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Abstract In this paper, we focus on the characterization for fractional Brownian bridge mea-

sures. We give the integration by parts formula for such measures by Bismut’s method and their

pull back formula. Conversely, we prove that such measures can be determined through their

integration by parts formula.
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1. Introduction

A fractional Brownian bridge is a kind of Gaussian bridge. Similarly to a Brownian bridge,

a fractional Brownian bridge has its anticipative and non-anticipative representations which are

studied in [1]. In this paper, we aim to characterize a fractional Brownian bridge measure through

its integration by parts formula.

Since integration by parts formulas for measures are important in stochastic analysis, a

lot of interesting work has been done on these fields. The integration by parts formula was

investigated for Wiener measures on the path space in [2–4]. For Brownian bridge measures

on the loop space, [5] gave the integration by parts formula on loop group, in which the vector

field is C1; [6,7] established the integration by parts formula for such measures over Riemannian

manifold with Levi-Civita connection. For fractional Wiener measures, [8,9] gave its integration

by parts formula under different integrals. [10] established the integration by parts formula for

fractional Ornstein-Uhlenbeck measures.

Conversely, it is significant to consider the characterizations of measures through their in-

tegration by parts formulas. It is proved that Gaussian measures can be characterized through

their integration by parts formula. [11] showed that the integration by parts formula can char-

acterize abstract Wiener measures. [12] proved that Wiener measures can be characterized by

their integration by parts formula on the path space. [10] gave the characterization for fractional

Ornstein-Uhlenbeck measures.

2. Preliminaries
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For a continuous Gaussian process G starting at 0 and such that E(Gt) = 0, t ∈ [0, 1], its

associated bridge process is defined by

Xt = Gt − tG1, 0 ≤ t ≤ 1.

If the Gaussian process G is a fractional Brownian motion, X is called a fractional Brownian

bridge.

We set the loop space on Rn as follows

Ω = {ω ∈ C([0, 1];Rn) | ω(0) = ω(1) = 0}.

Let (Ω,F ,Ft, P ) be a filtered probability space, where P is fractional Brownian bridge measure

such that coordinate process (Xt)0≤t≤1 = (ωt)0≤t≤1 is a fractional Brownian bridge, (Ft)0≤t≤1

is the P -completed natural filtration of (Xt)0≤t≤1, and F = F1 is the P -completion of the Borel

σ-algebra of Ω. By [1], fractional Brownian bridge (Xt)0≤t≤1 satisfies the following integral

equation

Xt = BH
t −

∫ t

0

(
Xs +

∫ s

0

Ψ(s, u)dXu

) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds, a.s. (2.1)

where BH is a fractional Brownian motion with H > 1
2 and

k(t, s) = cHs
1
2−H

∫ t

s

uH− 1
2 (u− s)H− 3

2 du,

Ψ(t, s) =
sin(π(H + 1

2 ))

π
s

1
2−H(t− s)

1
2−H

∫ 1

t

uH+ 1
2 (u− t)H+ 1

2

u− s
du, (2.2)

in which cH =
√

H(2H−1)

B(2−2H,H− 1
2 )
. By [1, Proposition 18], the non-anticipative representation of

the fractional Brownian bridge is

Xt = BH
t −

∫ t

0

φ(t, s)dBH
s , a.s. (2.3)

where

φ(t, s) =

∫ t

s

{∫ u

s

(1 + Ψ(v, s))k(1, v)2

(
∫ 1

v
k(1, w)dw)2

dv − 1 + Ψ(u, s)∫ 1

u
k(1, v)2dv

}
k(1, u)k(t, u)du.

We set

L2(Ω;P ) = {F | F : Ω → R, ∥F∥2 := (EP |F |2) 1
2 < ∞}.

