}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} 2^{-s}\right] \\
& =W_{1}^{-1}\left[2\left(\sqrt{E_{1}(m, n)}-1\right)+2-\left(\frac{1}{2}\right)^{m-1}\right] \\
& =\left(2-\left(\frac{1}{2}\right)^{m}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
E_{3}(m, n) & =W_{2}^{-1}\left[W_{2}\left(E_{2}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} s 3^{-s}\right] \\
& =W_{2}^{-1}\left[\ln E_{2}(m, n)+\frac{3}{4}-\frac{5}{12}\left(\frac{1}{3}\right)^{m-2}-\frac{1}{2} \frac{m-2}{3^{m-1}}\right], \\
& =E_{2}(m, n) \exp \left(\frac{3}{4}-\frac{5}{12}\left(\frac{1}{3}\right)^{m-2}-\frac{1}{2} \frac{m-2}{3^{m-1}}\right) .
\end{aligned}
$$

Using Theorem 2.2, we obtain

$$
\begin{aligned}
u(m, n) & \leq W_{3}^{-1}\left[W_{3}\left(E_{3}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \frac{s 2^{-s}}{20000}\right] \\
& =W_{3}^{-1}\left[e^{-1}-e^{-E_{3}(m)}+\frac{1}{20000}\left(2-\frac{3}{4} \frac{1}{2^{m-3}}-\frac{m-2}{2^{m-1}}\right)\right] \\
& =\ln \frac{1}{\exp \left(-E_{3}(m)\right)-\frac{1}{20000}\left(2-\frac{3}{4} \frac{1}{2^{m-3}}-\frac{m-2}{2^{m-1}}\right)} \\
& =\ln \frac{1}{\exp \left(-E_{2}(m) \exp \left(\frac{3}{4}-\frac{5}{12}\left(\frac{1}{3}\right)^{m-2}-\frac{1}{2} \frac{m-2}{3^{m-1}}\right)\right)-\frac{1}{20000}\left(2-\frac{3}{4} \frac{1}{2^{m-3}}-\frac{m-2}{2^{m-1}}\right)} \\
& =\ln \frac{1}{\exp \left(-\left(2-\left(\frac{1}{2}\right)^{m}\right)^{2} \exp \left(\frac{3}{4}-\frac{5}{12}\left(\frac{1}{3}\right)^{m-2}-\frac{1}{2} \frac{m-2}{3^{m-1}}\right)\right)-\frac{1}{20000}\left(2-\frac{3}{4} \frac{1}{2^{m-3}}-\frac{m-2}{2^{m-1}}\right)} .
\end{aligned}
$$

The above function $\ln \frac{1}{s}$ always makes sense, since $\exp \left(-\left(2-\left(\frac{1}{2}\right)^{m}\right)^{2} \exp \left(\frac{3}{4}-\frac{5}{12}\left(\frac{1}{3}\right)^{m-2}-\frac{1}{2} \frac{m-2}{3^{m-1}}\right)\right)$ is a decreasing function, and $\frac{1}{20000}\left(2-\frac{3}{4} \frac{1}{2^{m-3}}-\frac{m-2}{2^{m-1}}\right)$ is an increasing function. When $m=2, n=2$ we have

$$
\begin{aligned}
& \exp \left(-\left(2-\left(\frac{1}{2}\right)^{2}\right)^{2} \exp \left(\frac{3}{4}-\frac{5}{12}\right)\right)=\exp \left(-\left(\frac{7}{4}\right)^{2} \exp \left(\frac{1}{3}\right)\right) \approx 0.0139 \\
& \frac{1}{20000}\left(2-\frac{3}{4} \frac{1}{2^{2-3}}\right)=0.000025
\end{aligned}
$$

When $m \rightarrow \infty, n \rightarrow \infty$, we have

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \exp \left(-\left(2-\left(\frac{1}{2}\right)^{m}\right)^{2} \exp \left(\frac{3}{4}-\frac{5}{12}\left(\frac{1}{3}\right)^{m-2}-\frac{1}{2} \frac{m-2}{3^{m-1}}\right)\right)=\exp \left(-4 \exp \left(\frac{3}{4}\right)\right) \approx 0.00021 \\
& \lim _{m \rightarrow \infty} \frac{1}{20000}\left(2-\frac{3}{4} \frac{1}{2^{m-3}}-\frac{m-2}{2^{m-1}}\right)=0.0001
\end{aligned}
$$

Therefore, for $\ln \frac{1}{s}, 0<s<1$ always holds true. This implies that $u(m, n)$ is bounded for $(m, n) \in \mathbb{N}_{0}^{2}$.

