Carleson Type Measures Supported on $(-1,1)$ and Hankel Matrices

Liu YANG
Department of Mathematics, Shaanxi Xueqian Normal University, Shaanxi 710100, P. R. China

Abstract

In this paper, we establish a connection between Carleson type measures supported on $(-1,1)$ and certain Hankel matrices. The connection is given by the study of Hankel matrices acting on Dirichlet type spaces.

Keywords Carleson type measures; Hankel matrices; Dirichlet type spaces
MR(2010) Subject Classification 30H10; 31C25; 47B38

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C}. Denote by $H(\mathbb{D})$ the space of functions analytic in \mathbb{D}. The Dirichlet type space $\mathcal{D}_{s}, s \in \mathbb{R}$, consists of those functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in H(\mathbb{D})$ with

$$
\|f\|_{\mathcal{D}_{s}}^{2}=\sum_{n=0}^{\infty}(n+1)^{1-s}\left|a_{n}\right|^{2}<\infty
$$

For $s>-1$, it is well known that $f \in \mathcal{D}_{s}$ if and only if

$$
\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{s} \mathrm{~d} A(z)<\infty
$$

where $d A(z)$ denotes the Lebesgue measure on \mathbb{D}. For $s=0$ we obtain the classical Dirichlet space \mathcal{D} and for $s=1$ we get the Hardy space H^{2}. See [1-7] for more results of Dirichlet type spaces.

If a matrix satisfies that its j, k entry is a function of $j+k$, then we say that the matrix is a Hankel matrix. For $0<p<\infty$, a finite positive Borel measure μ on \mathbb{D} can yield an infinite Hankel matrix as $S_{p}[\mu]$ with entries

$$
\left(S_{p}[\mu]\right)_{i, j}=(i+j+1)^{p-1} \mu[i+j], \quad i, j=0,1,2, \ldots,
$$

where

$$
\mu[i+j]=\int_{\mathbb{D}} z^{i+j} \mathrm{~d} \mu(z)
$$

Received June 6, 2017; Accepted July 6, 2018
Supported by the National Natural Science Foundation of China (Grant No. 11471202).
E-mail address: 381900567@qq.com

The Hankel matrix $S_{p}[\mu]$ acts on analytic functions by multiplication on Taylor coefficient and defines an operator

$$
S_{p}[\mu](f)(z)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty}(n+k+1)^{p-1} \mu[n+k] a_{k}\right) z^{n}
$$

for the analytic functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$.
For $p>0$, an important tool to study function spaces is p-Carleson measures. Given an arc I of the unit circle \mathbb{T}, the Carleson box $S(I)$ with $|I|<1$ is given by

$$
S(I)=\{r \zeta \in \mathbb{D}: 1-|I|<r<1, \zeta \in I\},
$$

where $|I|$ denotes the length of the arc I. If $|I|>1$, we set $S(I)=\mathbb{D}$. A finite positive Borel measure μ on \mathbb{D} is said to be a p-Carleson measure if

$$
\sup _{I \subseteq \mathbb{T}} \frac{\mu(S(I))}{|I|^{p}}<\infty .
$$

If

$$
\frac{\mu(S(I))}{|I|^{p}} \rightarrow 0
$$

as $|I| \rightarrow 0$, we call μ the vanishing p-Carleson measure. For $p=1$, we obtain the classical Carleson measures. See [8-10] for p-Carleson measures.

In 2014, Bao and Wulan [11] established a connection among p-Carleson measures, Hankel matrices and Dirichlet type spaces as follows. In particular, the case for $p=s=1$ was obtained by Power [10] in 1980.

Theorem 1.1 ([11]) Let $0<p<\infty$ and $0<s<2$. Suppose that μ is a finite positive Borel measure on \mathbb{D} supported on $(-1,1)$.
(1) The following conditions are equivalent.
(i) μ is a p-Carleson measure.
(ii) $\mu[n]=O\left(n^{-p}\right)$.
(iii) $S_{p}[\mu]$ is bounded on \mathcal{D}_{s}.
(2) The following conditions are equivalent.
(i) μ is a vanishing p-Carleson measure.
(ii) $\mu[n]=o\left(n^{-p}\right)$.
(iii) $S_{p}[\mu]$ is compact on \mathcal{D}_{s}.

