Journal of Mathematical Research with Applications Sept., 2018, Vol. 38, No. 5, pp. 471–477 DOI:10.3770/j.issn:2095-2651.2018.05.005 Http://jmre.dlut.edu.cn

Carleson Type Measures Supported on (-1,1) and Hankel Matrices

Liu YANG

Department of Mathematics, Shaanxi Xueqian Normal University, Shaanxi 710100, P. R. China

Abstract In this paper, we establish a connection between Carleson type measures supported on (-1, 1) and certain Hankel matrices. The connection is given by the study of Hankel matrices acting on Dirichlet type spaces.

Keywords Carleson type measures; Hankel matrices; Dirichlet type spaces

MR(2010) Subject Classification 30H10; 31C25; 47B38

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} . Denote by $H(\mathbb{D})$ the space of functions analytic in \mathbb{D} . The Dirichlet type space \mathcal{D}_s , $s \in \mathbb{R}$, consists of those functions $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D})$ with

$$||f||_{\mathcal{D}_s}^2 = \sum_{n=0}^{\infty} (n+1)^{1-s} |a_n|^2 < \infty.$$

For s > -1, it is well known that $f \in \mathcal{D}_s$ if and only if

$$\int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^s \mathrm{d}A(z) < \infty,$$

where dA(z) denotes the Lebesgue measure on \mathbb{D} . For s = 0 we obtain the classical Dirichlet space \mathcal{D} and for s = 1 we get the Hardy space H^2 . See [1–7] for more results of Dirichlet type spaces.

If a matrix satisfies that its j, k entry is a function of j + k, then we say that the matrix is a Hankel matrix. For $0 , a finite positive Borel measure <math>\mu$ on \mathbb{D} can yield an infinite Hankel matrix as $S_p[\mu]$ with entries

$$(S_p[\mu])_{i,j} = (i+j+1)^{p-1}\mu[i+j], \quad i,j = 0, 1, 2, \dots,$$

where

$$\mu[i+j] = \int_{\mathbb{D}} z^{i+j} \mathrm{d}\mu(z).$$

Received June 6, 2017; Accepted July 6, 2018

Supported by the National Natural Science Foundation of China (Grant No. 11471202). E-mail address: 381900567@qq.com

The Hankel matrix $S_p[\mu]$ acts on analytic functions by multiplication on Taylor coefficient and defines an operator

$$S_p[\mu](f)(z) = \sum_{n=0}^{\infty} \Big(\sum_{k=0}^{\infty} (n+k+1)^{p-1} \mu[n+k]a_k\Big) z^n$$

for the analytic functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$.

For p > 0, an important tool to study function spaces is *p*-Carleson measures. Given an arc I of the unit circle \mathbb{T} , the Carleson box S(I) with |I| < 1 is given by

$$S(I) = \{ r\zeta \in \mathbb{D} : 1 - |I| < r < 1, \ \zeta \in I \},\$$

where |I| denotes the length of the arc I. If |I| > 1, we set $S(I) = \mathbb{D}$. A finite positive Borel measure μ on \mathbb{D} is said to be a p-Carleson measure if

$$\sup_{I \subseteq \mathbb{T}} \frac{\mu(S(I))}{|I|^p} < \infty.$$

If

$$\frac{\mu(S(I))}{|I|^p} \to 0$$

as $|I| \rightarrow 0$, we call μ the vanishing *p*-Carleson measure. For p = 1, we obtain the classical Carleson measures. See [8–10] for *p*-Carleson measures.

In 2014, Bao and Wulan [11] established a connection among *p*-Carleson measures, Hankel matrices and Dirichlet type spaces as follows. In particular, the case for p = s = 1 was obtained by Power [10] in 1980.

Theorem 1.1 ([11]) Let 0 and <math>0 < s < 2. Suppose that μ is a finite positive Borel measure on \mathbb{D} supported on (-1, 1).

