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Abstract In this paper, we establish a connection between Carleson type measures supported

on (−1, 1) and certain Hankel matrices. The connection is given by the study of Hankel matrices

acting on Dirichlet type spaces.
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1. Introduction

Let D be the open unit disk in the complex plane C. Denote by H(D) the space of

functions analytic in D. The Dirichlet type space Ds, s ∈ R, consists of those functions

f(z) =
∑∞

n=0 anz
n ∈ H(D) with

∥f∥2Ds
=

∞∑
n=0

(n+ 1)1−s|an|2 < ∞.

For s > −1, it is well known that f ∈ Ds if and only if∫
D
|f ′(z)|2(1− |z|2)sdA(z) < ∞,

where dA(z) denotes the Lebesgue measure on D. For s = 0 we obtain the classical Dirichlet

space D and for s = 1 we get the Hardy space H2. See [1–7] for more results of Dirichlet type

spaces.

If a matrix satisfies that its j, k entry is a function of j + k, then we say that the matrix is

a Hankel matrix. For 0 < p < ∞, a finite positive Borel measure µ on D can yield an infinite

Hankel matrix as Sp[µ] with entries

(Sp[µ])i,j = (i+ j + 1)p−1µ[i+ j], i, j = 0, 1, 2, . . . ,

where

µ[i+ j] =

∫
D
zi+jdµ(z).
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The Hankel matrix Sp[µ] acts on analytic functions by multiplication on Taylor coefficient and

defines an operator

Sp[µ](f)(z) =

∞∑
n=0

( ∞∑
k=0

(n+ k + 1)p−1µ[n+ k]ak

)
zn

for the analytic functions f(z) =
∑∞

n=0 anz
n.

For p > 0, an important tool to study function spaces is p-Carleson measures. Given an arc

I of the unit circle T, the Carleson box S(I) with |I| < 1 is given by

S(I) = {rζ ∈ D : 1− |I| < r < 1, ζ ∈ I},

where |I| denotes the length of the arc I. If |I| > 1, we set S(I) = D. A finite positive Borel

measure µ on D is said to be a p-Carleson measure if

sup
I⊆T

µ(S(I))

|I|p
< ∞.

If
µ(S(I))

|I|p
→ 0

as |I| → 0, we call µ the vanishing p-Carleson measure. For p = 1, we obtain the classical

Carleson measures. See [8–10] for p-Carleson measures.

In 2014, Bao and Wulan [11] established a connection among p-Carleson measures, Hankel

matrices and Dirichlet type spaces as follows. In particular, the case for p = s = 1 was obtained

by Power [10] in 1980.

Theorem 1.1 ([11]) Let 0 < p < ∞ and 0 < s < 2. Suppose that µ is a finite positive Borel

measure on D supported on (−1, 1).

(1) The following conditions are equivalent.

(i) µ is a p-Carleson measure.

(ii) µ[n] = O(n−p).

(iii) Sp[µ] is bounded on Ds.

(2) The following conditions are equivalent.

(i) µ is a vanishing p-Carleson measure.

(ii) µ[n] = o(n−p).

(iii) Sp[µ] is compact on Ds.

Throughout the paper, we assume that K is a nonnegative function on [0, 1]. Let µ be a

finite positive Borel measure on D. Following Smith [12], we say that µ is a K-Carleson measure

if

sup
I⊆T

µ(S(I))

K(|I|)
< ∞.

If

lim
|I|→0

µ(S(I))

K(|I|)
= 0,
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we call µ the vanishing K-Carleson measure. Clearly, if K(t) = tp, 0 < p < ∞, then the K-

Carleson measure gives the p-Carleson measure. We define the corresponding Hankel matrix

SK [µ] as follows.

(SK [µ])i,j =

∫
D

1

(i+ j + 1)K( 1
i+j+1 )

zi+jdµ(z), i, j = 0, 1, 2, . . . .

The Hankel matrix SK [µ] induces an operator

SK [µ](f)(z) =

∞∑
n=0

( ∞∑
k=0

µ[n+ k]ak

(n+ k + 1)K( 1
n+k+1 )

)
zn

for f(z) =
∑∞

n=0 anz
n ∈ H(D).

The purpose of this paper is to establish connection among K-Carleson measure supported

on (−1, 1), the Hankel matrix SK [µ] and the Dirichlet type space Ds.

2. Main results

Following Shields and Williams [13], we say that the nonnegative function K on [0, 1] is

normal if there exist two constants 0 < a ≤ b < ∞ such that K(t)/ta is increasing on (0, 1] and

K(t)/tb is decreasing on (0, 1]. Clearly, if K is normal, then K satisfies the double condition.

Namely, K(2t) ≈ K(t) for 0 < t < 1/2. In this paper, the symbol A ≈ B means that A . B . A.

We say that A . B if there exists a constant C such that A ≤ CB.

Before stating and proving our main result, we need the following lemma.

