Journal of Mathematical Research with Applications
Sept., 2018, Vol. 38, No. 5, pp. 441-448
DOI:10.3770/j.issn:2095-2651.2018.05.001
Http://jmre.dlut.edu.cn

Several Identities for Inverse-Conjugate Compositions

Yuhong GUO
School of Mathematics and Statistics, Hexi University, Gansu 734000, P. R. China

Abstract In this paper, we first present several identities related to the inverse-conjugate com-
positions having parts of size < 3, the compositions into parts equal to 1 or 2, the compositions
into odd parts and the compositions into parts greater than 1. In addition, we provide a bijective
proof of a relation for inverse-conjugate compositions having parts of size < k.
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1. Introduction

A composition of a positive integer n is a representation of n as a sequence of positive integers
called parts which sum to n. For example, the compositions of 4 are: (4), (3,1), (1,3), (2,2),
(2,1,1), (1,2,1), (1,1,2), (1,1,1,1). It is known that there are 2"~! unrestricted compositions
of n. MacMahon [1] devised a graphical representation of a composition, called a zig-zag graph,
which resembles the partition Ferrers graph except that the first dot of each part is aligned with
the last part of its predecessor. For example, the zig-zag graph of the composition (6,3,1,2,2)

is shown in Figure 1.

Figure 1 zig-zag graph

The conjugate of a composition is obtained by reading its graph by columns from left to
right. Figure 1 gives the conjugate of the composition (6,3,1,2,2) as (1,1,1,1,1,2,1,3,2,1).

Let C denote a composition of n. A k-composition is a composition with k parts, i.e.,
C = (c1,¢2,...,¢). The conjugate of C is denoted by C’ and the inverse of C is the reversal
composition C = (cx,cx_1,...,¢1). C is called inverse-conjugate if ¢’ = C. For example,
(2,1,3,1) is an inverse-conjugate composition of 7.

In 1975, Hoggatt-Bicknell [2] studied ordinary compositions with parts < k, and obtained
the following result [3, p.72]
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Theorem 1.1 ([2]) Let Ci(N) be the number of compositions of a positive integer N using only
the parts 1,2,...,k. Then
Cr(N) = Fy),, (1.1)

(n)

where F;"’ is the n-step Fibonacci number.

The n-step Fibonacci numbers jol (see [3]) extend the ordinary Fibonacci numbers.

Definition 1.2 ([3]) The n-step Fibonacci numbers are defined for any positive integer n by
F™ = Z Fmoors (1.2)

with F\"™ =0 forr <0, F{"™ = F{™ =1,

Note that the case n = 1 gives the sequence of ones, Fﬁl) :1,1,1,... while the case n = 2
gives the Fibonacci numbers, that is (FT(2) =F)FR=F=1F=F._1+F._o,r>2.

Inverse-conjugate compositions have been studied by some researchers [1,4-6]. It is known
that these compositions are defined for only odd weights, and that there are 27! inverse-
conjugate compositions of 2n — 1.

Recently Guo-Munagi [7] considered inverse-conjugate compositions with parts of size not
exceeding a fixed integer k > 0, and obtained their enumeration properties as well as connections

with other types of compositions, as summarised in the following three theorems:

Theorem 1.3 ([7]) Let IC,(N) denote the number of inverse-conjugate compositions of N into

parts of size < k. Then
I1Cy(2n —1) ZIC’k (n—j)—1), n>k (1.3)

with ICy,(2t — 1) =271 ¢t =1,2,... k.

Theorem 1.4 ([7]) Let IC,(N) denote the number of inverse-conjugate compositions of N into
parts of size < k. Then
IC,(2n — 1) =2F¢*D n >k —1, (1.4)

where FT(") is the n-generalized Fibonacci number.