- (1) The following conditions are equivalent.
- (i) μ is a *p*-Carleson measure.
- (ii) $\mu[n] = O(n^{-p}).$
- (iii) $S_p[\mu]$ is bounded on \mathcal{D}_s .
- (2) The following conditions are equivalent.
- (i) μ is a vanishing *p*-Carleson measure.
- (ii) $\mu[n] = o(n^{-p}).$
- (iii) $S_p[\mu]$ is compact on \mathcal{D}_s .

Throughout the paper, we assume that K is a nonnegative function on [0, 1]. Let μ be a finite positive Borel measure on \mathbb{D} . Following Smith [12], we say that μ is a K-Carleson measure if

$$\sup_{I\subseteq\mathbb{T}}\frac{\mu(S(I))}{K(|I|)}<\infty.$$

If

$$\lim_{|I| \to 0} \frac{\mu(S(I))}{K(|I|)} = 0,$$

we call μ the vanishing K-Carleson measure. Clearly, if $K(t) = t^p$, 0 , then the K-Carleson measure gives the*p* $-Carleson measure. We define the corresponding Hankel matrix <math>S_K[\mu]$ as follows.

$$(S_K[\mu])_{i,j} = \int_{\mathbb{D}} \frac{1}{(i+j+1)K(\frac{1}{i+j+1})} z^{i+j} \mathrm{d}\mu(z), \quad i,j=0,1,2,\dots$$

The Hankel matrix $S_K[\mu]$ induces an operator

$$S_K[\mu](f)(z) = \sum_{n=0}^{\infty} \Big(\sum_{k=0}^{\infty} \frac{\mu[n+k]a_k}{(n+k+1)K(\frac{1}{n+k+1})} \Big) z^n$$

for $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H(\mathbb{D}).$

The purpose of this paper is to establish connection among K-Carleson measure supported on (-1, 1), the Hankel matrix $S_K[\mu]$ and the Dirichlet type space \mathcal{D}_s .

2. Main results

Following Shields and Williams [13], we say that the nonnegative function K on [0,1] is normal if there exist two constants $0 < a \le b < \infty$ such that $K(t)/t^a$ is increasing on (0,1] and $K(t)/t^b$ is decreasing on (0,1]. Clearly, if K is normal, then K satisfies the double condition. Namely, $K(2t) \approx K(t)$ for 0 < t < 1/2. In this paper, the symbol $A \approx B$ means that $A \le B \le A$. We say that $A \le B$ if there exists a constant C such that $A \le CB$.

Before stating and proving our main result, we need the following lemma.

Lemma 2.1 Let K be normal and let s < 2. Then there exist two positive constants C_1 and C_2 depending only on K and s such that

$$C_1 \sum_{n=1}^{\infty} \frac{n^{1-s}}{(K(\frac{1}{n}))^2} t^n \le \frac{(1-t^2)^{s-2}}{(K(1-t))^2} \le C_2 \sum_{n=1}^{\infty} \frac{n^{1-s}}{(K(\frac{1}{n}))^2} t^n$$

for all 1/2 < t < 1.

Proof For all 1/2 < t < 1, we compute that

$$\begin{split} \sum_{n=1}^{\infty} \frac{n^{1-s}}{(K(\frac{1}{n}))^2} t^n &\approx \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{t^{\frac{1}{x}}}{x^{3-s}(K(x))^2} \mathrm{d}x \\ &\approx \int_0^1 \frac{t^{\frac{1}{x}}}{x^{3-s}(K(x))^2} \mathrm{d}x \approx \int_1^\infty \frac{y^{1-s}t^y}{(K(\frac{1}{y}))^2} \mathrm{d}y \\ &\approx \int_{-\ln t}^\infty \frac{x^{1-s}e^{-x}}{(\ln \frac{1}{t})^{2-s}(K(\frac{1}{x}\ln \frac{1}{t}))^2} \mathrm{d}x. \end{split}$$