By [8], the isomorphism operator K : L2(Ω;P ) → I
H+ 1

2
0+ (L2(Ω;P )) is defined by

(Kh)t =

∫ t

0

k(t, s)hsds,

where h ∈ L2(Ω;P ) and I
H+ 1

2
0+ (L2(Ω;P )) is (H + 1

2 )-Hölder left fractional Riemann-Liouville

integral operator. The inverse operator of K is denoted by K−1. By [8], the Cameron-Martin

vector field on Ω is

H0 = {Kh | h is adapted process, h ∈ L2(Ω;P ) and (Kh)1 = 0},
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with scalar product

⟨Kh,Kg⟩H0 = ⟨h, g⟩L2(Ω;P ) = EP

[ ∫ 1

0

⟨ht, gt⟩dt
]
.

The directional derivative of F along Kh is

DhF (ω) = lim
δ→0

1

δ
(F (ω + δ(Kh))− F (ω)),

if the limit exists in L2(Ω, P ). Denote by FC∞(Ω) the set of all the smooth cylindrical functions

on Ω, i.e.,

FC∞(Ω) = {F | F (ω) = f(ωt1 , ..., ωtn), 0 < t1 ≤ t2 ≤ · · · ≤ tn ≤ 1, f ∈ C∞(Rn)}.

For F ∈ FC∞(Ω), the directional derivative of F is

DhF (ω) =

n∑
i=1

⟨∇iF, (Kh)ti⟩Rn ,

where ∇iF = ∇if(ωt1 , . . . , ωtn) is the gradient with respect to the i-th variable of f . The

gradient DF : Ω → H0 is determined by ⟨DF,Kh⟩H0 = DhF . The domain of D is denoted by

Dom(D).

3. Integration by parts formula

By Bismut’s idea [13], we need to construct a Rn-valued process β such that for any r ∈
(−ϵ, ϵ), the following integral equation

Xt(r) = BH
t (r)−

∫ t

0

(
Xs(r) +

∫ s

0

Ψ(s, u)dXu(r)
) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds, (3.1)

has solution (Xt(r))0≤t≤1 satisfying

(Xt(r))0≤t≤1 ∈ Ω for any r,

d

dr
Xt(r)

∣∣
r=0

exists and
d

dr
Xt(r)

∣∣
r=0

= (Kh)t, (3.2)

where BH
t (r) is defined by

BH
t (r) =

∫ t

0

k(t, s)dBs(r) =

∫ t

0

k(t, s)d
(
Bs + r

∫ s

0

(K−1β·)udu
)
, (3.3)

in whichB is a Rn-valued Brownian motion. Note that (Xt(0))0≤t≤1 = (Xt)0≤t≤1 and Bt(0)0≤t≤1

= (Bt)0≤t≤1. The following lemma gives the expression of β such that the solution (Xt(r))0≤t≤1

of (3.1) satisfies (3.2).

Lemma 3.1 If the solutions (Xt(r))0≤t≤1 of (3.1) satisfy (3.2), then

βt = (Kh)t +

∫ t

0

((Kh)s +

∫ s

0

Ψ(s, u)d(Kh)u)
k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds.
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Proof Differentiating (3.1) with respect to r at r = 0, we obtain

d

dr
Xt(r)

∣∣
r=0

=
d

dr
BH

t (r)
∣∣
r=0

−
∫ t

0

( d

dr
Xs(r)

∣∣
r=0

+

∫ s

0

Ψ(s, u)d
d

dr
Xu(r)

∣∣
r=0

) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds.

By (3.2) and (3.3), we get

d

dr
Xt(r)

∣∣
r=0

= (Kh)t,
d

dr
BH

t (r)
∣∣
r=0

= βt,

which implies that

βt = (Kh)t +

∫ t

0

(
(Kh)s +

∫ s

0

Ψ(s, u)d(Kh)u

) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds. (3.4)

This completes the proof. �
We give the integration by parts formula for fractional Brownian bridge measures.