Throughout the paper, we assume that K is a nonnegative function on $[0,1]$. Let μ be a finite positive Borel measure on \mathbb{D}. Following Smith [12], we say that μ is a K-Carleson measure if

$$
\sup _{I \subseteq \mathbb{T}} \frac{\mu(S(I))}{K(|I|)}<\infty
$$

If

$$
\lim _{|I| \rightarrow 0} \frac{\mu(S(I))}{K(|I|)}=0
$$

we call μ the vanishing K-Carleson measure. Clearly, if $K(t)=t^{p}, 0<p<\infty$, then the K Carleson measure gives the p-Carleson measure. We define the corresponding Hankel matrix $S_{K}[\mu]$ as follows.

$$
\left(S_{K}[\mu]\right)_{i, j}=\int_{\mathbb{D}} \frac{1}{(i+j+1) K\left(\frac{1}{i+j+1}\right)} z^{i+j} \mathrm{~d} \mu(z), \quad i, j=0,1,2, \ldots
$$

The Hankel matrix $S_{K}[\mu]$ induces an operator

$$
S_{K}[\mu](f)(z)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} \frac{\mu[n+k] a_{k}}{(n+k+1) K\left(\frac{1}{n+k+1}\right)}\right) z^{n}
$$

for $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in H(\mathbb{D})$.
The purpose of this paper is to establish connection among K-Carleson measure supported on $(-1,1)$, the Hankel matrix $S_{K}[\mu]$ and the Dirichlet type space \mathcal{D}_{s}.

2. Main results

Following Shields and Williams [13], we say that the nonnegative function K on $[0,1]$ is normal if there exist two constants $0<a \leq b<\infty$ such that $K(t) / t^{a}$ is increasing on $(0,1]$ and $K(t) / t^{b}$ is decreasing on $(0,1]$. Clearly, if K is normal, then K satisfies the double condition. Namely, $K(2 t) \approx K(t)$ for $0<t<1 / 2$. In this paper, the symbol $A \approx B$ means that $A \lesssim B \lesssim A$. We say that $A \lesssim B$ if there exists a constant C such that $A \leq C B$.

Before stating and proving our main result, we need the following lemma.
Lemma 2.1 Let K be normal and let $s<2$. Then there exist two positive constants C_{1} and C_{2} depending only on K and s such that

$$
C_{1} \sum_{n=1}^{\infty} \frac{n^{1-s}}{\left(K\left(\frac{1}{n}\right)\right)^{2}} t^{n} \leq \frac{\left(1-t^{2}\right)^{s-2}}{(K(1-t))^{2}} \leq C_{2} \sum_{n=1}^{\infty} \frac{n^{1-s}}{\left(K\left(\frac{1}{n}\right)\right)^{2}} t^{n}
$$

for all $1 / 2<t<1$.
Proof For all $1 / 2<t<1$, we compute that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n^{1-s}}{\left(K\left(\frac{1}{n}\right)\right)^{2}} t^{n} & \approx \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{t^{\frac{1}{x}}}{x^{3-s}(K(x))^{2}} \mathrm{~d} x \\
& \approx \int_{0}^{1} \frac{t^{\frac{1}{x}}}{x^{3-s}(K(x))^{2}} \mathrm{~d} x \approx \int_{1}^{\infty} \frac{y^{1-s} t^{y}}{\left(K\left(\frac{1}{y}\right)\right)^{2}} \mathrm{~d} y \\
& \approx \int_{-\ln t}^{\infty} \frac{x^{1-s} e^{-x}}{\left(\ln \frac{1}{t}\right)^{2-s}\left(K\left(\frac{1}{x} \ln \frac{1}{t}\right)\right)^{2}} \mathrm{~d} x .
\end{aligned}
$$