Note that K is normal. Then there exist two constants $0 < a \le b < \infty$ such that $K(t)/t^a$ is increasing on (0,1] and $K(t)/t^b$ is decreasing on (0,1]. Then if $-\ln t < x \le 1$, then $\ln \frac{1}{t} \le \frac{1}{x} \ln \frac{1}{t}$ and hence

$$\frac{K(\ln \frac{1}{t})}{K(\frac{1}{x}\ln \frac{1}{t})} = x^a \frac{K(\ln \frac{1}{t})/(\ln \frac{1}{t})^a}{K(\frac{1}{x}\ln \frac{1}{t})/(\frac{1}{x}\ln \frac{1}{t})^a} \le x^a.$$

Similarly, if $1 \leq x < \infty$, then

$$\frac{K(\ln\frac{1}{t})}{K(\frac{1}{x}\ln\frac{1}{t})} \le x^b.$$

Note that s < 2 and $\ln \frac{1}{t} \approx (1-t)$ for all 1/2 < t < 1. These together with the above estimates give

$$\begin{split} \sum_{n=1}^{\infty} \frac{n^{1-s}}{(K(\frac{1}{n}))^2} t^n \approx & \int_{-\ln t}^{\infty} \frac{x^{1-s} e^{-x}}{(\ln \frac{1}{t})^{2-s} (K(\frac{1}{x} \ln \frac{1}{t}))^2} \mathrm{d}x \\ & \lesssim \frac{(1-t)^{s-2}}{(K(1-t))^2} \Big(\int_0^{\infty} x^{1+2a-s} e^{-x} \mathrm{d}x + \int_0^{\infty} x^{1+2b-s} e^{-x} \mathrm{d}x \Big) \\ & \approx \frac{(1-t)^{s-2}}{(K(1-t))^2} (\Gamma(2+2a-s) + \Gamma(2+2b-s)) \\ & \lesssim \frac{(1-t)^{s-2}}{(K(1-t))^2}, \end{split}$$

where $\Gamma(.)$ is the Gamma function.

On the other hand, since $K(t)/t^a$ is increasing and a > 0, K is also an increasing function. This gives that

$$\begin{split} \sum_{n=1}^{\infty} \frac{n^{1-s}}{(K(\frac{1}{n}))^2} t^n \gtrsim & \int_3^{\infty} \frac{x^{1-s} e^{-x}}{(\ln \frac{1}{t})^{2-s} (K(\frac{1}{x} \ln \frac{1}{t}))^2} \mathrm{d}x \\ \gtrsim & \frac{(1-t)^{s-2}}{(K(1-t))^2} \int_3^{\infty} x^{1-s} e^{-x} \mathrm{d}x \\ \approx & \frac{(1-t)^{s-2}}{(K(1-t))^2}. \end{split}$$

The proof is completed. \Box

The following theorem is the main result of this paper which generalizes Theorem 1.1.

Theorem 2.2 Let 0 < s < 2 and let K be normal. Suppose that μ is a finite positive Borel measure on \mathbb{D} supported on (-1, 1).

- (1) The following conditions are equivalent.
- (i) μ is a K-Carleson measure.
- (ii) $\mu[n] = O(K(\frac{1}{n})).$
- (iii) $S_K[\mu]$ is bounded on \mathcal{D}_s .
- (2) The following conditions are equivalent.
- (i) μ is a vanishing K-Carleson measure.
- (ii) $\mu[n] = o(K(\frac{1}{n})).$
- (iii) $S_K[\mu]$ is compact on \mathcal{D}_s .

Proof We give the proof of (1) as follows.