Lemma 2.1 Let K be normal and let s < 2. Then there exist two positive constants C1 and

C2 depending only on K and s such that

C1

∞∑
n=1

n1−s

(K( 1n ))
2
tn ≤ (1− t2)s−2

(K(1− t))2
≤ C2

∞∑
n=1

n1−s

(K( 1n ))
2
tn

for all 1/2 < t < 1.

Proof For all 1/2 < t < 1, we compute that

∞∑
n=1

n1−s

(K( 1n ))
2
tn ≈

∞∑
n=1

∫ 1
n

1
n+1

t
1
x

x3−s(K(x))2
dx

≈
∫ 1

0

t
1
x

x3−s(K(x))2
dx ≈

∫ ∞

1

y1−sty

(K( 1y ))
2
dy

≈
∫ ∞

− ln t

x1−se−x

(ln 1
t )

2−s(K( 1x ln 1
t ))

2
dx.

Note that K is normal. Then there exist two constants 0 < a ≤ b < ∞ such that K(t)/ta is

increasing on (0, 1] and K(t)/tb is decreasing on (0, 1]. Then if − ln t < x ≤ 1, then ln 1
t ≤ 1

x ln 1
t

and hence

K(ln 1
t )

K( 1x ln 1
t )

= xa K(ln 1
t )/(ln

1
t )

a

K( 1x ln 1
t )/(

1
x ln 1

t )
a
≤ xa.



474 Liu YANG

Similarly, if 1 ≤ x < ∞, then
K(ln 1

t )

K( 1x ln 1
t )

≤ xb.

Note that s < 2 and ln 1
t ≈ (1− t) for all 1/2 < t < 1. These together with the above estimates

give
∞∑

n=1

n1−s

(K( 1n ))
2
tn ≈

∫ ∞

− ln t

x1−se−x

(ln 1
t )

2−s(K( 1x ln 1
t ))

2
dx

. (1− t)s−2

(K(1− t))2

(∫ ∞

0

x1+2a−se−xdx+

∫ ∞

0

x1+2b−se−xdx
)

≈ (1− t)s−2

(K(1− t))2
(Γ(2 + 2a− s) + Γ(2 + 2b− s))

. (1− t)s−2

(K(1− t))2
,

where Γ(.) is the Gamma function.

On the other hand, since K(t)/ta is increasing and a > 0, K is also an increasing function.

This gives that
∞∑

n=1

n1−s

(K( 1n ))
2
tn &

∫ ∞

3

x1−se−x

(ln 1
t )

2−s(K( 1x ln 1
t ))

2
dx

& (1− t)s−2

(K(1− t))2

∫ ∞

3

x1−se−xdx

≈ (1− t)s−2

(K(1− t))2
.

The proof is completed. �
The following theorem is the main result of this paper which generalizes Theorem 1.1.

Theorem 2.2 Let 0 < s < 2 and let K be normal. Suppose that µ is a finite positive Borel

measure on D supported on (−1, 1).

(1) The following conditions are equivalent.

(i) µ is a K-Carleson measure.

(ii) µ[n] = O(K( 1n )).

(iii) SK [µ] is bounded on Ds.

(2) The following conditions are equivalent.

(i) µ is a vanishing K-Carleson measure.

(ii) µ[n] = o(K( 1n )).

(iii) SK [µ] is compact on Ds.

Proof We give the proof of (1) as follows.

(i)⇒ (ii). Since µ is a K-Carleson measure supported on (−1, 1), we see that

µ((t, 1)) . K(1− t), 0 < t < 1,

and

µ((−1,−t)) . K(1− t), 0 < t < 1.
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Consequently,

|µ[n]| ≤
∫ 1

−1

|t|ndµ(t) = n

∫ 1

0

tn−1µ{x ∈ (−1, 1) : |x| > t}dt

=n

∫ 1

0

tn−1[µ((t, 1)) + µ((−1,−t))]dt

.n

∫ 1

0

tn−1K(1− t)dt.

Note that K is normal. Namely there exist two constants 0 < a ≤ b < ∞ such that K(t)/ta is

increasing on (0, 1] and K(t)/tb is decreasing on (0, 1]. Then∫ 1

0

tn−1K(1− t)dt =

∫ 1

0

(1− t)n−1K(t)dt

=

∫ 1
n

0

(1− t)n−1K(t)dt+

∫ 1

1
n

(1− t)n−1K(t)dt

≤ naK(
1

n
)

∫ 1

0

(1− t)n−1tadt+ nbK(
1

n
)

∫ 1

0

(1− t)n−1tbdt

≈ 1

n
K(

1

n
).

Thus µ[n] = O(K( 1n )).

(ii)⇒ (iii). Let 0 < s < 2 and let f(z) =
∑∞

n=0 anz
n ∈ Ds. Since µ[n] = O(K( 1n )), we deduce

that

∥SK [µ](f)∥2Ds
=

∞∑
n=0

(n+ 1)1−s
∣∣∣ ∞∑
k=0

µ[n+ k]ak

(n+ k + 1)K( 1
n+k+1 )

∣∣∣2
.

