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Abstract In this paper, we investigate the existence and uniqueness of solutions for a new

fourth-order differential equation boundary value problem:{
u(4)(t) = f(t, u(t))− b, 0 < t < 1,

u(0) = u′(0) = u′(1) = u(3)(1) = 0,

where f ∈ C([0, 1] × (−∞,+∞), (−∞,+∞)), b ≥ 0 is a constant. The novelty of this paper is

that the boundary value problem is a new type and the method is a new fixed point theorem of

φ-(h, e)-concave operators.
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1. Introduction

In [1], Yang gave some priori estimates for the positive solutions of the following fourth-order

differential equation

u(4)(t) = g(t)f(t, u(t)), 0 < t < 1,

under two-point boundary conditions

u(0) = u′(0) = u′(1) = u(3)(1) = 0,

and obtained the existence and nonexistence of positive solutions for the boundary value problem,

where f ∈ C([0, 1]× [0,+∞), [0,+∞)), g ∈ C([0, 1], [0,+∞)) with
∫ 1

0
g(t)dt > 0. The method is

the Krasnoselskii fixed point theorem.

Based upon [1], Zhang [2] established the existence and iteration of monotone positive solu-

tions for the following fourth-order boundary value problem{
u(4)(t) = q(t)f(t, u(t), u′(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = u(3)(1) = 0,

where f ∈ C([0, 1]×[0,+∞)×[0,+∞), [0,+∞)), q ∈ C((0, 1), [0,+∞)). The method is monotone

iterative technique. That is, the author gave the existence of monotone positive solutions for the
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problem by making an iterative scheme whose starting point is simple quadratic function or the

zero function.

Recently, there are many papers studying the existence or multiplicity of positive solutions for

fourth-order boundary value problems, see [1–20] for example. Also, the uniqueness of positive

solutions for the fourth-order boundary value problems has been studied by some researchers

[8, 9, 15–20]. In [9], by using two fixed point theorems for mixed monotone operators with

perturbation, we gave some existence and uniqueness results for monotone positive solutions to

the following elastic beam equation with boundary conditions
u(4)(t) = f(t, u(t), u′(t)), 0 < t < 1,

u(0) = u′(0) = 0,

u′′(1) = 0, u(3)(1) = g(u(1)),

where f ∈ C([0, 1] × R × R) and g ∈ C(R) are real functions. Recently, we also studied the

approximations of the monotone positive solutions for the following fourth-order boundary value

problem 
u(4)(t) = f(t, u(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,

u(3)(1) + g(u(1)) = 0,

where f ∈ C([0, 1]× [0,+∞), [0,+∞)), g ∈ C([0,+∞), [0,+∞)). The methods used are two fixed

point theorems of a sum operator in partial ordering Banach space [20].

Different from these papers mentioned above, we will consider a new fourth-order differential

equation boundary value problem{
u(4)(t) = f(t, u(t))− b, 0 < t < 1,

u(0) = u′(0) = u′(1) = u(3)(1) = 0,
(1.1)

where f ∈ C([0, 1] × (−∞,+∞), (−∞,+∞)), b > 0 is a constant. To my knowledge, there

are no papers considering problem (1.1). Generally, to get the unique results of solutions, the

Banach fixed point theorem is needed. Here the method is different. We will use a novel fixed

point theorem to obtain the unique results for problem (1.1). We will present the existence and

uniqueness of solutions for problem (1.1). Our analysis relies on a new fixed point theorem of

φ-(h, e)-concave operators. It should be pointed out that our results are interesting and our

methods are novel.

2. Auxiliary results

In order to establish our main results, we list some lemmas and concepts.