(i) \Rightarrow (ii). Since μ is a K-Carleson measure supported on (-1, 1), we see that

$$\mu((t,1)) \lesssim K(1-t), \quad 0 < t < 1,$$

and

$$\mu((-1, -t)) \lesssim K(1-t), \quad 0 < t < 1.$$

474

Carleson type measures supported on (-1, 1) and Hankel matrices

Consequently,

$$\begin{split} |\mu[n]| &\leq \int_{-1}^{1} |t|^{n} \mathrm{d}\mu(t) = n \int_{0}^{1} t^{n-1} \mu\{x \in (-1,1) : |x| > t\} \mathrm{d}t \\ &= n \int_{0}^{1} t^{n-1} [\mu((t,1)) + \mu((-1,-t))] \mathrm{d}t \\ &\lesssim n \int_{0}^{1} t^{n-1} K(1-t) \mathrm{d}t. \end{split}$$

Note that K is normal. Namely there exist two constants $0 < a \le b < \infty$ such that $K(t)/t^a$ is increasing on (0, 1] and $K(t)/t^b$ is decreasing on (0, 1]. Then

$$\begin{split} &\int_{0}^{1} t^{n-1} K(1-t) \mathrm{d}t = \int_{0}^{1} (1-t)^{n-1} K(t) \mathrm{d}t \\ &= \int_{0}^{\frac{1}{n}} (1-t)^{n-1} K(t) \mathrm{d}t + \int_{\frac{1}{n}}^{1} (1-t)^{n-1} K(t) \mathrm{d}t \\ &\leq n^{a} K(\frac{1}{n}) \int_{0}^{1} (1-t)^{n-1} t^{a} \mathrm{d}t + n^{b} K(\frac{1}{n}) \int_{0}^{1} (1-t)^{n-1} t^{b} \mathrm{d}t \\ &\approx \frac{1}{n} K(\frac{1}{n}). \end{split}$$

Thus $\mu[n] = O(K(\frac{1}{n})).$

(ii) \Rightarrow (iii). Let 0 < s < 2 and let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{D}_s$. Since $\mu[n] = O(K(\frac{1}{n}))$, we deduce that

$$||S_K[\mu](f)||_{\mathcal{D}_s}^2 = \sum_{n=0}^{\infty} (n+1)^{1-s} \Big| \sum_{k=0}^{\infty} \frac{\mu[n+k]a_k}{(n+k+1)K(\frac{1}{n+k+1})} \Big|^2$$
$$\lesssim \sum_{n=0}^{\infty} (n+1)^{1-s} \Big(\sum_{k=0}^{\infty} \frac{|a_k|}{n+k+1} \Big)^2 \lesssim ||f||_{\mathcal{D}_s}^2,$$

where the last inequality is from [11]. Thus $S_K[\mu]$ is bounded on \mathcal{D}_s .

(iii) \Rightarrow (i). It suffices to consider 1/2 < t < 1. Set

$$f_t(z) = (1 - t^2)^{1 - \frac{s}{2}} \sum_{n=0}^{\infty} ((-t)^n + t^n) z^n.$$

Then

$$||f_t||_{\mathcal{D}_s}^2 = 4(1-t^2)^{2-s} \sum_{n=0}^{\infty} (2n+1)^{1-s} t^{4n} \approx 1.$$

Therefore, we see that

$$\begin{split} \|S_{K}[\mu]f_{t}\|_{\mathcal{D}_{s}}^{2} \\ &\approx \sum_{n=0}^{\infty} (n+1)^{1-s} \Big(\sum_{k=0}^{\infty} \frac{\mu[n+2k](1-t^{2})^{1-\frac{s}{2}}t^{2k}}{(n+2k+1)K(\frac{1}{n+2k+1})}\Big)^{2} \\ &\gtrsim (1-t^{2})^{2-s} \sum_{n=0}^{\infty} (2n+1)^{1-s} \Big(\sum_{k=0}^{\infty} \frac{\mu[2n+2k]t^{2k}}{(2n+2k+1)K(\frac{1}{2n+2k+1})}\Big)^{2} \\ &\gtrsim (1-t^{2})^{2-s} \sum_{n=0}^{\infty} (2n+1)^{1-s} \Big(\sum_{k=0}^{\infty} \frac{t^{2k} \int_{t}^{1} x^{2n+2k} d\mu(x)}{(2n+2k+1)K(\frac{1}{2n+2k+1})}\Big)^{2} \end{split}$$

