Journal of Mathematical Research with Applications Sept., 2018, Vol. 38, No. 5, pp. 449–457 DOI:10.3770/j.issn:2095-2651.2018.05.002 Http://jmre.dlut.edu.cn

Strongly W-Gorenstein Complexes

Bo LU

College of Mathematics and Computer Science, Northwest Minzu University, Gansu 730030, P. R. China

Abstract The notion of strongly W-Gorenstein complexes is introduced for a self-orthogonal class W of modules. We obtain a characterization of such complexes and apply to strongly Gorenstein injective complexes.

MR(2010) Subject Classification 18G25; 18G35

1. Introduction

The main idea of Gorenstein homological algebra is to replace projective modules by Gorenstein projective modules. These modules were introduced by Enochs and Jenda [1] as a generalization of finitely generated module of G-dimension zero over a two-sided noetherian ring, in the sense of Auslander and Bridger [2]. This subject in the category of complexes has been also considered by many authors and developed to an advanced level, for example [3–10].

A complex X is said to be Gorenstein injective if there exists an exact sequence of injective complexes

$$\cdots \to E^{-1} \to E^0 \to E^1 \to \cdots$$

with $C \cong \text{Ker}(E^0 \to E^1)$ and which remains exact after applying Hom(I, -) for any injective complex I.

It is shown that a complex C is Gorenstein injective if and only if C_m is Gorenstein injective in R-Mod for each $m \in \mathbb{Z}$ (see [10, Proposition 2.8]). In spite of the fact that this result is a generalization of classical result: a complex C is injective if and only if C is exact with each $Z_n(C)$ injective modules for $n \in \mathbb{Z}$, it seems that a better corresponding relationship has not yet been established between Gorenstein and classical version.

To this end, the aim of the present paper is to introduce and investigate so-called strongly W-Gorenstein complexes, as a main result of this note, the following result is obtained (cf. Theorem 3.6):

Theorem 1.1 Let G be a complex. Then the following statements are equivalent:

Received December 11, 2017; Accepted April 27, 2018

Supported by the National Natural Science Foundation of China (Grant No. 11501451) and The Fund for Talent Introduction of Northwest Minzu University (Grant No. xbmuyjrc201406).

E-mail address: lubo55@126.com

(1) G is strongly W-Gorenstein.

(2) G is a complex of W-Gorenstein R-modules and any morphism $f: V \longrightarrow G$ and $g: G \longrightarrow V$ are null homotopic whenever V is a CE W complex.

As applications to Theorem 1.1, we establish a relationship for strongly Gorentein injective complexes.

Corollary 1.2 Let G be a complex. Then the following statements are equivalent:

(1) G is strongly Gorenstein injective.

(2) G is exact with $Z_n(G)$ Gorenstein injective R-modules for each $n \in \mathbb{Z}$.

Namely, for a complex C, the following diagram can be obtained:

 $\rightarrow C$ is strongly Gorenstein injective C is injective – \mathbb{C} is exact and $\mathbb{Z}_n(C)$ is injective — $\rightarrow C$ is exact and $\mathbf{Z}_n(C)$ is Gorenstein injective.

 \subseteq

Diagram 1 Object relation diagram

2. Preliminaries

Throughout this paper, R denotes a ring with unity. A complex

$$\cdots \xrightarrow{\delta_2} C_1 \xrightarrow{\delta_1} C_0 \xrightarrow{\delta_0} C_{-1} \xrightarrow{\delta_{-1}} \cdots$$

of left R-modules will be denoted by (C, δ) or C. For a ring R, R-Mod denotes the category of left R-modules, unless stated otherwise, R-modules always denote left R-modules, $\mathscr{C}(R)$ denotes the abelian category of complexes of left R-modules.