Note that K is normal. Then there exist two constants $0<a \leq b<\infty$ such that $K(t) / t^{a}$ is increasing on $(0,1]$ and $K(t) / t^{b}$ is decreasing on $(0,1]$. Then if $-\ln t<x \leq 1$, then $\ln \frac{1}{t} \leq \frac{1}{x} \ln \frac{1}{t}$ and hence

$$
\frac{K\left(\ln \frac{1}{t}\right)}{K\left(\frac{1}{x} \ln \frac{1}{t}\right)}=x^{a} \frac{K\left(\ln \frac{1}{t}\right) /\left(\ln \frac{1}{t}\right)^{a}}{K\left(\frac{1}{x} \ln \frac{1}{t}\right) /\left(\frac{1}{x} \ln \frac{1}{t}\right)^{a}} \leq x^{a} .
$$

Similarly, if $1 \leq x<\infty$, then

$$
\frac{K\left(\ln \frac{1}{t}\right)}{K\left(\frac{1}{x} \ln \frac{1}{t}\right)} \leq x^{b}
$$

Note that $s<2$ and $\ln \frac{1}{t} \approx(1-t)$ for all $1 / 2<t<1$. These together with the above estimates give

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n^{1-s}}{\left(K\left(\frac{1}{n}\right)\right)^{2}} t^{n} & \approx \int_{-\ln t}^{\infty} \frac{x^{1-s} e^{-x}}{\left(\ln \frac{1}{t}\right)^{2-s}\left(K\left(\frac{1}{x} \ln \frac{1}{t}\right)\right)^{2}} \mathrm{~d} x \\
& \lesssim \frac{(1-t)^{s-2}}{(K(1-t))^{2}}\left(\int_{0}^{\infty} x^{1+2 a-s} e^{-x} \mathrm{~d} x+\int_{0}^{\infty} x^{1+2 b-s} e^{-x} \mathrm{~d} x\right) \\
& \approx \frac{(1-t)^{s-2}}{(K(1-t))^{2}}(\Gamma(2+2 a-s)+\Gamma(2+2 b-s)) \\
& \lesssim \frac{(1-t)^{s-2}}{(K(1-t))^{2}}
\end{aligned}
$$

where $\Gamma($.$) is the Gamma function.$
On the other hand, since $K(t) / t^{a}$ is increasing and $a>0, K$ is also an increasing function. This gives that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n^{1-s}}{\left(K\left(\frac{1}{n}\right)\right)^{2}} t^{n} & \gtrsim \int_{3}^{\infty} \frac{x^{1-s} e^{-x}}{\left(\ln \frac{1}{t}\right)^{2-s}\left(K\left(\frac{1}{x} \ln \frac{1}{t}\right)\right)^{2}} \mathrm{~d} x \\
& \gtrsim \frac{(1-t)^{s-2}}{(K(1-t))^{2}} \int_{3}^{\infty} x^{1-s} e^{-x} \mathrm{~d} x \\
& \approx \frac{(1-t)^{s-2}}{(K(1-t))^{2}}
\end{aligned}
$$

The proof is completed.
The following theorem is the main result of this paper which generalizes Theorem 1.1.
Theorem 2.2 Let $0<s<2$ and let K be normal. Suppose that μ is a finite positive Borel measure on \mathbb{D} supported on $(-1,1)$.
(1) The following conditions are equivalent.
(i) μ is a K-Carleson measure.
(ii) $\mu[n]=O\left(K\left(\frac{1}{n}\right)\right)$.
(iii) $S_{K}[\mu]$ is bounded on \mathcal{D}_{s}.
(2) The following conditions are equivalent.
(i) μ is a vanishing K-Carleson measure.
(ii) $\mu[n]=o\left(K\left(\frac{1}{n}\right)\right)$.
(iii) $S_{K}[\mu]$ is compact on \mathcal{D}_{s}.

Proof We give the proof of (1) as follows.
$($ i $) \Rightarrow$ (ii). Since μ is a K-Carleson measure supported on $(-1,1)$, we see that

$$
\mu((t, 1)) \lesssim K(1-t), \quad 0<t<1
$$

and

$$
\mu((-1,-t)) \lesssim K(1-t), \quad 0<t<1
$$

Consequently,

$$
\begin{aligned}
|\mu[n]| & \leq \int_{-1}^{1}|t|^{n} \mathrm{~d} \mu(t)=n \int_{0}^{1} t^{n-1} \mu\{x \in(-1,1):|x|>t\} \mathrm{d} t \\
& =n \int_{0}^{1} t^{n-1}[\mu((t, 1))+\mu((-1,-t))] \mathrm{d} t \\
& \lesssim n \int_{0}^{1} t^{n-1} K(1-t) \mathrm{d} t .
\end{aligned}
$$