Liu YANG

$$\gtrsim (1-t^2)^{2-s} \sum_{n=0}^{\infty} (2n+1)^{1-s} \Big(\sum_{k=0}^{\infty} \frac{t^{2n+4k} \mu((t,1))}{(2n+2k+1)K(\frac{1}{2n+2k+1})} \Big)^2 \\ \gtrsim (1-t^2)^{2-s} \sum_{n=0}^{\infty} (2n+1)^{1-s} \Big(\sum_{k=0}^{n} \frac{t^{2n+4k} \mu((t,1))}{(2n+1)K(\frac{1}{2n+1})} \Big)^2.$$

Note that $S_K[\mu]$ is bounded on \mathcal{D}_s . Combining this with Lemma 2.1, one gets that

$$1 \gtrsim \|S_K[\mu]f_t\|_{\mathcal{D}_s}^2$$

$$\gtrsim (1-t^2)^{2-s} \sum_{n=0}^{\infty} (2n+1)^{1-s} \Big(\sum_{k=0}^n \frac{t^{2n+4k}\mu((t,1))}{(2n+1)K(\frac{1}{2n+1})}\Big)^2$$

$$\gtrsim (1-t^2)^{2-s} \sum_{n=0}^{\infty} \frac{(n+1)^{1-s}}{(K(\frac{1}{n+1}))^2} t^{12n}(\mu((t,1)))^2$$

$$\approx \frac{(\mu((t,1)))^2}{(K(1-t))^2}.$$

Hence,

$$\mu((t,1)) \lesssim K(1-t).$$

A similar computation gives

$$((-1, -t)) \lesssim K(1-t).$$

Thus μ is a K-Carleson measure.

Next we give the proof of (2) as follows.

(i) \Rightarrow (ii) is similar to the corresponding proof in part (1) with a few changes.

(ii)
$$\Rightarrow$$
(iii). Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{D}_s$ for $0 < s < 2$. Set

 μ

$$S_K^{(m)}[\mu](f)(z) = \sum_{n=0}^m \Big(\sum_{k=0}^\infty \frac{1}{(n+k+1)K(\frac{1}{n+k+1})} \mu[n+k]a_k\Big) z^n.$$

Then $S_K^{(m)}[\mu]$ is a finite rank operator. Thus $S_K^{(m)}[\mu]$ is compact on \mathcal{D}_s . If $\mu[n] = o(K(\frac{1}{n}))$, then for any $\epsilon > 0$, there exists a positive constant N satisfying $|\mu[n]| < \epsilon K(\frac{1}{n})$ for n > N. Since

$$\|(S_K[\mu] - S_K^{(m)}[\mu])(f)\|_{\mathcal{D}_s}^2 = \sum_{n=m+1}^{\infty} (n+1)^{1-s} \Big| \sum_{k=0}^{\infty} \frac{\mu[n+k]a_k}{(n+k+1)K(\frac{1}{n+k+1})} \Big|^2,$$

for m > N, we have

$$\|(S_K[\mu] - S_K^{(m)}[\mu])(f)\|_{\mathcal{D}_s}^2 \lesssim \epsilon^2 \sum_{n=m+1}^{\infty} (n+1)^{1-s} \Big(\sum_{k=0}^{\infty} \frac{|a_k|}{n+k+1}\Big)^2.$$

The following inequality appeared in [11].

$$\sum_{n=0}^{\infty} (n+1)^{1-s} \Big(\sum_{k=0}^{\infty} \frac{|a_k|}{n+k+1}\Big)^2 \lesssim \|f\|_{\mathcal{D}_s}^2.$$

These yield

$$\|(S_K[\mu] - S_K^{(m)}[\mu])(f)\|_{\mathcal{D}_s}^2 \lesssim \epsilon^2 \|f\|_{\mathcal{D}_s}^2.$$

In other words,

$$\|S_K[\mu] - S_K^{(m)}[\mu]\| \lesssim \epsilon$$

476

Carleson type measures supported on (-1, 1) and Hankel matrices

holds for m > N. Thus, $S_K[\mu]$ is compact on \mathcal{D}_s .