Theorem 3.2 For any T ∈ (0, 1), F ∈ Dom(D) ∩ FT and Kh ∈ H0, the integration by parts

formula for the fractional Brownian bridge measure P is

EP

[
F

∫ T

0

⟨(K−1β·)t, dBt⟩
]
= EP [DhF ],

where B is a Rn-valued Brownian motion and

βt = (Kh)t +

∫ t

0

(
(Kh)s +

∫ s

0

Ψ(s, u)d(Kh)u

) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds.

Proof We set

ρt = exp
{
− r

∫ t

0

⟨(K−1β·)s, dBs⟩ −
r2

2

∫ t

0

(K−1β·)
2
sds

}
.

For H > 1
2 , by (3.4), we have

(K−1β·)t = ht + ((Kh)t +

∫ t

0

Ψ(t, u)d(Kh)u)
k(1, t)∫ 1

t
k(1, u)2du

.

It follows that∫ 1

0

(K−1β·)
2
tdt

≤ 2

∫ 1

0

h2
tdt+ 4

∫ 1

0

(Kh)2td
1∫ 1

t
k(1, u)2du

+ 4

∫ 1

0

(
∫ t

0
Ψ(t, u)d(Kh)u)

2k2(1, t)

(
∫ 1

t
k(1, u)2du)2

dt. (3.5)

By the definition of k in (2.2), we obtain that

cH

H − 1
2

(1− t)H− 1
2 ≤ k(1, t) ≤ cH

H − 1
2

t
1
2−H(1− t)H− 1

2 . (3.6)

Since Kh is H-Hölder continuous and (Kh)1 = 0, there is a constant CK such that

|(Kh)t| ≤ CK(1− t)H
(∫ 1

0

h2
tdt

) 1
2

. (3.7)

Due to

(Kh)t = cH

∫ t

0

∫ u

0

s
1
2−HuH− 1

2 (u− s)H− 3
2hsdsdu,
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we have

(Kh)′t = cH

∫ t

0

s
1
2−HtH− 1

2 (t− s)H− 3
2hsds. (3.8)

Suppose that h is a bounded adapted process. By (3.6)–(3.8), there is a constant C1 such that∫ 1

0

(Kh)2td
1∫ 1

t
k(1, u)2du

≤
∣∣ lim
t→1

(Kh)2t∫ 1

t
k(1, u)2du

∣∣+ ∣∣∣ ∫ 1

0

2(Kh)t(Kh)′t∫ 1

t
k(1, u)2du

dt
∣∣∣

≤ lim
t→1

C2
K(1− t)2H

c2H(1−t)2H

2H(H− 1
2 )

2

+

∫ 1

0

2CK(1− t)H |cH
∫ t

0
s

1
2−HtH− 1

2 (t− s)H− 3
2 ds|

c2H(1−t)2H

2H(H− 1
2 )

2

dt ≤ C1. (3.9)

By (2.2), there is a constant CΨ such that

Ψ(t, s) ≤ CΨs
1
2−H(t− s)

1
2−H(1− t)H+ 1

2 . (3.10)

By (3.8) and (3.10), it is easy to check that there is a constant C2 such that∫ 1

0

(
∫ t

0
(
∫ t

s
Ψ(t, u)cHs

1
2−HuH− 1

2 (u− s)H− 3
2 du)hsds)

2k2(1, t)

(
∫ 1

t
k(1, u)2du)2

dt ≤ C2. (3.11)

By (3.5), (3.9) and (3.11), (ρt)0≤t≤1 is a uniformly integrable martingale for any r ∈ (−ϵ, ϵ) on

(Ω,F ,Ft, P ) due to Novikov’s criterion. Note that

Bs(r) = Bs + r

∫ s

0

(K−1β·)udu.

By Girasonv’s theorem, we conclude that (Bt(r))0≤t≤1 is a Brownian motion for any r ∈ (−ϵ, ϵ)

under ρ1P . Thus by [14, Theorem 2], (BH
t (r))0≤t≤1 is a fractional Brownian motion under ρ1P .