Note that K is normal. Namely there exist two constants $0<a \leq b<\infty$ such that $K(t) / t^{a}$ is increasing on $(0,1]$ and $K(t) / t^{b}$ is decreasing on $(0,1]$. Then

$$
\begin{aligned}
& \int_{0}^{1} t^{n-1} K(1-t) \mathrm{d} t=\int_{0}^{1}(1-t)^{n-1} K(t) \mathrm{d} t \\
& =\int_{0}^{\frac{1}{n}}(1-t)^{n-1} K(t) \mathrm{d} t+\int_{\frac{1}{n}}^{1}(1-t)^{n-1} K(t) \mathrm{d} t \\
& \leq n^{a} K\left(\frac{1}{n}\right) \int_{0}^{1}(1-t)^{n-1} t^{a} \mathrm{~d} t+n^{b} K\left(\frac{1}{n}\right) \int_{0}^{1}(1-t)^{n-1} t^{b} \mathrm{~d} t \\
& \approx \frac{1}{n} K\left(\frac{1}{n}\right)
\end{aligned}
$$

Thus $\mu[n]=O\left(K\left(\frac{1}{n}\right)\right)$.
(ii) \Rightarrow (iii). Let $0<s<2$ and let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{D}_{s}$. Since $\mu[n]=O\left(K\left(\frac{1}{n}\right)\right)$, we deduce that

$$
\begin{aligned}
\left\|S_{K}[\mu](f)\right\|_{\mathcal{D}_{s}}^{2} & =\sum_{n=0}^{\infty}(n+1)^{1-s}\left|\sum_{k=0}^{\infty} \frac{\mu[n+k] a_{k}}{(n+k+1) K\left(\frac{1}{n+k+1}\right)}\right|^{2} \\
& \lesssim \sum_{n=0}^{\infty}(n+1)^{1-s}\left(\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|}{n+k+1}\right)^{2} \lesssim\|f\|_{\mathcal{D}_{s}}^{2}
\end{aligned}
$$

where the last inequality is from [11]. Thus $S_{K}[\mu]$ is bounded on \mathcal{D}_{s}.
(iii) \Rightarrow (i). It suffices to consider $1 / 2<t<1$. Set

$$
f_{t}(z)=\left(1-t^{2}\right)^{1-\frac{s}{2}} \sum_{n=0}^{\infty}\left((-t)^{n}+t^{n}\right) z^{n}
$$

Then

$$
\left\|f_{t}\right\|_{\mathcal{D}_{s}}^{2}=4\left(1-t^{2}\right)^{2-s} \sum_{n=0}^{\infty}(2 n+1)^{1-s} t^{4 n} \approx 1
$$

Therefore, we see that

$$
\begin{aligned}
& \left\|S_{K}[\mu] f_{t}\right\|_{\mathcal{D}_{s}}^{2} \\
& \quad \approx \sum_{n=0}^{\infty}(n+1)^{1-s}\left(\sum_{k=0}^{\infty} \frac{\mu[n+2 k]\left(1-t^{2}\right)^{1-\frac{s}{2}} t^{2 k}}{(n+2 k+1) K\left(\frac{1}{n+2 k+1}\right)}\right)^{2} \\
& \quad \gtrsim\left(1-t^{2}\right)^{2-s} \sum_{n=0}^{\infty}(2 n+1)^{1-s}\left(\sum_{k=0}^{\infty} \frac{\mu[2 n+2 k] t^{2 k}}{(2 n+2 k+1) K\left(\frac{1}{2 n+2 k+1}\right)}\right)^{2} \\
& \quad \gtrsim\left(1-t^{2}\right)^{2-s} \sum_{n=0}^{\infty}(2 n+1)^{1-s}\left(\sum_{k=0}^{\infty} \frac{t^{2 k} \int_{t}^{1} x^{2 n+2 k} \mathrm{~d} \mu(x)}{(2 n+2 k+1) K\left(\frac{1}{2 n+2 k+1}\right)}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \gtrsim\left(1-t^{2}\right)^{2-s} \sum_{n=0}^{\infty}(2 n+1)^{1-s}\left(\sum_{k=0}^{\infty} \frac{t^{2 n+4 k} \mu((t, 1))}{(2 n+2 k+1) K\left(\frac{1}{2 n+2 k+1}\right)}\right)^{2} \\
& \gtrsim\left(1-t^{2}\right)^{2-s} \sum_{n=0}^{\infty}(2 n+1)^{1-s}\left(\sum_{k=0}^{n} \frac{t^{2 n+4 k} \mu((t, 1))}{(2 n+1) K\left(\frac{1}{2 n+1}\right)}\right)^{2} .
\end{aligned}
$$

