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Multi-Wavelet Bessel Sequences in Sobolev Spaces
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Abstract Bessel sequence plays an important role in the study of frames for a Hilbert space

with the convergence of a frame series, which has been widely studied in the literature. This

paper addresses multi-wavelet Bessel sequences in Sobolev spaces setting, the result obtained is

useful for the study of multi-wavelet frames in these spaces.

Keywords multi-wavelet; Bessel sequence; frame; Sobolev spaces

MR(2010) Subject Classification 42C40; 42C15

1. Introduction

In view of the great design freedom and the efficient application in practice, such as image

restoration, signal denoising and the numerical solution of operator equations, wavelet frames

have been extensively investigated by many researchers [1–8]. The Bessel sequence is very im-

portant in the study of frames for a Hilbert space with the convergence of a frame series [9–12],

which has been widely studied in the literature.

Recently, Han and Shen [10] gave a sufficient condition for a 2Id wavelet sequence to be

Bessel sequence in Sobolev space Hs(Rd), s > 0. Li, Yang and Yuan [13] generalized this result

to Bessel M -multiwavelet sequences with M being an isotropic expansive matrix. In this paper,

we further generalize the refinable function of [10, Theorem 2.3] and [13, Theorem 2.1] to a

vector and the wavelet function to a finite number of vectors, and address multi-wavelet Bessel

sequences in Sobolev spaces setting.

We first give some necessary notations and notions. We denote by Z, N and N0 the set of

integers, the set of positive integers, and the set of nonegative integers, respectively. Let d ∈ N,
we denote by Td = [0, 1)d the d-dimensional torus, and, for a Lebesgue measurable set E in Rd,

by |E| its Lebesgue measure and χ
E
the characteristic function of E, respectively. We write δ as

the Dirac sequences such that δ0,0 = 1, and δ0,k = 0 for 0 ̸= k ∈ Zd. For a function f in L1(Rd),

its Fourier transform f̂ is defined by f̂(·) =
∫
Rd f(x)e

−2πi⟨x, ·⟩dx, and is naturally extended to

tempered distributions, where ⟨·, ·⟩ denotes the Euclidean inner product on Rd.
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For s ∈ R, the Sobolev space Hs(Rd) consists of all distributions f such that

∥f∥2Hs(Rd) =

∫
Rd

|f̂(ξ)|2(1 + ∥ξ∥22)sdξ <∞,

where ∥ · ∥2 denotes the Euclidean norm on Rd. It is noted that, Hs(Rd) is a separable Hilbert

space under the definition of the inner product:

⟨f, g⟩Hs(Rd) =

∫
Rd

f̂(ξ)ĝ(ξ)(1 + ∥ξ∥22)sdξ, f, g ∈ Hs(Rd).

Obviously, H0(Rd) = L2(Rd), and Hs1(Rd) ⊆ Hs2(Rd) iff s1 ≥ s2. Furthermore, for every

g ∈ H−s(Rd),

⟨f, g⟩ =
∫
Rd

f̂(ξ)ĝ(ξ)dξ, f ∈ Hs(Rd)

gives a continuous functional on Hs(Rd).

For f, g : Rd 7→ C, we define

[f, g]t(·) =
∑
k∈Zd

f(·+ k)g(·+ k)(1 + ∥ ·+k∥22)t, t ∈ R.

We denote by M∗ its conjugate transpose for a d × d order matrix M , by ΓM∗ a full set of

M∗−1Zd/Zd, i.e., a set of representatives of distinct cosets of M∗−1Zd/Zd. It is called a dila-

tion matrix if M is an integer matrix, and its eigenvalues are all greater than one in modulus.

In this paper, we always assume that M is isotropic, i.e., M is similar to a diagonal matrix

diag(λ1, λ2, . . . , λd) satisfying |λ1| = |λ2| = · · · = |λd| = | detM | 1d . Moreover, for convenient

narration, we write m = | detM | 1d and write

fj,k(·) = m
jd
2 f(M j · −k) and fsj,k(·) = m−jsfj,k(·) = mj( d

2−s)f(M j · −k)

for a distribution f , j ∈ Z, k ∈ Zd and s ∈ R.
Given r ∈ N, let ϕ = (ϕ1, ϕ2, . . . , ϕr)

T ∈ (Hs(Rd))r be an M -refinable function vector

satisfying the refinement equation, i.e., there exists an r × r order matrix â, called refinement

mask symbol such that

ϕ̂(M∗·) = â(·)ϕ̂(·) a.e. on Rd. (1.1)

Given L ∈ N. Wavelet function vectors ψl = (ψl
1, ψ

l
2, . . . , ψ

l
r)

T with l = 1, 2, . . . , L are defined by

ψ̂l(M
∗·) = b̂l(·)ϕ̂(·), l = 1, 2, . . . , L, (1.2)

where b̂l(·) = (b̂ln,m(·))rn,m=1 with l = 1, 2, . . . , L being a sequence of r × r order matrices of