We use both the superscript and subscript notations for complexes. When we use subscripts for a complex we will use superscripts to distinguish complexes. So if $\{C^i\}_{i\in I}$ is a family of complexes, C^i will be

$$\cdots \xrightarrow{\delta_2} C_1^i \xrightarrow{\delta_1} C_0^i \xrightarrow{\delta_0} C_{-1}^i \xrightarrow{\delta_{-1}} \cdots$$

Given a left R-module M, we use the notation $D^m(M)$ to denote the complex

$$\cdots \longrightarrow 0 \longrightarrow M \xrightarrow{\text{id}} M \longrightarrow 0 \longrightarrow \cdots$$

with M in the mth and (m-1)th positions and set $\overline{M} = D^0(M)$. We also use the notation $S^m(M)$ to denote the complex with M in the mth place and 0 in the other places and set $M = S^0(M).$

Given a complex C and an integer $m, \Sigma^m C$ denotes the complex such that $(\Sigma^m C)_l = C_{l-m}$, and whose boundary operators are $(-1)^m \delta_{l-m}$. The *l*th homology module of C is the module $H_l(C) = Z_l(C)/B_l(C)$ where $Z_l(C) = Ker(\delta_l^C)$ and $B_l(C) = Im(\delta_{l+1}^C)$.

Let C and D be complexes of left R-modules. We will denote by $\operatorname{Hom}_R(C, D)$ the complex of abelian groups with $\operatorname{Hom}_R(C,D)_n = \prod_{t \in \mathbb{Z}} \operatorname{Hom}_R(C_t,D_{n+t})$ such that if $f \in \operatorname{Hom}_R(C,D)_n$,

450

then $(\delta_n(f))_m = \delta_{m+n}^D f_m - (-1)^n f_{m+1} \delta_m^C$. f is called a chain map of degree n if $\delta_n(f) = 0$. A chain map of degree 0 is called a morphism. We use $\operatorname{Hom}(C, D)$ to denote the abelian group of morphisms from C to D and Ext^i for $i \ge 0$ will denote the groups we get from the right derived functor of Hom. We let $\operatorname{Ext}^1_{dw}(C, D)$ be the subgroup of $\operatorname{Ext}^1(C, D)$ consisting of those short exact sequences which are split in each degree.

Let X be a complex of right R-modules and Y a complex of left R-modules, $X \otimes_R Y$ denotes the usual tensor product of X and Y, where $(X \otimes_R Y)_n = \bigoplus_{t \in \mathbb{Z}} X_t \otimes_R Y_{n-t}$ and $\delta(x \otimes y) = \delta_t^X(x) \otimes y + (-1)^t x \otimes \delta_{n-t}^Y(y)$ for $x \in X_t, y \in Y_{n-t}$.

General background materials about complexes of R-modules can be found in [5].

We first recall some notions and results needed in the paper.

A left *R*-module *M* is called Gorenstein injective if there exists an exact sequence of injective left *R*-modules $\cdots \to E_{-1} \to E_0 \to E_1 \to \cdots$ with $M \cong \text{Ker}(E_0 \to E_1)$ which remains exact after applying $\text{Hom}_R(I, -)$ for any injective left *R*-module *I* (see [1, Definition 2.1]).

Recall from [11, p.227] that a complex I is said to be CE injective if I, Z(I), B(I) and H(I) are complexes consisting of injective modules. A complex P is said to be CE projective if P, Z(P), B(P) and H(P) are complexes consisting of projective modules.

Let \mathcal{W} be a class of R-modules. \mathcal{W} is called self-orthogonal if it satisfies the following condition:

$$\operatorname{Ext}_{R}^{i}(W, W') = 0$$
 for all $W, W' \in W$ and all $i \geq 1$.

In the following, W always denotes a self-orthogonal class of *R*-modules which is closed under extensions, finite direct sums and direct summands. Geng and Ding in [12, Remark 2.3] enumerated a variety of interesting examples of self-orthogonal classes.

Let R be a commutative ring. Following [13, Definition 2.1], an R-module C is semidualizing if:

- (1) C_R admits a degreewise finite *R*-projective resolution.
- (2) The homothety map $_{R}R_{R} \to \operatorname{Hom}_{S}(C,C)$ is an isomorphism.
- (3) $\operatorname{Ext}_{B}^{\geq 1}(C, C) = 0.$

Examples include the rank 1 free module and a dualizing (canonical) module, when one exists.

An *R*-module is *C*-projective if it has the form $C \otimes_R P$ for some projective *R*-module *P*. An *R*-module is *C*-injective if it has the form $\operatorname{Hom}_R(C, E)$ for some injective *R*-module *E*. Let $\mathcal{P}_C = \{C \otimes_R P \mid P \text{ is a projective } R\text{-module}\}$ and $\mathcal{I}_C = \{\operatorname{Hom}_R(C, E) \mid E \text{ is an injective } R\text{-module}\}$ denote the class of *C*-projective and *C*-injective modules, respectively. Then \mathcal{P}_C and \mathcal{I}_C are self-orthogonal [12, Corollary 3.2].