Since

Xt = BH
t −

∫ t

0

(
Xs +

∫ s

0

Ψ(s, u)dXu

) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds,

Xt(r) = BH
t (r)−

∫ t

0

(
Xs(r) +

∫ s

0

Ψ(s, u)dXu(r)
) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds,

we conclude that (Xt(r))0≤t≤1 and (Xt)0≤t≤1 have the same distribution under ρ1P and P ,

respectively, that is, for any cylindrical function F = f(Xt1 , . . . , Xtn),

Eρ1P [f(Xt1(r), . . . , Xtn(r))] = EP [f(Xt1 , . . . , Xtn)].

Differentiating the above equation with respect to r, we obtain

d

dr
EP [ρ1f(Xt1(r), . . . , Xtn(r))]

∣∣
r=0

= −EP

[
F

∫ 1

0

⟨(K−1β·)t,dBt⟩
]
+ EP [DhF ] = 0.

Thus for any adapted bounded process h, we get

EP

[
F

∫ 1

0

⟨(K−1β·)t, dBt⟩
]
= EP [DhF ]. (3.12)
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It is obvious that K−1β ∈ L2(Ω; ν) for h ∈ L2(Ω; ν), then (3.12) holds for any h ∈ L2(Ω; ν).

Moreover, since D is a closable operator, integration by parts formula (3.12) holds for any

F ∈ Dom(D) ∩ FT . The proof is completed. �

4. Characterization of fractional Brownian bridge

Next, we show that a fractional Brownian bridge measure can be characterized through its

integration by parts formula. Suppose that Y is a semi-martingale and Yt =
∫ t

0
ΓsdBs + Lt,

where Γ is a Rn × Rn-valued continuous process, B is a Rn-valued Brownian motion and L is a

Rn-valued continuous bounded quadratic variation process.

Theorem 4.1 Let (Ω,F ,Ft, µ) be a probability space. If µ is a probability measure such that

(1) Coordinate process X satisfies

Xt = Y H
t −

∫ t

0

(
Xs +

∫ s

0

Ψ(s, u)dXu

) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds,

where Y H
t =

∫ t

0
k(t, s)dYs;

(2) For any T ∈ (0, 1), F ∈ Dom(D) ∩ FT and Kh ∈ H0 = {Kh|h is adapted process, h ∈
L2(Ω;µ) and (Kh)1 = 0}, it holds that

Eµ

[
F

∫ T

0

⟨(K−1β·)t, dYt⟩
]
= Eµ[DhF ], (4.1)

where

(K−1β·)t = ht +
(
(Kh)t +

∫ t

0

Ψ(t, u)d(Kh)u

) k(1, t)∫ 1

t
k(1, u)2du

,

then µ is a fractional Brownian bridge measure.

Proof It suffices to prove that Y is a Brownian motion. We establish the proof in two steps.

(1) Let F = 1. By (4.1), we have

Eµ

[
F

∫ T

0

⟨(K−1β·)t, dYt⟩
]
= 0,

which implies

Eµ

[ ∫ T

0

⟨(K−1β·)t, dLt⟩
]
= 0. (4.2)

Considering integral equation (K−1β·)t = Lt, that is

(Kh)t +

∫ t

0

(
(Kh)s +

∫ s

0

Ψ(s, u)d(Kh)u

) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds = (KL)t.