Note that $S_{K}[\mu]$ is bounded on \mathcal{D}_{s}. Combining this with Lemma 2.1, one gets that

$$
\begin{aligned}
1 & \gtrsim\left\|S_{K}[\mu] f_{t}\right\|_{\mathcal{D}_{s}}^{2} \\
& \gtrsim\left(1-t^{2}\right)^{2-s} \sum_{n=0}^{\infty}(2 n+1)^{1-s}\left(\sum_{k=0}^{n} \frac{t^{2 n+4 k} \mu((t, 1))}{(2 n+1) K\left(\frac{1}{2 n+1}\right)}\right)^{2} \\
& \gtrsim\left(1-t^{2}\right)^{2-s} \sum_{n=0}^{\infty} \frac{(n+1)^{1-s}}{\left(K\left(\frac{1}{n+1}\right)\right)^{2}} t^{12 n}(\mu((t, 1)))^{2} \\
& \approx \frac{(\mu((t, 1)))^{2}}{(K(1-t))^{2}} .
\end{aligned}
$$

Hence,

$$
\mu((t, 1)) \lesssim K(1-t) .
$$

A similar computation gives

$$
\mu((-1,-t)) \lesssim K(1-t) .
$$

Thus μ is a K-Carleson measure.
Next we give the proof of (2) as follows.
(i) \Rightarrow (ii) is similar to the corresponding proof in part (1) with a few changes.
(ii) \Rightarrow (iii). Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{D}_{s}$ for $0<s<2$. Set

$$
S_{K}^{(m)}[\mu](f)(z)=\sum_{n=0}^{m}\left(\sum_{k=0}^{\infty} \frac{1}{(n+k+1) K\left(\frac{1}{n+k+1}\right)} \mu[n+k] a_{k}\right) z^{n} .
$$

Then $S_{K}^{(m)}[\mu]$ is a finite rank operator. Thus $S_{K}^{(m)}[\mu]$ is compact on \mathcal{D}_{s}. If $\mu[n]=o\left(K\left(\frac{1}{n}\right)\right)$, then for any $\epsilon>0$, there exists a positive constant N satisfying $|\mu[n]|<\epsilon K\left(\frac{1}{n}\right)$ for $n>N$. Since

$$
\left\|\left(S_{K}[\mu]-S_{K}^{(m)}[\mu]\right)(f)\right\|_{\mathcal{D}_{s}}^{2}=\sum_{n=m+1}^{\infty}(n+1)^{1-s}\left|\sum_{k=0}^{\infty} \frac{\mu[n+k] a_{k}}{(n+k+1) K\left(\frac{1}{n+k+1}\right)}\right|^{2},
$$

for $m>N$, we have

$$
\left\|\left(S_{K}[\mu]-S_{K}^{(m)}[\mu]\right)(f)\right\|_{\mathcal{D}_{s}}^{2} \lesssim \epsilon^{2} \sum_{n=m+1}^{\infty}(n+1)^{1-s}\left(\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|}{n+k+1}\right)^{2} .
$$

The following inequality appeared in [11].

$$
\sum_{n=0}^{\infty}(n+1)^{1-s}\left(\sum_{k=0}^{\infty} \frac{\left|a_{k}\right|}{n+k+1}\right)^{2} \lesssim\|f\|_{\mathcal{D}_{s}}^{2} .
$$

These yield

$$
\left\|\left(S_{K}[\mu]-S_{K}^{(m)}[\mu]\right)(f)\right\|_{\mathcal{D}_{s}}^{2} \lesssim \epsilon^{2}\|f\|_{\mathcal{D}_{s}}^{2} .
$$