Theorem 1.5 ([7]) Let Ci(n) be the number of compositions of a positive integer n using only
the parts 1,2,...,k. Then

ICky1(2n —1) =2CK(n—1), n>1. (1.5)

In Section 2, we first present several identities related to the inverse-conjugate compositions
having parts of size < 3, the compositions into parts equal to 1 or 2, the compositions into
odd parts and the compositions into parts greater than 1. And bijective proofs are shown. In

addition, we provide a bijective proof of Theorem 1.5.

2. Main results
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We first cite the following terminologies and lemmas from [4] that will be used in the proofs
later.

Let A = (a1,a2,...,a;) and B = (by,by,...,b;) be compositions. The concatenation of
the parts of A and B is defined as A|B = (a1,a2,...,a;,b1,b2,...,b;). In particular for a
nonnegative integer ¢, we have A|(c) = (A4,c¢) and (¢)|]A = (¢, A). The join of A and B with
notation AW B := (a1,as,...,a; +b1,ba, ..., ;).

Lemma 2.1 ([4]) An inverse-conjugate composition C' (or its inverse) has the form:
C = (1" by, 172 b 177272 bg, by, 1 72Dy), by > 2,

Lemma 2.2 ([4]) If C = (c1,...,cx) is an inverse-conjugate composition of n =2k —1 > 1, or
its inverse, then there is an index j such that ¢y +---+c; =k —1and ¢cj41 + -+ ¢, = k with
cjy1 > 1.
Moreover,
(c1y--y¢j) = (cjy1 — L, ¢jpa, .o yer). (2.1)
Thus C' can be written in the form

C = A|(1)w B such that B’ = A, (2.2)

where A and B are generally different compositions of k& — 1.
To begin with we present the following results for the inverse-conjugate compositions of odd

numbers into parts not exceeding 3 according to Theorems 1.3-1.5.

Theorem 2.3 Let IC5(N) denote the number of inverse-conjugate compositions of N into

parts of size < 3. Then
IC3(2n+1)=1C3(2n — 1)+ IC3(2n — 3), n > 2, (2.3)

Theorem 2.4 Let IC5(N) denote the number of inverse-conjugate compositions of N into
parts of size < 3. Then
I1C5(2n—1) =2F,, n>2, (2.4)

where F,, is the Fibonacci numbers.

Theorem 2.5 Let C2(n) be the number of compositions of a positive integer n using only the
parts 1,2. Then
IC5(2n + 1) =2C3(n), n>1. (2.5)

From Theorems 2.4 and 2.5, we also observed that the number of compositions of n into parts
of size 1 or 2 is Fj,4+1. And Theorem 2.5 presents an identity between the number of inverse-
conjugate compositions having parts of size < 3 and the number of compositions into parts equal
to 1 or 2. In this paper, we provide a bijective proof of Theorem 2.5.

Because an inverse-conjugate composition is always paired with its inverse, we give bijective

proofs for only inverse-conjugate compositions having parts < 3 in which the first part is 1. The
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proofs for compositions with the first part > 1 are similar.

Proof For an inverse-conjugate composition C' = (¢1, ¢, ..., ¢,) of 2n 4+ 1 having parts of size
< 3, and the first part is 1. From Lemma 2.2 we know that there is an index j such that
crt+eca+---+ci=nandcjp1+---+cp,=n+1withecjy1 >1,0orei+ea+---+c¢j=n+1
and ¢j11 + -+ ¢, = n with ¢; > 1. And from Lemma 2.1, we know that the number of 1’s
to the right of the part 3 is at most 1 in an inverse-conjugate composition. So we consider the

following two cases.

Case 1 When ¢; +co+---+¢; =n, using C we first obtain a composition B = (¢1,¢2,. .., ¢j).
Next, for each part of size 3 in composition B, we do the following operation: if 3 is followed by
a 1, we replace 3 by “2,1”; otherwise replace 3 by “1,1,1”. In this way, we obtain a composition
of n with parts of size < 2 and the first part is 1. But this case does not include compositions
with three parts being “1,1,1” on the left end.