Its solution is

(Kh)t = (KL)t −
∫ t

0

φ(t, s)d(KL)s,

which implies

ht = Lt −
(
K−1

∫ ·

0

φ(·, s)d(KL)s

)
t
.
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By the definition of isomorphism operator K, it holds that∫ t

0

φ(t, s)(KL)′sds

=

∫ t

0

{∫ t

s

(∫ u

s

(1 + Ψ(v, s))k(1, v)2

(
∫ 1

v
k(1, w)2dw)2

dv − 1 + Ψ(u, s)∫ 1

u
k(1, v)2dv

)
k(1, u)k(t, u)du

}
(KL)′sds

=

∫ t

0

k(t, u)
(∫ u

0

{(∫ u

s

(1 + Ψ(v, s))k(1, v)2

(
∫ 1

v
k(1, w)2dw)2

dv − 1 + Ψ(u, s)∫ 1

u
k(1, v)2dv

)
k(1, u)(KL)′s

}
ds

)
du

=
(
K
{∫ u

0

(∫ u

s

(1 + Ψ(v, s))k(1, v)2

(
∫ 1

v
k(1, w)2dw)2

dv − 1 + Ψ(u, s)∫ 1

u
k(1, v)2dv

)
k(1, u)(KL)′sds

})
t
.

Hence,

ht = Lt −
∫ t

0

(∫ t

s

(1 + Ψ(v, s))k(1, v)2

(
∫ 1

v
k(1, w)2dw)2

dv − 1 + Ψ(t, s)∫ 1

t
k(1, v)2dv

)
k(1, t)(KL)′sds. (4.3)

Therefore, if we let h equal to (4.3), Eq. (3.2) is

Eµ

[ ∫ T

0

⟨Lt, dLt⟩
]
= 0,

which yields that Lt = 0 for any t ∈ [0, T ]. Due to the continuity of L in [0, 1], we obtain that

Lt = 0 for any t ∈ [0, 1].

(2) For an orthogonal basis {ei : i = 1, . . . , n} on Rn, let F = ⟨YT , ei⟩. We give the derivative

of ⟨YT , ei⟩ in two ways. Consider the following equation

Xt(r) = Y H
t (r)−

∫ t

0

(
Xs(r) +

∫ s

0

Ψ(s, u)dXu(r)
) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds,

where Y H
t (r) is defined by

Y H
t (r) = Y H

t + rαt,

in which α is a Rn-valued adapted process. If the solution satisfies (Kh)t = d
drYt(r)|r=0, we

obtain

αt = βt = (Kh)t +

∫ t

0

(
(Kh)s +

∫ s

0

Ψ(s, u)d(Kh)u

) k(1, s)k(t, s)∫ 1

s
k(1, u)2du

ds. (4.4)

By the definition of Y H , we have

Y H
t (r) =

∫ t

0

k(t, s)dYs(r) =

∫ t

0

k(t, s)d
(
Ys + r

∫ s

0

(K−1β·

)
u
du),

which yields that

Yt(r) = Yt + r

∫ t

0

(K−1β·)sds.

Hence

Dh⟨YT , ei⟩ =
d

dr
⟨YT (r), ei⟩

∣∣
r=0

=

∫ T

0

⟨(K−1β·)s, ei⟩ds. (4.5)



Fractional Brownian bridge measures and their integration by parts formula 425

Let F = ⟨YT , ei⟩. By (4.1), we have

Eµ[Dh⟨YT , ei⟩] =Eµ

[ ∫ T

0

⟨Γ∗
t ei, dBt⟩

∫ 1

0

⟨(K−1β·)t, dYt⟩
]

=Eµ

[ ∫ T

0

⟨ΓtΓ
∗
t ei, (K

−1β·)t⟩dt
]
. (4.6)

Note that Γ is a Rn × Rn-valued continuous process. Combining (4.5) and (4.6), we obtain

Eµ

[ ∫ T

0

⟨(ΓtΓ
∗
t − I)ei, (K

−1β·)t⟩dt
]
= 0. (4.7)

By (4.4), we get

Eµ

[ ∫ T

0

⟨(ΓtΓ
∗
t − I)ei, (K

−1β·)t⟩dt
]

= Eµ

[ ∫ T

0

⟨(ΓtΓ
∗
t − I)ei, ht + ((Kh)t +

∫ t

0

Ψ(t, u)d(Kh)u)
k(1, t)∫ 1

t
k(1, u)2du

⟩dt
]