(iii) \Rightarrow (i). For 0 < t < 1, let

$$f_t(z) = (1 - t^2)^{1 - \frac{s}{2}} \sum_{n=0}^{\infty} [(-t)^n + t^n] z^n$$

Then

$$||f_t||_{\mathcal{D}_s}^2 = 4(1-t^2)^{2-s} \sum_{n=0}^{\infty} (2n+1)^{1-s} t^{4n} \approx 1$$

and $\lim_{t\to 1} f_t(z) = 0$ for any $z \in \mathbb{D}$. Bear in mind that all Hilbert spaces are reflexive. Then f_t is convergent weakly to zero in \mathcal{D}_s as $t \to 1$. Since $S_K[\mu]$ is compact on \mathcal{D}_s , one gets that

$$\lim_{t \to 1} \|S_K[\mu]f_t\|_{\mathcal{D}_s} = 0.$$

Checking the corresponding proof in part (1), we know that

$$\mu((t,1)) \lesssim ||S_p[\mu]f_t||_{\mathcal{D}_s} K(1-t).$$

Consequently,

$$\lim_{t \to 1} \frac{\mu((t,1))}{K(1-t)} = 0.$$

Similarly,

$$\lim_{t \to 1} \frac{\mu((-1, -t))}{K(1-t)} = 0$$

The proof of Theorem 2.2 is completed. \Box

Acknowledgements I would like to thank the referees for their time and comments.

References

- Guanlong BAO, Zengjian LOU, Ruishen QIAN, et al. On multipliers of Dirichlet type spaces. Complex Anal. Oper. Theory, 2015, 9(8): 1701–1732.
- [2] Guanlong BAO, Jun YANG. The Libera operator on Dirichlet spaces. Bull. Iranian Math. Soc., 2015, 41(6): 1511–1517.
- [3] L. BROWN, A. SHIELDS. Cyclic vectors in the Dirichlet space. Trans. Amer. Math. Soc., 1984, 285(1): 269–303.
- [4] E. DIAMANTOPOULOS. Operators induced by Hankel matrices on Dirichlet spaces. Analysis (Munich), 2004, 24(4): 345–360.
- [5] Songxiao LI. Some new characterizations of Dirichlet type spaces on the unit ball of Cⁿ. J. Math. Anal. Appl., 2006, **324**(2): 1073–1083.
- [6] Songxiao LI. Generalized Hilbert operator on the Dirichlet-type space. Appl. Math. Comput., 2009, 214(1): 304–309.
- [7] Ruishen QIAN, Yecheng SHI. Inner function in Dirichlet type spaces. J. Math. Anal. Appl., 2015, 421(2): 1844–1854.
- [8] R. AULASKARI, D. STEGENGA, Jie XIAO. Some subclasses of BMOA and their characterization in terms of Carleson measures. Rocky Mountain J. Math., 1996, 26(2): 485–506.
- [9] J. GARNETT. Bounded Analytic Functions. Academic Press, New York, 1981.
- [10] S. POWER. Vanishing carleson measures. Bull. London Math. Soc., 1980, 12(3): 207-210.
- [11] Guanlong BAO, Hasi WULAN. Hankel matrices acting on Dirichlet spaces. J. Math. Anal. Appl., 2014, 409(1): 228–235.
- [12] W. SMITH. BMO(ρ) and Carleson measures. Trans. Amer. Math. Soc., 1985, 287(1): 107–126.
- [13] A. SHIELDS, D. WILLIAMS. Bounded projections, duality, and multipliers in spaces of analytic functions. Trans. Amer. Math. Soc., 1971, 162: 287–302.