Definition 2.1 ([8, Definition 2.3]) A complex X is said to be a CE W complex if X, Z(X), B(X) and H(X) are complexes each of whose terms belongs to W.

A complex X is called a \mathcal{W} complex if X is acyclic and $Z_n(X) \in \mathcal{W}$ for any $n \in \mathbb{Z}$. We will denote the class of \mathcal{W} complexes by $\widetilde{\mathcal{W}}$.

Remark 2.2 (1) For any module $M \in W$ and any $n \in \mathbb{Z}$, $D^n(M)$ and $S^n(M)$ are CE W complexes.

(2) In particular, if \mathcal{W} denotes the class of all projective (respectively, injective) modules, then CE \mathcal{W} complexes are precisely CE projective (respectively, CE injective) complexes.

(3) If we put $\mathcal{W} = \mathcal{P}_C$ (respectively, $\mathcal{W} = \mathcal{I}_C$), then a CE \mathcal{W} complex above is particularly called CE *C*-projective (respectively, CE *C*-injective) complexes.

(4) It is obviously that every complex $X \in \widetilde{\mathcal{W}}$ is a CE \mathcal{W} complex.

3. Strongly W-Gorenstein complex

This section is devoted to define and study strongly W-Gorenstein complexes.

Definition 3.1 A complex G is said to be strongly W-Gorenstein, if there exists an exact sequence of W complexes

$$\mathbb{W} = \cdots \longrightarrow W^{-1} \longrightarrow W^0 \longrightarrow W^1 \longrightarrow \cdots$$

such that

(1) $G = \operatorname{Ker}(W^0 \to W^1);$

(2) The sequence remains exact when $\operatorname{Hom}(V, -)$ and $\operatorname{Hom}(-, V)$ are applied to it for any CE W complex V.

And in this case, \mathbb{W} is called a complete strongly \mathcal{W} -resolution of G.

Remark 3.2 (1) If \mathcal{W} is the class of injective (respectively, projective) *R*-modules, then strongly \mathcal{W} -Gorenstein complexes are said to be strongly Gorenstein injective (respectively, strongly Gorenstein projective).

(2) Let R be a commutative ring and W be the C-injective (respectively, C-projective) R-modules. Then a strongly W-Gorenstein complex above is particularly called strongly C-Gorenstein injective (respectively, strongly C-Gorenstein projective). That is, a complex X is said to be strongly C-Gorenstein injective (respectively, strongly C-Gorenstein projective) if there exists an exact sequence of C-injective (respectively, C-projective) complexes $\cdots \longrightarrow X_2 \longrightarrow$ $X_1 \longrightarrow X_0 \longrightarrow X_{-1} \longrightarrow \cdots$ with $X \cong \operatorname{Ker}(X_0 \to X_{-1})$, such that $\operatorname{Hom}(V, -)$ (respectively, $\operatorname{Hom}(-, V)$) exacts the above sequence for any CE C-injective (respectively, CE C-projective) complex V.

To prove our results in Theorem 1.1, we establish several facts.

. .

Lemma 3.3 ([14, Lemma 2.1]) For chain complexes X, Y and $n \in \mathbb{Z}$, we have

$$\operatorname{Ext}_{dw}^{1}(\Sigma^{n+1}X,Y) = \operatorname{H}_{n}\operatorname{Hom}(X,Y) = \operatorname{Hom}_{K(R)}(\Sigma^{n}X,Y).$$

Lemma 3.4 For any CE \mathcal{W} complex X and \mathcal{W} complex Y, $\text{Ext}^1(X,Y) = 0$, $\text{Ext}^1(Y,X) = 0$, and then $\text{Hom}_R(X,Y)$ and $\text{Hom}_R(Y,X)$ are exact.