Case 2 When ¢; +c2 +---+¢; = n+ 1 with ¢;j > 1, we first get a composition A =
(1,¢j41,...,¢n), where the last part of A is 1 because of ¢, > 1, and the first part of A is
> 1. Using A we obtain a composition D of n by deleting the last part 1 of A. Similarly, for
composition D, we replace 3 by “2,1” if the part on the right side of it is 1, otherwise replace 3
by “1,1,1”. In this way, we get a composition of n having parts of size < 2 and the first part is

> 1. And this case includes compositions having three parts are “1,1,1” on the left end.

Conversely, for a composition K into parts of size < 2 of n, we consider the following three

cases.

Case a When there are at most two 1’s on the left end of K, we first do the following operation:
replace “2,1” with 3 if there are parts “2,1,1”, or replace “1,1,1” with 3 if there are parts
“1,1,...,17 from right to left in composition K. So we get a composition M. Next, we get a
-l
t>3 o

composition R = M|((1)|M)’. Thereupon the composition R is an inverse-conjugate composition
of 2n+1 with parts < 3, and the first part is 1. Here the composition R satisfies c1+co+---4c; =n
and ¢j11 + -+ ¢, =n+1 with ¢j4q > 1.

For example, the composition (1,1,2,2,1,1,1,2) of 11 into 1’s and 2’s produces the inverse-

conjugate composition (1,1,2,2,3,2,2,2,1,2,2,3) of 23 as follows:
(13 ]-, 2> 27 ]-a 13 ]-7 2) — (1> 17 23 23 3» 2) — (]-> ]-7 23 23 37 27 27 23 1; 27 27 3)

Case b When there are three parts “1,1,1” on the left end of K, we first replace “1,1,1” by

3, and then replace “2,1” with 3 if there are parts “2,1,1”, or replace “1,1,1” with 3 if there

are parts “1,1,...,1” from right to left in K. In this way, we have a composition N. Next, we
——

t>3
obtain a composition H = N|(1). Using H we get a composition F' by replacing the first part

X\ of H with A\ — 1. Finally, we obtain a composition G = F & H’. Hence the composition G

is an inverse-conjugate composition of 2n + 1 with parts < 3, and the first part is 1. Here the
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composition G satisfies c; +ca+---+¢; =n+1and ¢j41 + -+ ¢, = n with ¢; > 1.

Case ¢ When the first part of K is 2, we obtain a composition P using the same steps in Case b
except that the first part 2 remains the same. Hence the composition P is an inverse-conjugate
composition of 2n + 1 with parts < 3, and the first part is 1. Here the composition P satisfies
ci+c+---+ci=n+1land ¢cjjq + - +cp =n with ¢; > 1.

Thus we complete the proof. [

We cite an example to illustrate Theorem 2.5.

Example 2.6 Let n = 5. The corresponding relations between the inverse-conjugate composi-

tions of 11 into parts of size < 3 and the compositions of 5 into 1’s and 2’s are as follows.
(1,1,3,2,1,3) +— (1,1,1,1,1) +— (3,1,2,3,1,1),

1,2,1,2,3,2) «+— (2,1,2) +— (2,3,2,1,2,1),

1,3,2,2,1,2) +— (2,1,1,1) +— (2,1,2,2,3,1),

1,2,2,2,2,2) «— (1,2,2) +— (2,2,2,2,2,1),

1,1,2,1,3,3) +— (1,1,2,1) +— (3,3,1,2,1,1),

1,3,1,3,1,2) +— (1,2,1,1) +— (2,1,3,1,3,1),

1,2,3,1,2,2) +— (1,1,1,2) +— (2,2,1,3,2,1),

(1,1,2,2,2,3) +— (2,2,1) +— (3,2,2,2,1,1).

(
(
(
(
(
(

It is known that the number of compositions of n into odd parts is F;,, and the number of
compositions of n into parts greater than 1 is F,,_1. And then combined with Theorem 2.4, the

following identities are also obtained.