Lemma 2.1 ([1]) If f is continuous, then problem (1.1) has an integral formulation given by

u(t) =

∫ 1

0

G(t, s)[f(s, u(s))− b]ds, (2.1)
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where

G(t, s) =
1

12

{
s2(6t− 3t2 − 2s), 0 ≤ s ≤ t ≤ 1,

t2(6s− 3s2 − 2t), 0 ≤ t ≤ s ≤ 1.
(2.2)

Lemma 2.2 ([3]) The function G(t, s) satisfies the following inequality

1

12
t2s2 ≤ G(t, s) ≤ 1

2
t2s, for any t, s ∈ [0, 1].

Next we introduce some basic facts and fixed point theorems in abstract spaces [16,18,21–23],

which play a crucial role in next proofs of main results.

Definition 2.3 Let (E, ∥ · ∥) be a real Banach space, θ be the zero element of E. A set P ⊂ E

is a cone. E is partially ordered by P , i.e., x ≤ y if and only if y − x ∈ P . P is normal if there

is N > 0 such that, if x, y ∈ E, θ ≤ x ≤ y, then ∥x∥ ≤ N∥y∥. The infimum of such constants N

is called the normality constant of P .

For x, y ∈ E, the notation x ∼ y denotes that there exist λ > 0 and µ > 0 such that

λx ≤ y ≤ µx. It is clear that ∼ is an equivalence relation. For fixed h > θ (i.e., h ≥ θ and

h ̸= θ), define Ph = {x ∈ E|x ∼ h}. It is easy to see that Ph ⊂ P .

Definition 2.4 An operator A : E → E is increasing if x ≤ y implies Ax ≤ Ay.

Definition 2.5 Let e ∈ P with θ ≤ e ≤ h. Define a new set

Ph,e = {x ∈ E|x+ e ∈ Ph}.

Then we can see that h ∈ Ph,e and

Ph,e = {x ∈ E| there exist µ = µ(h, e, x) > 0, ν = ν(h, e, x) > 0 such that µh ≤ x+ e ≤ νh}.

Let A : Ph,e → E be a given operator. For x ∈ Ph,e and λ ∈ (0, 1), there exists φ(λ) > λ such

that

A(λx+ (λ− 1)e) ≥ φ(λ)Ax+ (φ(λ)− 1)e.

Then A is called a φ-(h, e)-concave operator.

Theorem 2.6 ([22]) Suppose that P is normal and A is an increasing φ-(h, e)-concave operator

with Ah ∈ Ph,e. Then A has a unique fixed point x∗ in Ph,e. Moreover, for any given points

w0 ∈ Ph,e, putting the sequence wn = Awn−1, n = 1, 2, . . . , we get ∥wn − x∗∥ → 0 as n → ∞.

If e = θ, then we have

Theorem 2.7 ([23]) Suppose that A is an increasing φ-(h, θ)-concave operator and P is normal,

Ah ∈ Ph. Then A has a unique fixed point x∗ in Ph. Further, for any point v0 ∈ Ph, constructing

the sequence vn = Avn−1, n = 1, 2, . . . , we have ∥vn − x∗∥ → 0 as n → ∞.

3. Main results

In this section, we discuss the existence and uniqueness of solutions for problem (1.1). The

tools are Theorems 2.6 and 2.7 which are relatively new, and so the method is new to the
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fourth-order boundary value problems.

Problem (1.1) is considered in the function space C[0, 1] = {x : [0, 1] → R is continuous},
which is a Banach space and the norm is ∥x∥ = sup{|x(t)| : t ∈ [0, 1]}. Set P = {x ∈
C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]}, a normal cone in C[0, 1]. It is well known that this space can be

equipped with a partial order given by x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t), t ∈ [0, 1]. Let

e(t) =
1

24
bt2(t− 2)2, t ∈ [0, 1].

Theorem 3.1 Suppose that

(H1) f : [0, 1]× [− b
24 ,+∞) → (−∞,+∞) is increasing with respect to the second variable;

(H2) For any λ ∈ (0, 1), there is φ(λ) > λ such that

f(t, λx+ (λ− 1)y) ≥ φ(λ)f(t, x), ∀ t ∈ [0, 1], x ∈ (−∞,+∞), y ∈ [0,
b

24
];

(H3) f(t, 0) ≥ 0 with f(t, 0) ̸≡ 0 for t ∈ [0, 1].