Proof Note that $({}^{\perp}\mathcal{W}, \mathcal{W})$ is a cotorsion pair in *R*-Mod and \mathcal{W} is a self-orthogonal class of

R-modules. Then X is also a CE $^{\perp}\mathcal{W}$ complex, and so $\text{Ext}^1(X,Y) = 0$ by [15, Remark 2.11]. Dually, we can show that $\text{Ext}^1(Y,X) = 0$. Thus, $\text{Hom}_R(X,Y) = 0$ and $\text{Hom}_R(Y,X) = 0$ by Lemma 3.3. \Box

Lemma 3.5 If G is strongly W-Gorenstein complexes, then G_n is W-Gorenstein in R-Mod for $n \in \mathbb{Z}$, $\operatorname{Hom}_R(G, V)$ and $\operatorname{Hom}_R(V, G)$ are exact for any CE W complex V.

Proof It follows from [6, Corollary 4.8] that G_n is \mathcal{W} -Gorenstein.

Since G is strongly \mathcal{W} -Gorenstein, there is an exact sequence

$$0 \to G \longrightarrow W \longrightarrow L \to 0$$

such that W is a \mathcal{W} complex and L is a strongly \mathcal{W} -Gorenstein complex. This induces an exact sequence

 $0 \to \operatorname{Hom}(V, G) \longrightarrow \operatorname{Hom}(V, W) \longrightarrow \operatorname{Hom}(V, L) \to \operatorname{Ext}^{1}(V, G) \to \operatorname{Ext}^{1}(V, W) = 0$

by Lemma 3.4. Then $\operatorname{Ext}^1(V, G) = 0$ using the definition of strongly \mathcal{W} -Gorenstein complexes. This implies that $\operatorname{Hom}_R(V, G)$ is exact using Lemma 3.3. Also $\operatorname{Hom}_R(G, V)$ is exact using a similar method. \Box

Theorem 3.6 Let G be a complex. Then the following statements are equivalent:

(1) G is strongly W-Gorenstein.

(2) G is a complex of \mathcal{W} -Gorenstein R-modules and any morphism $f : V \longrightarrow G$ and $g : G \longrightarrow V$ are null homotopic whenever V is a CE \mathcal{W} complex.

Proof $(1) \Longrightarrow (2)$. It follows from Lemmas 3.3 and 3.5.

 $(2) \Longrightarrow (1)$. Now suppose G is a complex of \mathcal{W} -Gorenstein R-modules and any morphism $f: V \longrightarrow G$ and $g: G \longrightarrow V$ are null homotopic whenever V is a CE \mathcal{W} complex. We wish to show that G is strongly \mathcal{W} -Gorenstein.

Using Lemma 3.3, we get $\operatorname{Hom}_R(V, G)$ and $\operatorname{Hom}_R(V, G)$ are exact for any CE \mathcal{W} complex V. Note that there is a short exact sequence

$$0 \to \Sigma^{-1} G \xrightarrow{(1,0)} \operatorname{Cone}(1^G) \xrightarrow{(0,1)} G \to 0.$$

Since each G_n is \mathcal{W} -Gorenstein, we can find a short exact sequence $0 \to Y_n \xrightarrow{\alpha_n} J_n \xrightarrow{\beta_n} G_n \to 0$ with $J_n \in \mathcal{W}$ and $Y_n \mathcal{W}$ -Gorenstein. This gives us another short exact sequence

$$0 \to \bigoplus_{n \in \mathbb{Z}} D^n(Y_n) \xrightarrow{\bigoplus_{n \in \mathbb{Z}} D^n(\alpha_n)} \bigoplus_{n \in \mathbb{Z}} D^n(J_n) \xrightarrow{\bigoplus_{n \in \mathbb{Z}} D^n(\beta_n)} \bigoplus_{n \in \mathbb{Z}} D^n(G_n) \to 0.$$

Put $W^{-1} = \bigoplus_{n \in \mathbb{Z}} D^n(J_n)$. Then W^{-1} is a \mathcal{W} complex. Notice that $\operatorname{Cone}(1^G) = \bigoplus_{n \in \mathbb{Z}} D^n(G_n)$, let β be the composite

$$\bigoplus_{n \in \mathbb{Z}} D^n(J_n) \xrightarrow{\bigoplus_{n \in \mathbb{Z}} D^n(\beta_n)} \bigoplus_{n \in \mathbb{Z}} D^n(G_n) \xrightarrow{(0,1)} G$$

i.e., $\beta = (0,1) \bigoplus_{n \in \mathbb{Z}} D^n(\beta_n)$, which implies that β is an epimorphism. Setting $K^{-1} = \ker\beta$, we get the following commutative diagram:

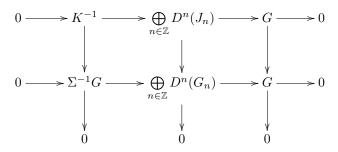


Diagram 2 Exact commutative diagram

It follows from the snake lemma that there is a short exact sequence

$$0 \to \bigoplus_{n \in \mathbb{Z}} D^n(Y_n) \longrightarrow K^{-1} \longrightarrow \Sigma^{-1}G \to 0$$

So each K_n^{-1} is a \mathcal{W} -Gorenstein module.