Theorem 2.7 Let Coqqa(n) be the number of compositions of a positive integer n into odd
parts. Then
I1C5(2n — 1) = 2Coq4(n), n > 1. (2.6)

Proof For an inverse-conjugate composition C of 2n — 1 with parts < 3, and the first part is
1, using proof of Theorem 2.5 we obtain a composition B of n — 1 with parts of size 1,2. Next
append 1 to the left end of B to obtain a composition H, then adjoin 1 and all adjacent 2’s on
the right of it to produce new parts from left to right in H. Hence we obtain a composition of
n into odd parts.

Clearly this correspondence is one-to-one, and vice versa. We complete the proof. [J

Theorem 2.8 Let Cs1(n) be the number of compositions of n into parts greater than 1. Then
I1C3(2n—1)=2Cs1(n+1), n> 1. (2.7)

Proof For an inverse-conjugate composition C of 2n — 1 with parts < 3, and the first part is
1, firstly, we obtain a composition B of n — 1 with parts of size 1,2 using proof of Theorem 2.5.
Next a composition D is obtained by appending 1 in both the first end and the last end of B.
Finally, we derive the conjugate D’ of D. Since the parts of D are 1’s or 2’s and both ends are

1’s, so the D’ is a composition of n + 1 with the parts greater than 1.
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For example, the inverse-conjugate composition (1,2,1,2,3,2) and its inverse composition
(2,3,2,1,2,1) of 11 into parts < 3 produce the composition (2,3,2) of 7 with parts greater than
1 as follows:
(1,2,1,2,3,2) — (1,3,2) — (2,1,2,1) — (2,1,2) — (1,2,1,2,1) — (2,3,2);
(2,3,2,1,2,1) — (1,2,1,2,3,2) — (1,3,2) — (2,1,2,1) — (2,1,2)
— (1,2,1,2,1) — (2,3, 2).

Obviously, this correspondence is one-to-one, and vice versa. We complete the proof. [

We cite an example to illustrate Theorem 2.8.

Example 2.9 Let n = 6. The corresponding relations between the inverse-conjugate compo-

sitions of 11 into parts of size < 3 and the compositions of 7 into parts greater than 1 are as

follows.

(1,1,3,2,1,3) +— (7) +— (3,1,2,3,1,1),
(1,2,1,2,3,2) «— (2,3,2) +— (2,3,2,1,2,1),
(1,3,2,2,1,2) «— (2,5) +— (2,1,2,2,3,1),
(1,2,2,2,2,2) +— (3,2,2) +— (2,2,2,2,2,1),
(1,1,2,1,3,3) +— (4,3) +— (3,3,1,2,1,1),
(1,3,1,3,1,2) «— (3,4) +— (2,1,3,1,3,1),
(1,2,3,1,2,2) «— (5,2) +— (2,2,1,3,2,1),
(1,1,2,2,2,3) +— (2,2,3) +— (3,2,2,2,1,1).

3. A bijective proof of Theorem 1.5

Theorem 1.5 is the generalization of Theorem 2.5, so it has an important theoretical meaning
to provide a bijective proof of Theorem 1.5. Although the proof is similar to that of Theorem

2.5, we still give a bijective proof of Theorem 1.5 in this section.

Proof For an inverse-conjugate composition C' = (¢1,c¢a,...,¢,) of 2n — 1 with parts of size
< k, and the first part is 1. From Lemma 2.2 we know that there is an index j such that
ci+c+--+cg=n—landcjp1+---+c, =nwithcjpqg >1,0orc; +ca+---+¢; =n and
Cj+1 + -+ cn =n— 1 with ¢; > 1. Using Lemma 2.1 we know that the number of 1’s on the
right of k is at most k£ — 2 in an inverse-conjugate composition. Thus we consider the following

two cases.