= Eµ

[ ∫ T

0

⟨(ΓtΓ
∗
t − I)ei, ht⟩dt

]
+ Eµ

[ ∫ T

0

⟨Pt, (Kh)t +

∫ t

0

Ψ(t, u)d(Kh)u⟩dt
]

= Eµ

[ ∫ T

0

⟨(ΓtΓ
∗
t − I)ei, ht⟩dt

]
+ Eµ

[ ∫ T

0

⟨Pt, (Kh)t⟩dt
]
+

Eµ

[ ∫ T

0

⟨Pt,

∫ t

0

Ψ(t, u)d(Kh)u⟩dt
]
, (4.8)

where

Pt =
k(1, t)∫ 1

t
k(1, u)2du

(ΓtΓ
∗
t − I)ei.

The second term of (4.8) is

Eµ

[ ∫ T

0

⟨Pt, (Kh)t⟩dt
]
=Eµ

[ ∫ T

0

⟨Pt, cH

∫ t

0

s
1
2−H

∫ t

s

uH− 1
2 (u− s)H− 1

2 duhsds⟩dt
]

=Eµ

[ ∫ T

0

⟨cH
∫ T

s

Pts
1
2−H

∫ t

s

uH− 1
2 (u− s)H− 1

2 dudt, hs⟩ds
]

=Eµ

[ ∫ T

0

⟨cH
∫ T

t

Pst
1
2−H

∫ s

t

uH− 1
2 (u− t)H− 1

2 duds, ht⟩dt
]
. (4.9)

The third term of (4.8) is

Eµ

[ ∫ T

0

⟨∫ T

u

Ψ(t, u)Ptdt, (Kh)′u

⟩
du

]
= Eµ

[ ∫ T

0

⟨∫ T

u

Ψ(t, u)Ptdt, cH

∫ u

0

s
1
2−HuH− 1

2 (u− s)H− 3
2hsds

⟩
du

]
= Eµ

[ ∫ T

0

⟨
cH

∫ T

s

s
1
2−HuH− 1

2 (u− s)H− 3
2

∫ T

u

Ψ(t, u)Ptdtdu, hs

⟩
ds

]
= Eµ

[ ∫ T

0

⟨
cH

∫ T

t

t
1
2−HuH− 1

2 (u− t)H− 3
2

∫ T

u

Ψ(s, u)Psdsdu, ht

⟩
dt
]

= Eµ

[ ∫ T

0

⟨∫ T

t

(
cHPst

1
2−H

∫ s

t

uH− 1
2 (u− t)H− 3

2Ψ(s, u)du
)
ds, ht

⟩
dt
]
. (4.10)
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By (4.7)–(4.10), for any h, we obtain

Eµ

[ ∫ T

0

⟨
(ΓtΓ

∗
t − I)ei +

∫ T

t

cHPst
1
2−H

∫ s

t

uH− 1
2 (u− t)H− 1

2 (1 + Ψ(s, u))duds, ht

⟩
dt
]
= 0.

Thus

Eµ

[
(ΓtΓ

∗
t − I)ei +

∫ T

t

cHPst
1
2−H

∫ s

t

uH− 1
2 (u− t)H− 1

2 (1 + Ψ(s, u))duds
∣∣Ft

]
= 0,

which implies that

(ΓtΓ
∗
t − I)ei + Eµ

[ ∫ T

t

cHPst
1
2−H

∫ s

t

uH− 1
2 (u− t)H− 1

2 (1 + Ψ(s, u))duds
∣∣Ft

]
= 0.

Let t tend to T . We get

(ΓTΓ
∗
T − I)ei = 0.

Since Γ is continuous in [0, 1], ΓTΓT = I for any T ∈ [0, 1]. Therefore, Y is a Brownian motion.

The proof is completed. �
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