For any CE \mathcal{W} complex V, applying $\operatorname{Hom}_R(V, -)$ and $\operatorname{Hom}_R(-, V)$ to the short exact sequence $0 \to K^{-1} \longrightarrow W^{-1} \longrightarrow G \to 0$, respectively, it yields two exact sequences $0 \to \operatorname{Hom}_R(V, K^{-1}) \to \operatorname{Hom}_R(V, W^{-1}) \to \operatorname{Hom}_R(V, G) \to 0$ and $0 \to \operatorname{Hom}_R(G, V) \to \operatorname{Hom}_R(W^{-1}, V) \to \operatorname{Hom}_R(K^{-1}, V) \to 0$, where $\operatorname{Hom}_R(V, G)$, $\operatorname{Hom}_R(V, W^{-1})$, $\operatorname{Hom}_R(G, V)$ and $\operatorname{Hom}_R(W^{-1}, V)$ are exact by Lemmas 3.3 and 3.4. Then $\operatorname{Hom}_R(V, K^{-1})$ and $\operatorname{Hom}_R(K^{-1}, V)$ are exact, and so $\operatorname{Ext}^1(V, K^{-1}) = 0$ and $\operatorname{Ext}^1(K^{-1}, V) = 0$. This means that

$$0 \to K^{-1} \longrightarrow W^{-1} \longrightarrow G \longrightarrow 0$$

remains exact after applying $\operatorname{Hom}(V, -)$ and $\operatorname{Hom}(-, V)$ for any CE \mathcal{W} complex V.

It also follows that K^{-1} has the same properties as G. Thus, we may continue inductively to obtain the following resolution

$$\cdots \to W^{-2} \xrightarrow{d_{-2}} W^{-1} \xrightarrow{d_{-1}} G \xrightarrow{\beta} 0,$$

and this resolution also remains exact after applying Hom(V, -) and Hom(-, V) for any CE \mathcal{W} complex V by Lemma 3.3 again.

Similarly, we can obtain a W-coresolution

$$0 \to G \xrightarrow{\alpha} W^0 \xrightarrow{d_0} W^1 \xrightarrow{d_1} W^2 \to \cdots$$

with each $L^i = \text{Coker} d_i$ strongly \mathcal{W} -Gorenstein and $W^i \in \widetilde{\mathcal{W}}$ for $i \ge 0$ and this coresolution also remains exact after applying Hom(V, -) and Hom(-, V) for any CE \mathcal{W} complex V.

Therefore, G is strongly \mathcal{W} -Gorenstein. \Box

4. Remarks

In this section, we illustrate the main results in Section 3 by some corollaries and examples.

Lemma 4.1 ([8, Proposition 3.5]) W is a CE W complex if and only if W can be divided into direct sums $W = W' \oplus W''$ where W' is a W complex and W'' is a graded module with all items in W, i.e., $W = \bigoplus_{i \in \mathbb{Z}} (D^i(W'_i) \oplus S^i(W''_i)).$

Take \mathcal{W} to be the subcategory of injective *R*-modules. The following corollary which appears in [3, Proposition 3.3] can be obtained using Lemma 4.1.

Corollary 4.2 A complex X is CE injective if and only if X can be divided into direct sums $X = X' \oplus X''$ where X' is an injective complex and X'' is a graded module with all items injective R-modules.

If R is a commutative ring and $\mathcal{W} = \mathcal{I}_C$ is the class of C-injective R-modules, we get the following corollary.

Corollary 4.3 A complex X is CE C-injective if and only if X can be divided into direct sums $X = X' \oplus X''$ where X' is a C-injective complex and X'' is a graded module with all items C-injective R-modules.

Using Lemma 4.1, as an immediate consequence of Theorem 3.6, the following result is obtained.