Then problem (1.1) has a unique solution u∗ in Ph,e, where h(t) = Lt2, t ∈ [0, 1] with L ≥ 1
6b.

Moreover, for any given w0 ∈ Ph,e, making a sequence

wn(t) =

∫ 1

0

G(t, s)f(s, wn−1(s))ds−
1

24
bt2(t− 2)2, n = 1, 2, . . . ,

we have wn(t) → u∗(t) as n → ∞.

Proof Firstly, for t ∈ [0, 1],

e(t) =
1

24
bt2(t− 2)2 ≥ 0 and e(t) ≤ b

24
. (3.1)

That is, e ∈ P. Further, for t ∈ [0, 1],

e(t) =
1

24
bt2(t− 2)2 ≤ 1

6
bt2 ≤ Lt2 = h(t).

Hence, 0 ≤ e(t) ≤ h(t). In addition, Ph,e = {u ∈ C[0, 1]|u+ e ∈ Ph}. From Lemma 2.1, problem

(1.1) has an integral formulation given by

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds− b

∫ 1

0

G(t, s)ds

=

∫ 1

0

G(t, s)f(s, u(s))ds− b

24
t2(t2 + 4− 4t)

=

∫ 1

0

G(t, s)f(s, u(s))ds− e(t).

For any u ∈ Ph,e, we consider the following operator of the form

Au(t) =

∫ 1

0

G(t, s)f(s, u(s))ds− e(t), t ∈ [0, 1].

So u(t) is the solution of problem (1.1) if and only if u(t) = Au(t). Next we divide several steps

to show that A satisfies the conditions of Theorem 2.6.

Step 1. We prove that A : Ph,e → E is a φ-(h, e)-concave operator. For u ∈ Ph,e, λ ∈ (0, 1),
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from (3.1) and (H2) we have

A(λu+ (λ− 1)e)(t) =

∫ 1

0

G(t, s)f(s, λu(s) + (λ− 1)e(s))ds− e(t)

≥φ(λ)

∫ 1

0

G(t, s)f(s, u(s))ds− e(t)

=φ(λ)[

∫ 1

0

G(t, s)f(s, u(s))ds− e(t)] + [φ(λ)− 1]e(t)

=φ(λ)Au(t) + [φ(λ)− 1]e(t).

So we get

A(λu+ (λ− 1)e) ≥ φ(λ)Au+ [φ(λ)− 1]e, u ∈ Ph,e, λ ∈ (0, 1).

This implies that A is φ-(h, e)-concave operator.

Step 2. We show that A : Ph,e → E is an increasing operator. For u ∈ Ph,e, we know

u + e ∈ Ph. This indicates that there exists µ > 0 such that u(t) + e(t) ≥ µh(t), t ∈ [0, 1]. And

thus

u(t) ≥ µh(t)− e(t) ≥ −e(t) ≥ − b

24
.

Note that from condition (H1), we easily know that A : Ph,e → E is increasing.

Step 3. We prove that Ah ∈ Ph,e. So we need to prove Ah+ e ∈ Ph. Considering Lemma 2.2

with (H1), (H3),

Ah(t) + e(t) =

∫ 1

0

G(t, s)f(s, h(s))ds =

∫ 1

0

G(t, s)f(s, Ls2)ds

≤
∫ 1

0

1

2
st2f(s, L)ds ≤ 1

2

∫ 1

0

sf(s, L)ds · t2

=
1

2L

∫ 1

0

sf(s, L)ds · h(t)

Ah(t) + e(t) =

∫ 1

0

G(t, s)f(s, Ls2)ds

≥
∫ 1

0

1

12
s2t2f(s, 0)ds =

1

12

∫ 1

0

s2f(s, 0)ds · t2

=
1

12L

∫ 1

0

s2f(s, 0)ds · h(t).