Case 1 When ¢ +¢2 + -+ +¢; = n— 1, we first obtain a composition B = (c1,¢2,...,¢j).

Next, for B we do the following transform: If there are no 1’s on the right of the part k, we

replace k by “1,1,...,17. If k is followed by d 1’s, we replace k with “d+1,1,1,...,1”, where
h,_/ ———
k—d—1

1<d<k—-2.In thls way, we obtain a composition of n — 1 into parts of size < k — 1 and the
first part is 1. But this case does not include the compositions with k parts being “1,1,...,1”
on the left end.
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Case 2 When ¢; +co + - +¢; = n with ¢; > 1, we first obtain a composition A =

(1,¢j41, .- .,cn)/, where the last part of A is 1 because of ¢, > 1, and the first part of A is

> 1. Next, a composition D of n — 1 is got by deleting the last part 1 of A. Similarly, we replace

k by “d+1,1,1,...,1” when there are d 1’s on the right of the part &k, where 0 <d < k—2. In
AL

k—d—1
this way, we obtain a composition of n — 1 with parts of size < k — 1 and the first part is > 1.
And this case includes compositions with k parts being “1,1,...,1” on the left end.
——
k

Conversely, for a composition S with parts of size < k — 1 of n — 1, we consider the following

three cases.

Case a When the first part of S is 1 and there are not k parts “1,...,1” on the left end, we

——
k

do the following operation: replace “l[,1,1,...,1” with k if there are parts “/,1,1,...,1”, where

SN—— S——
k-l k—1
2<1<k-—1,orreplace “1,1,...,1” with k if there are ¢ parts 1,1,...,1 from right to left in
S—— —

k t>k

composition S. So we obtain a composition 7. Next, we have a COH;pOSitiOH R =T|((1)|T).
Thereupon the composition R is an inverse-conjugate composition of 2n — 1 with parts < k, and
the first part is 1. Here the composition R satisfies c1+co+---4+c; =n—land ¢j41+--4+cp =n
with ¢;j 41 > 1.

Case b When there are k parts “1,...,1” on the left end of S, we first replace “1,...,1” by
——

——
k k
k, and then replace “I,1,1,...,1” with k if there are parts “I,1,1,...,17, where 2 <[ <k —1,
—— SN——
k—l k—1
or replacing “1,1,...,1” with k if there are t parts “1,1,...,1” from right to left in S. In this
—— SN——
k t>k

way, we have a composition U. Next, we have a composit;on H = U’(l), and then we obtain a
composition F' by replacing the first part A of H with A — 1. Finally, we obtain a composition
G = Fy H'. Hence the composition G is an inverse-conjugate composition of 2n — 1 with parts
< k, and the first part is 1. Here the composition G satisfies satisfies ¢; +c2 4+ ---+¢; =n and
Cjt1+ - +cp =n—1with¢; > 1.

Case ¢ When the first part of S is h, where, 1 < h < k, we obtain a composition P using the
same steps in Case 2 except that the first part h remains the same. Hence the composition P
is an inverse-conjugate composition of 2n — 1 with parts < k, and the first part is 1. Here the

composition P satisfies c; +ca+---+c¢;j=nand ¢cjy1 + -+ ¢, =n—1 with ¢; > 1.
We complete the proof. [J

In particular, we give the following interesting relations for the inverse-conjugate compositions

into parts of size < 4.

Corollary 3.1 Let IC4(N) denote the number of inverse-conjugate compositions of N into
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parts of size < 4. Then
IC,(2n+1) =1C4(2n — 1) + IC4(2n — 3) + IC4(2n — 5), n >3, (3.1)
with TCy(1) = 1, IC4(3) = 2 IC4(5) = 4, IC4(7) = 8.

Corollary 3.2 Let IC4(N) denote the number of inverse-conjugate compositions of N into

parts of size < 4. Then
IC,(2n+1) =2C3(n), n>1. (3.2)
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