Example 3.2 We consider the partial difference equation with the initial boundary value
conditions.

$$
\begin{gather*}
\Delta_{2} \Delta_{1} \psi(z(m, n))=F\left(m, n, \varphi_{1}(z(m, n)), \ldots, \varphi_{k}(z(m, n))\right), \tag{3.4}\\
\psi(z(m, 0))=a_{1}(m), \psi(z(0, n))=a_{2}(n), a_{1}(0)=a_{2}(0)=0 \tag{3.5}
\end{gather*}
$$

for all $(m, n) \in \Lambda$, where $\Lambda=I \times J$ is defined as in Section $2, \psi$ is a continuous and strictly increasing odd function on \mathbb{R}, satisfying $\psi(0)=0$ and $\psi(u)>0$ for $u>0, F: \Lambda \times \mathbb{R}^{k} \rightarrow \mathbb{R}$, $a_{1}: I \rightarrow \mathbb{R}$ and $a_{2}: J \rightarrow \mathbb{R}, \varphi_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are nondecreasing continuous functions and the ratio $\varphi_{i+1} / \varphi_{i}$ are also nondecreasing, $\varphi_{i}(u)>0$ for $u>0, i=1,2, \ldots, k$.

In the following corollary, we apply our result to discuss boundedness on the solution of problem (3.4).

Corollary 3.3 Assume that $F: \Lambda \times \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a continuous function satisfying

$$
\begin{gather*}
\left|F\left(m, n, \varphi_{1}(u), \ldots, \varphi_{k}(u)\right)\right| \leq \sum_{i=1}^{k} g_{i}(M, N, m, n)|u|^{q} \varphi_{i}^{p_{i}}(|u|), \tag{3.6}\\
\left|a_{1}(m)+a_{2}(n)\right| \leq a(m, n), \tag{3.7}
\end{gather*}
$$

for all $(m, n) \in \Lambda$, where $p>q>0$ is a constant, $f_{i}(M, N, m, n), g_{i}(M, N, m, n), i=1,2, \ldots, k$, are continuous nonnegative functions and nondecreasing in M and N for each fixed m and n, $a(m, n): \Lambda \rightarrow \mathbb{R}_{+}$is nondecreasing in each variable. If $z(m, n)$ is any solution of (3.4) with the condition (3.5), then

$$
\begin{equation*}
|z(m, n)| \leq \psi^{-1}\left\{\Psi^{-1}\left[\tilde{G}_{k}^{-1}\left(\tilde{G}_{k}\left(\tilde{H}_{k}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} g_{k}(M, N, s, t)\right)\right]\right\} \tag{3.8}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$, where $\Psi(u)$ is defined by (2.2), and

$$
\begin{aligned}
& \tilde{G}_{i}(u):=\int_{1}^{u} \frac{\mathrm{~d} s}{\varphi_{i}^{p_{i}}\left(\psi^{-1}\left(\Psi^{-1}(s)\right)\right)}, u>0, \\
& \tilde{H}_{1}(m, n):=\Psi(a(m, n)), \\
& \tilde{H}_{i}(m, n):=\tilde{G}_{i-1}^{-1}\left[\tilde{G}_{i-1}\left(\tilde{H}_{i-1}(m, n)\right)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} g_{i-1}(M, N, s, t)\right],
\end{aligned}
$$

Ψ_{p}^{-1} and \tilde{G}_{k}^{-1} denote the inverse functions of Ψ_{p} and \tilde{G}, respectively.
Proof The solution $z(m, n)$ of (3.4) satisfies the following equivalent difference equation

$$
\begin{equation*}
\psi(z(m, n))=a_{1}(m)+a_{2}(n)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} F\left(s, t, \varphi_{1}(z(s, t)), \ldots, \varphi_{k}(z(s, t))\right) . \tag{3.9}
\end{equation*}
$$

By (3.6), (3.7) and (3.9), we obtain

$$
\begin{align*}
|\psi(z(m, n))| & \leq\left|a_{1}(m)+a_{2}(n)\right|+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1}\left|F\left(s, t, \varphi_{1}(z(s, t)), \ldots, \varphi_{k}(z(s, t))\right)\right| \\
& \left.\leq a(m, n)+\sum_{i=1}^{k} \sum_{s=0}^{m-1} \sum_{t=0}^{n-1}|z(s, t)|^{q} g_{i}(M, N, s, t)\right] \varphi_{i}^{p_{i}}(|z(s, t)|) . \tag{3.10}
\end{align*}
$$

Since $|\psi(z(m, n))|=\psi(|z(m, n)|),(3.10)$ has the same form of (2.5). Applying Theorem 2.2 to inequality (3.10), we obtain the estimation of $z(m, n)$ as given in (3.8).

If there exists a constant $M>0$,

$$
\begin{equation*}
\tilde{H}_{i}(m, n)<M, \quad \sum_{s=0}^{m-1} \sum_{t=0}^{n-1} g_{i}(M, N, s, t)<M, \quad i=1,2, \ldots, k, \tag{3.11}
\end{equation*}
$$

for all $(m, n) \in \Lambda_{(M, N)}$, then every solution $z(m, n)$ of (3.4) is bounded on $\Lambda_{(M, N)}$.
Acknowledgements The author is very grateful to Professor Weinian ZHANG for his valuable suggestions and thanks the referees for their time and comments.