∞∑
n=0

(n+ 1)1−s
( ∞∑

k=0

|ak|
n+ k + 1

)2

. ∥f∥2Ds
,

where the last inequality is from [11]. Thus SK [µ] is bounded on Ds.

(iii)⇒ (i). It suffices to consider 1/2 < t < 1. Set

ft(z) = (1− t2)1−
s
2

∞∑
n=0

((−t)n + tn)zn.

Then

∥ft∥2Ds
= 4(1− t2)2−s

∞∑
n=0

(2n+ 1)1−st4n ≈ 1.

Therefore, we see that

∥SK [µ]ft∥2Ds

≈
∞∑

n=0

(n+ 1)1−s
( ∞∑

k=0

µ[n+ 2k](1− t2)1−
s
2 t2k

(n+ 2k + 1)K( 1
n+2k+1 )

)2

& (1− t2)2−s
∞∑

n=0

(2n+ 1)1−s
( ∞∑

k=0

µ[2n+ 2k]t2k

(2n+ 2k + 1)K( 1
2n+2k+1 )

)2

& (1− t2)2−s
∞∑

n=0

(2n+ 1)1−s
( ∞∑

k=0

t2k
∫ 1

t
x2n+2kdµ(x)

(2n+ 2k + 1)K( 1
2n+2k+1 )

)2
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& (1− t2)2−s
∞∑

n=0

(2n+ 1)1−s
( ∞∑

k=0

t2n+4kµ((t, 1))

(2n+ 2k + 1)K( 1
2n+2k+1 )

)2

& (1− t2)2−s
∞∑

n=0

(2n+ 1)1−s
( n∑

k=0

t2n+4kµ((t, 1))

(2n+ 1)K( 1
2n+1 )

)2

.

Note that SK [µ] is bounded on Ds. Combining this with Lemma 2.1, one gets that

1 & ∥SK [µ]ft∥2Ds

& (1− t2)2−s
∞∑

n=0

(2n+ 1)1−s
( n∑

k=0

t2n+4kµ((t, 1))

(2n+ 1)K( 1
2n+1 )

)2

& (1− t2)2−s
∞∑

n=0

(n+ 1)1−s

(K( 1
n+1 ))

2
t12n(µ((t, 1)))2

≈ (µ((t, 1)))2

(K(1− t))2
.

Hence,

µ((t, 1)) . K(1− t).

A similar computation gives

µ((−1,−t)) . K(1− t).

Thus µ is a K-Carleson measure.

Next we give the proof of (2) as follows.

(i)⇒ (ii) is similar to the corresponding proof in part (1) with a few changes.

(ii)⇒(iii). Let f(z) =
∑∞

n=0 anz
n ∈ Ds for 0 < s < 2. Set

S
(m)
K [µ](f)(z) =

m∑
n=0

( ∞∑
k=0

1

(n+ k + 1)K( 1
n+k+1 )

µ[n+ k]ak

)
zn.

Then S
(m)
K [µ] is a finite rank operator. Thus S

(m)
K [µ] is compact on Ds. If µ[n] = o(K( 1n )), then

for any ϵ > 0, there exists a positive constant N satisfying |µ[n]| < ϵK( 1n ) for n > N . Since

∥(SK [µ]− S
(m)
K [µ])(f)∥2Ds

=

∞∑
n=m+1

(n+ 1)1−s
∣∣∣ ∞∑
k=0

µ[n+ k]ak

(n+ k + 1)K( 1
n+k+1 )

∣∣∣2,
for m > N , we have

∥(SK [µ]− S
(m)
K [µ])(f)∥2Ds

. ϵ2
∞∑

n=m+1

(n+ 1)1−s
( ∞∑

k=0

|ak|
n+ k + 1

)2

.

The following inequality appeared in [11].

∞∑
n=0

(n+ 1)1−s
( ∞∑

k=0

|ak|
n+ k + 1

)2

. ∥f∥2Ds
.

These yield

∥(SK [µ]− S
(m)
K [µ])(f)∥2Ds

. ϵ2∥f∥2Ds
.

In other words,

∥SK [µ]− S
(m)
K [µ]∥ . ϵ
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holds for m > N . Thus, SK [µ] is compact on Ds.

(iii)⇒(i). For 0 < t < 1, let

ft(z) = (1− t2)1−
s
2

∞∑
n=0

[(−t)n + tn]zn.

Then

∥ft∥2Ds
= 4(1− t2)2−s

∞∑
n=0

(2n+ 1)1−st4n ≈ 1

and limt→1 ft(z) = 0 for any z ∈ D. Bear in mind that all Hilbert spaces are reflexive. Then ft

is convergent weakly to zero in Ds as t → 1. Since SK [µ] is compact on Ds, one gets that

lim
t→1

∥SK [µ]ft∥Ds = 0.

Checking the corresponding proof in part (1), we know that

µ((t, 1)) . ∥Sp[µ]ft∥DsK(1− t).

Consequently,

lim
t→1

µ((t, 1))

K(1− t)
= 0.

Similarly,

lim
t→1

µ((−1,−t))

K(1− t)
= 0.

The proof of Theorem 2.2 is completed. �
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