Corollary 4.4 Let G be a complex. Then the following statements are equivalent:

(1) G is strongly W-Gorenstein.

(2) G is a complex of \mathcal{W} -Gorenstein R-modules and any morphism $f : \underline{V} \longrightarrow G$ and $g : G \longrightarrow \underline{V}$ are null homotopic whenever $V \in \mathcal{W}$.

Lemma 4.5 ([15, Lemma 3.2 and its dual version]) Let $0 \to A \to B \to C \to 0$ be a short exact sequence of complexes with A or C exact. Then $0 \to A \to B \to C \to 0$ is CE exact, the definition of CE exact sequences can be found in [3, Definition 5.3].

As we know, a complex I is injective if and only if I is an exact complex and each $Z_n(I)$ is an injective R-module. The following corollary establishes a similar result for strongly Gorenstein injective complexes.

Proposition 4.6 Let G be a complex. Then the following statements are equivalent:

- (1) G is strongly Gorenstein injective.
- (2) G is an exact complex with $Z_n(G)$ Gorenstein injective in R-Mod for $n \in \mathbb{Z}$.

Proof (1) \Longrightarrow (2). Note that $\underline{\mathbb{Q}}/\mathbb{Z}$ is CE injective. Then G is an exact complex by Lemma 3.3 and Corollary 4.4.

It follows from Lemma 4.5 that there is a CE exact sequence of injective complexes

$$\cdots \to I^{-1} \to I^0 \to I^1 \to \cdots$$

such that $G \cong \operatorname{Ker}(I^0 \to I^1)$, and so the following sequence

$$\cdots \to \mathcal{Z}_n(I^{-1}) \to \mathcal{Z}_n(I^0) \to \mathcal{Z}_n(I^1) \to \cdots$$
(4.1)

is exact such that $Z_n(G) \cong Ker(Z_n(I^0) \to Z_n(I^1))$ and each $Z_n(I^i)$ is injective for integers

n, i. Note that $S^n(E)$ is CE injective for any injective *R*-module *E*. Using [14, Lemma 3.1], the sequence (4.1) is $\operatorname{Hom}_R(E, -)$ exact. Therefore, each $Z_n(G)$ is a Gorenstein injective module.

 $(2) \Longrightarrow (1)$. It is obvious that G_n is Gorenstein injective *R*-modules. For any injective *R*-module *I*, the exactness of *G* leads to the exactness of $\operatorname{Hom}_R(G, I)$, on the other hand, $\operatorname{Z}_n(G)$ is Gorenstein injective *R*-modules for $n \in \mathbb{Z}$, then $\operatorname{Hom}_R(I, G)$ is exact by [9, Theorem 2.7]. Thus *G* is strongly Gorenstein injective by Lemma 3.3 and Corollary 4.4. \Box

In the following, R will be a commutative ring.

Take \mathcal{W} to be the class of *C*-injective *R*-modules. As an example of Theorem 3.6, the following observation will be established.

Example 4.7 Let G be a complex of R-modules. Then the following statements are equivalent:

(1) G is strongly C-Gorenstein injective.

(2) G is a complex of C-Gorenstein injective R-modules and any morphism $f : \underline{V} \longrightarrow G$ is null homotopic whenever V is a C-injective module and $G \otimes_R C$ is exact for any semidualizing R-module C.

Proof It follows from Corollary 4.4 and adjoint isomorphisms. \Box

Recall from [16, the dual version of Definition 2.1] that an *R*-module *M* is G_C -injective if there exists an exact sequence of *R*-modules $\cdots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow X_0 \longrightarrow X_{-1} \longrightarrow \cdots$ with each X_i injective for i < 1 and X_i *C*-injective for $i \ge 1$, such that $\operatorname{Hom}_{\mathcal{C}(R)}(X, -)$ exacts the above sequence for any *C*-injective *R*-module *X* and $M \cong \operatorname{Ker}(X_0 \to X_{-1})$. Set $\mathcal{GI}_C(R)$ =the subcategory of G_C -injective *R*-modules.

Let C be a semidualizing R-module. Following [13, Definition 4.1], the Auslander class of C is the subcategory $\mathcal{A}_C(R)$ of R-modules M such that:

(1) $\operatorname{Tor}_{\geq 1}^{R}(C, M) = 0 = \operatorname{Ext}_{R}^{\geq 1}(C, C \otimes_{R} M)$, and

(2) the natural map $M \longrightarrow \operatorname{Hom}_R(C, C \otimes_R M)$ is an isomorphism.