In other words,

$$
\left\|S_{K}[\mu]-S_{K}^{(m)}[\mu]\right\| \lesssim \epsilon
$$

holds for $m>N$. Thus, $S_{K}[\mu]$ is compact on \mathcal{D}_{s}.
(iii) \Rightarrow (i). For $0<t<1$, let

$$
f_{t}(z)=\left(1-t^{2}\right)^{1-\frac{s}{2}} \sum_{n=0}^{\infty}\left[(-t)^{n}+t^{n}\right] z^{n}
$$

Then

$$
\left\|f_{t}\right\|_{\mathcal{D}_{s}}^{2}=4\left(1-t^{2}\right)^{2-s} \sum_{n=0}^{\infty}(2 n+1)^{1-s} t^{4 n} \approx 1
$$

and $\lim _{t \rightarrow 1} f_{t}(z)=0$ for any $z \in \mathbb{D}$. Bear in mind that all Hilbert spaces are reflexive. Then f_{t} is convergent weakly to zero in \mathcal{D}_{s} as $t \rightarrow 1$. Since $S_{K}[\mu]$ is compact on \mathcal{D}_{s}, one gets that

$$
\lim _{t \rightarrow 1}\left\|S_{K}[\mu] f_{t}\right\|_{\mathcal{D}_{s}}=0
$$

Checking the corresponding proof in part (1), we know that

$$
\mu((t, 1)) \lesssim\left\|S_{p}[\mu] f_{t}\right\|_{\mathcal{D}_{s}} K(1-t)
$$

Consequently,

$$
\lim _{t \rightarrow 1} \frac{\mu((t, 1))}{K(1-t)}=0
$$

Similarly,

$$
\lim _{t \rightarrow 1} \frac{\mu((-1,-t))}{K(1-t)}=0
$$

The proof of Theorem 2.2 is completed.
Acknowledgements I would like to thank the referees for their time and comments.

References

[1] Guanlong BAO, Zengjian LOU, Ruishen QIAN, et al. On multipliers of Dirichlet type spaces. Complex Anal. Oper. Theory, 2015, 9(8): 1701-1732.
[2] Guanlong BAO, Jun YANG. The Libera operator on Dirichlet spaces. Bull. Iranian Math. Soc., 2015, 41(6): 1511-1517.
[3] L. BROWN, A. SHIELDS. Cyclic vectors in the Dirichlet space. Trans. Amer. Math. Soc., 1984, 285(1): 269-303.
[4] E. DIAMANTOPOULOS. Operators induced by Hankel matrices on Dirichlet spaces. Analysis (Munich), 2004, 24(4): 345-360.
[5] Songxiao LI. Some new characterizations of Dirichlet type spaces on the unit ball of \mathbb{C}^{n}. J. Math. Anal. Appl., 2006, 324(2): 1073-1083.
[6] Songxiao LI. Generalized Hilbert operator on the Dirichlet-type space. Appl. Math. Comput., 2009, 214(1): 304-309.
[7] Ruishen QIAN, Yecheng SHI. Inner function in Dirichlet type spaces. J. Math. Anal. Appl., 2015, 421(2): 1844-1854.
[8] R. AULASKARI, D. STEGENGA, Jie XIAO. Some subclasses of BMOA and their characterization in terms of Carleson measures. Rocky Mountain J. Math., 1996, 26(2): 485-506.
[9] J. GARNETT. Bounded Analytic Functions. Academic Press, New York, 1981.
[10] S. POWER. Vanishing carleson measures. Bull. London Math. Soc., 1980, 12(3): 207-210.
[11] Guanlong BAO, Hasi WULAN. Hankel matrices acting on Dirichlet spaces. J. Math. Anal. Appl., 2014, 409(1): 228-235.
[12] W. SMITH. $\operatorname{BMO}(\rho)$ and Carleson measures. Trans. Amer. Math. Soc., 1985, 287(1): 107-126.
[13] A. SHIELDS, D. WILLIAMS. Bounded projections, duality, and multipliers in spaces of analytic functions. Trans. Amer. Math. Soc., 1971, 162: 287-302.