Let

l1 =
1

12L

∫ 1

0

s2f(s, 0)ds, l2 =
1

2L

∫ 1

0

sf(s, L)ds.

Because L > 0 and from (H1), (H3),∫ 1

0

sf(s, L)ds ≥
∫ 1

0

s2f(s, 0)ds > 0

and thus l2 ≥ l1 > 0. So this shows that Ah+ e ∈ Ph.
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Consequently, by using Theorem 2.6, the operator A has a unique fixed point u∗ in Ph,e and

thus

u∗(t) =

∫ 1

0

G(t, s)f(s, u∗(s))ds− e(t), t ∈ [0, 1].

Evidently, u∗(t) is a solution. Moreover, for any w0 ∈ Ph,e, the sequence wn = Awn−1, n =

1, 2, . . . satisfies wn → u∗ as n → ∞. That is,

wn(t) =

∫ 1

0

G(t, s)f(s, wn−1(s))ds−
1

24
bt2(t− 2)2, n = 1, 2, . . . ,

and wn(t) → u∗(t) as n → ∞. �

Corollary 3.2 Let all the conditions of Theorem 3.1 be satisfied. Suppose that there exists

t0 ∈ [0, 1] such that ∫ 1

0

G(t0, s)[f(s, 0)− b]ds ̸≡ 0.

Then problem (1.1) has a unique nontrivial solution u∗ in Ph,e, where h(t) = Lt2, t ∈ [0, 1] with

L ≥ 1
6b. Moreover, for any given w0 ∈ Ph,e, making a sequence

wn(t) =

∫ 1

0

G(t, s)f(s, wn−1(s))ds−
1

24
bt2(t− 2)2, n = 1, 2, . . . ,

we have wn(t) → u∗(t) as n → ∞.

Proof From the proof of Theorem 3.1, we get the unique solution u∗ of (1.1) by

u∗(t) =

∫ 1

0

G(t, s)f(s, u∗(s))ds− e(t) =

∫ 1

0

G(t, s)[f(s, u∗(s))− b]ds, t ∈ [0, 1].

If u∗(t) ≡ 0, then
∫ 1

0
G(t, s)[f(s, 0− b]ds ≡ 0, t ∈ [0, 1]. This contradicts the condition. So u∗ is

the nontrivial solution. �
When b = 0, we can obtain the uniqueness and existence of positive solutions for problem

(1.1) by using Theorem 2.7.

Theorem 3.3 Suppose that

(H4) f : [0, 1]× [0,+∞) → [0,+∞) is continuous with f(t, 0) ̸≡ 0;

(H5) For any t ∈ [0, 1], f(t, x) is increasing with respect to the second variable;

(H6) For any λ ∈ (0, 1), there exists φ(λ) > λ such that

f(t, λx) ≥ φ(λ)f(t, x), ∀ t ∈ [0, 1], x ∈ [0,+∞).

Then problem (1.1) has a unique positive solution u∗ in Ph, where h(t) = t2, t ∈ [0, 1]. Moreover,

for any given w0 ∈ Ph, making a sequence

wn(t) =

∫ 1

0

G(t, s)f(s, wn−1(s))ds, n = 1, 2, . . . ,

we have wn(t) → u∗(t) as n → ∞.

Remark 3.4 If b > 0, we cannot obtain Theorem 3.1 and Corollary 3.2 by using previous



484 Shunyong LI

methods used in [2, 3, 8, 9, 11, 12, 17, 20]. Comparing Theorem 3.3 with the main results in [1, 2],

we present some alternative approaches to study the similar type of problems under different

conditions.

4. Examples

To illustrate our main results, we give two examples.