References

[1] T. H. GRONWALL. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. of Math. (2), 1919, 20(4): 292-296.
[2] R. BELLMAN. The stability of solutions of linear differential equations. Duke Math. J., 1943, 10(4): 643-647.
[3] R. P. AGARWAL, Y. H. KIM, S. K. SEN. New retarded integral inequalities with applications. J. Inequl. Appl., 2008, Art. ID 908784, 15 pages.
[4] D. BAINOV, P. SIMEONOV. Integral Inequalities and Applications. Kluwer Academic, Dordrecht, 1992.
[5] I. A. BIHARI. A generalization of a lemma of Bellman and its application to uniqueness problem of differential equation. Acta Math. Acad. Sci. Hungar., 1956, 7(1): 81-94.
[6] W. S. CHEUNG. Some new nonlinear inequalities and applications to boundary value problems. Nonlinear Anal., 2006, 64(9): 2112-2128.
[7] S. K. CHOI, Shengfu DENG, N. P. KOO, et al. Nonlinear integral inequalities of Bihari-type without class H. Math. Inequal. Appl., 2005, 8(4): 643-654.
[8] S. S. DRAGOMIR, Y. H. KIM. Some integral inequalities for functions of two variables. Electron. J. Differential Equations, 2003, 10: 1-13.
[9] Fangcui JIANG, Fangwei MENG. Explicit bounds on some new nonlinear integral inequality with delay. J. Comput. Appl. Math., 2007, 205(1): 479-486.
[10] Y. H. KIM. Gronwall, Bellman and Pachpatte type integral inequalities with applications. Nonlinear Anal., 2009, 71(12): e2641-e2656.
[11] O. LIPOVAN. Integral inequalities for retarded Volterra equations. J. Math. Anal. Appl., 2006, 322(1): 349-358.
[12] Qinghua MA, Enhao YANG. Some new Gronwall-Bellman-Bihari type integral inequalities with delay. Period. Math. Hungar., 2002, 44(2): 225-238.
[13] B. G. PACHPATTE. Inequalities for Differential and Integral Equations. Academic Press, New York, 1998.
[14] Weinian ZHANG, Shengfu DENG. Projected Gronwall-Bellman's inequality for integrable functions. Math. Comput. Modelling, 2001, 34(3-4): 393-402.
[15] R. P. AGARWAL, Shengfu DENG, Weinian ZHANG. Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput., 2005, 165(3): 599-612.
[16] C. J. CHEN, W. S. CHEUNG, Dandan ZHAO. Gronwall-Bellman-Type integral inequalities and applications to BVPs. J. Inequal. Appl. 2009, Art. ID 258569, 15 pages.
[17] Wusheng WANG, Zizun LI, Yong LI, et al. Nonlinear retarded integral inequalities with two variables and applications. J. Inequal. Appl. 2010, Art. ID 240790, 21 pages.
[18] Jun ZHOU, Jun SHEN, Weinian ZHANG. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete Contin. Dyn. Syst., 2016, 36(12): 7207-7234.
[19] R. P. AGARWAL. Difference Equations and Inequalities. Marcel Dekker, New York, 1992.
[20] B. G. PACHPATTE, S. G. DEO. Stability of discrete time systems with retarded argument. Utilitas Math., 1973, 4: 15-33.
[21] B. G. PACHPATTE. A note on some discrete inequalities. Tamsui Oxford J. Math. Sci., 2005, 21(2): 183190.
[22] M. PINTO. Null solutions of difference systems under vanishing perturbation. J. Difference Equ. Appl., 2003, 9(1): 1-13.
[23] Wusheng WANG. A generalized sum-difference inequality and applications to partial difference equations. Adv. Difference Equ., 2008, Art. ID 695495, 12 pages.
[24] Wusheng WANG, Zizun LI, W. S. CHEUNG. Some new nonlinear retarded sum-difference inequalities with applications. Adv. Difference Equ. 2011, 2011:41, 11 pages.
[25] Linfeng ZHOU, Weinian ZHANG. A projected discrete Gronwall's inequality with sub-exponential growth. J. Difference Equ. Appl., 2010, 16(8): 931-943.
[26] Bin ZHENG, Bosheng FU. Some Volterra-Fredholm type nonlinear discrete inequalities involving four iterated infinite sums. Adv. Difference Equ. 2012, 2012: 228, 18 pages.
[27] W. S. CHEUNG, Jingli REN. Discrete non-linear inequalities and applications to boundary value problems. J. Math. Anal. Appl., 2006, 319(2): 708-724.
[28] Qinghua MA, W. S. CHEUNG. Some new nonlinear difference inequalities and their applications. J. Comput. Appl. Math., 2007, 202(2): 339-351.
[29] Wusheng WANG, Xiaoliang ZHOU. An extension to nonlinear sum-difference inequality and applications. Adv. Difference Equ. 2009, Art. ID 486895, 17 pages.
[30] Bin ZHENG, Qinghua FENG. Some new Volterra-Fredholm-type discrete inequalities and their applications in the theory of difference equations. Abstr. Appl. Anal. 2011, Art. ID 584951, 24 pages.
[31] Qinghua FENG, Fanwei MENG, Bosheng FU. Some new generalized Volterra-Fredholm type finite difference inequalities involving four iterated sums. Appl. Math. Comput., 2013, 219(15): 8247-8258.