Using [12, Proposition 3.6] and Example 4.7, we obtain the following example which gives the relationship between a complex G and the corresponding entries G_n .

Example 4.8 A complex G is strongly C-Gorenstein injective if and only if $G_n \in \mathcal{GI}_C(R) \bigcap \mathcal{A}_C(R)$, any morphism $f : \underline{V} \longrightarrow G$ is null homotopic whenever V is a C-injective module and $G \otimes_R C$ is exact for any semidualizing R-module C.

We round off the paper with the following specific example of strongly \mathcal{W} -Gorenstein complexes.

Example 4.9 Let E be an injective module and C a semidualizing module. Then

 $X =: \dots \longrightarrow 0 \longrightarrow \operatorname{Hom}_R(C, E) \xrightarrow{1} \operatorname{Hom}_R(C, E) \longrightarrow 0 \longrightarrow \dots$

is a strongly W-Gorenstein complex for the self-orthogonal class of C-injective modules.

Proof Since any C-injective module is C-Gorenstein injective, X is a complex of C-Gorenstein injective R-modules. Note that X is a contractible complex. Then any morphism $f: \underline{V} \longrightarrow X$ is

null homotopic whenever V is a C-injective module and $X \otimes_R C$ is exact for any semidualizing *R*-module C. Thus X is strongly C-Gorenstein injective by Example 4.7, i.e., X is a strongly *W*-Gorenstein complex for the self-orthogonal class of C-injective modules. \Box

Acknowledgements We would like to thank the referee for helpful suggestions and comments that improved the manuscript. We also sincerely thank the editor for carefully reading and checking the manuscript.

References

- E. E. ENOCHS, O. M. G. JENDA. Gorenstein injective and projective modules. Math. Z., 1995, 220(4): 611–633.
- [2] M. AUSLANDER, M. BRIDGER. Stable Module Theory. American Mathematical Society, Providence, R.I. 1969.
- [3] E. E. ENOCHS. Cartan-Eilenberg complexes and resolutions. J. Algebra, 2011, 342: 16–39.
- [4] E. E. ENOCHS, J. R. GARCÍA ROZAS. Gorenstein injective and projective complexes. Comm. Algebra, 1998, 26(5): 1657–1674.
- [5] J. R. GARCÍA ROZAS. Covers and Envelopes in the Category of Complexes. Chapman & Hall/CRC, Boca Raton, FL, 1999.
- [6] Li LIANG, Nanqing DING, Gang YANG. Some remarks on projective generators and injective cogenerators. Acta Math. Sin. (Engl. Ser.), 2014, 30(12): 2063–2078.
- [7] Zhongkui LIU, Chunxia ZHANG. Gorenstein injective complexes of modules over Noetherian rings. J. Algebra, 2009, 342(5): 1546–1554.
- [8] Bo LU, Zhongkui LIU. A note on Cartan-Eilenberg Gorenstein categories. Kodai Math. J., 2015, 38(1): 209–227.
- [9] Aimin XU, Nanqing DING. On stability of Gorenstein categories. Comm. Algebra, 2013, 41(10): 3793–3804.
- [10] Xiaoyan YANG, Zhongkui LIU. Gorenstein projective, injective, and flat complexes. Comm. Algebra, 2011, 39(5): 1705–1721.
- [11] J. L. VERDER. Catégories dérivées, état 0. Springer, Berlin, 1977.
- [12] Yuxian GENG, Nanqing DING. W-Gorenstein modules. J. Algebra, 2011, **325**: 132–146.
- [13] H. HOLM, D. WHITE. Foxby equivalence over associative rings. J. Math. Kyoto Univ., 2007, 47(4): 781–808.
- [14] J. GILLESPIE. The flat model structure on Ch(R). Trans. Amer. Math. Soc., 2004, **356**(8): 3369–3390.
- [15] Bo LU, Zhongkui LIU. Cartan-Eilenberg complexes with respect to cotorsion pairs. Arch. Math.(Basel), 2014, 102(1): 35–48.
- [16] D. WHITE. Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra, 2010, 2(1): 111–137.