Example 4.1 Consider the following fourth-order boundary value problem:{
u(4)(t) = t

2
5 (u(t) + 1

24 )
1
5 (t− 2)

2
5 − 1, 0 < t < 1,

u(0) = u′(0) = u′(1) = u(3)(1) = 0.
(4.1)

Evidently, problem (4.1) fits the framework of problem (1.1). In this example, let b = 1 and

f(t, x) = t
2
5 (x+

1

24
)

1
5 (t− 2)

2
5 .

Take e(t) = 1
24 t

2(t− 2)2, h(t) = 1
6 t

2, t ∈ [0, 1]. Then e(t) ≤ 1
24 , e(t) ≤ h(t), t ∈ [0, 1]. In addition,

f(t, x) = [t2(x+
1

24
)(t− 2)2]

1
5 = [24e(t)x+ e(t)]

1
5 .

Obviously, f : [0, 1] × [− 1
24 ,+∞) → (−∞,+∞) is continuous, increasing with respect to the

second variable. Moreover, for any λ ∈ (0, 1), x ∈ (−∞,+∞), y ∈ [0, 1
24 ], we have

f(t, λx+ (λ− 1)y) ={24e(t)[λx+ (λ− 1)y] + e(t)} 1
5

=λ
1
5 {24e(t)[x+ (1− 1

λ
)y] +

1

λ
e(t)} 1

5

=λ
1
5 [24e(t)x+ (1− 1

λ
)24e(t)y +

1

λ
e(t)]

1
5

≥λ
1
5 [24e(t)x+ (1− 1

λ
)e(t) +

1

λ
e(t)]

1
5

=λ
1
5 [24e(t)x+ e(t)]

1
5 .

Let φ(λ) = λ
1
5 . Then φ(λ) > λ, λ ∈ (0, 1) and

f(t, λx+ (λ− 1)y) ≥ φ(λ)f(t, x), ∀ t ∈ [0, 1], x ∈ (−∞,+∞), y ∈ [0,
1

24
].

Further, f(t, 0) = [e(t)]
1
5 ≥ 0 with f(t, 0) ̸≡ 0 for t ∈ [0, 1]. Hence, all the conditions of Theorem

3.1 are satisfied. Therefore, problem (4.1) has a unique solution u∗ in Ph, where h(t) = 1
6 t

2,

t ∈ [0, 1]. And, for any initial value u0 ∈ Ph, making the sequence

un+1(t) =

∫ 1

0

G(t, s)s
2
5 (un(s) +

1

24
)

1
5 (s− 2)

2
5 ds− 1

24
t2(t− 2)2, n = 0, 1, 2, . . . ,

one has un(t) → u∗(t) as n → ∞. �

Example 4.2 Consider the following fourth-order boundary value problem:{
u(4)(t) = [u(t)]α + sin t, 0 < t < 1,

u(0) = u′(0) = u′(1) = u(3)(1) = 0,
(4.2)
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where α ∈ (0, 1). Evidently, problem (4.2) fits the framework of problem (1.1) with b = 0. In

this example, let f(t, x) = xα + sin t. Obviously, f : [0, 1] × [0,+∞) → [0,+∞) is continuous.

And it is easy to see that f(t, x) is increasing in x ∈ [0,+∞) for fixed t ∈ [0, 1]. Moreover,

f(t, 0) = sin t ̸≡ 0. Set φ(τ) = τα, τ ∈ (0, 1). Then φ(τ) ∈ (τ, 1) and

f(t, τx) = ταxα + sin t ≥ τα(xα + sin t) = φ(τ)f(t, x),

for t ∈ [0, 1], x ≥ 0. Hence, all the conditions of Theorem 3.3 are satisfied, then problem (4.2)

has a unique positive solution u∗ in Ph, where h(t) = t2, t ∈ [0, 1]. And, for any initial values

u0 ∈ Ph, making the sequence

un+1(t) =

∫ 1

0

G(t, s)[uα
n(s) + sin s]ds, n = 0, 1, 2, . . . ,

we have un(t) → u∗(t) as n → ∞, where G(t, s) is given as (2.2).
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