Zd-periodic measurable functions on Rd, called wavelet masks symbol. Define a multi-wavelet

system

Xs(ϕ;ψ1, ψ2, . . . , ψL) ={ϕn;0,k : n = 1, 2, . . . , r; k ∈ Zd}∪

{ψl,s
n;j,k : n = 1, 2, . . . , r; j ∈ N0, k ∈ Zd, l = 1, 2, . . . , L}. (1.3)

Xs(ϕ;ψ1, ψ2, . . . , ψL) is called a multi-wavelet Bessel sequence (MWBS) in Hs(Rd) if there
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exists B > 0 such that

r∑
n=1

∑
k∈Zd

|⟨f, ϕn;0,k⟩Hs(Rd)|2 +
r∑

n=1

L∑
l=1

∞∑
j=0

∑
k∈Zd

|⟨f, ψl,s
n;j,k⟩Hs(Rd)|2 ≤ B∥f∥2Hs(Rd), ∀f ∈ Hs(Rd),

where B is called a Bessel bound; it is called a multi-wavelet frame (MWF) in Hs(Rd) if there

exist 0 < A ≤ B <∞ such that

A∥f∥2Hs(Rd) ≤
r∑

n=1

∑
k∈Zd

|⟨f, ϕn;0,k⟩Hs(Rd)|2 +
r∑

n=1

L∑
l=1

∞∑
j=0

∑
k∈Zd

|⟨f, ψl,s
n;j,k⟩Hs(Rd)|2

≤ B∥f∥2Hs(Rd), ∀f ∈ Hs(Rd),

where A and B are called frame bounds.

2. Some necessary lemmas

In this section, we provide some necessary lemmas which are used for later.

By a standard argument, we have

Lemma 2.1 Let s ∈ R. Define λ by

λ̂f(·) = (1 + ∥ · ∥22)
s
2 f̂(·) (2.1)

for f ∈ Hs(Rd) or L2(Rd). Then λ is a unitary operator both from Hs(Rd) onto L2(Rd) and

from L2(Rd) onto H−s(Rd).

Lemma 2.2 Let s ∈ R, and Xs(ϕ;ψ1, ψ2, . . . , ψL) be a multi-wavelet system in Hs(Rd). Then

Xs(ϕ;ψ1, ψ2, . . . , ψL) is a MWBS in Hs(Rd) with Bessel bound B if and only if

r∑
n=1

∑
k∈Zd

|⟨f, ϕn;0,k⟩|2 +
r∑

n=1

L∑
l=1

∞∑
j=0

∑
k∈Zd

|⟨f, ψl,s
n;j,k⟩|

2 ≤ B∥f∥2H−s(Rd) for f ∈ H−s(Rd). (2.2)

Proof By Lemma 2.1, we know Xs(ϕ;ψ1, ψ2, . . . , ψL) is a MWBS in Hs(Rd) with Bessel bound

B if and only if

r∑
n=1

∑
k∈Zd

|⟨f, λϕn;0,k⟩|2 +
r∑

n=1

L∑
l=1

∞∑
j=0

∑
k∈Zd

|⟨f, λψl,s
n;j,k⟩|

2 ≤ B∥f∥2H−s(Rd) for f ∈ L2(Rd). (2.3)

Since λ is a unitary operator, we have

⟨f, λϕn;0,k⟩ = ⟨λf, ϕn;0,k⟩ and ⟨f, λψl,s
n;j,k⟩ = ⟨λf, ψl,s

n;j,k⟩,

and

∥f∥2L2(Rd) = ∥λf∥2H−s(Rd).

It follows that (2.3) is equivalent to

r∑
n=1

∑
k∈Zd

|⟨λf, ϕn0,k⟩|2 +
r∑

n=1

L∑
l=1

∞∑
j=0

∑
k∈Zd

|⟨λf, ψn,s
l,j,k⟩|

2 ≤ B∥λf∥2H−s(Rd) for f ∈ L2(Rd). (2.4)
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This leads to the lemma since λ is a unitary operator from L2(Rd) onto H−s(Rd) by Lemma

2.1. �

Lemma 2.3 ([13, Lemma 1.1]) Let M be a d × d order isotropic dilation matrix. Then there

exists a norm ∥ · ∥ on Rd such that ∥M∗ · ∥ = m∥ · ∥. Furthermore, there exist positive constants

ϱ1 and ϱ2 such that ϱ2∥ · ∥ ≤ ∥ · ∥2 ≤ ϱ1∥ · ∥.

Lemma 2.4 ([13, Lemma 2.1]) For η > ζ > 0, define

Bζ,η(ξ) =
∞∑
j=0

m−2jζ(1 + ϱ21∥ξ∥2)ζ(1 +m−2j−2ϱ22∥ξ∥2)−η, ξ ∈ Rd, (2.5)

where ϱ1, ϱ2 and ∥ · ∥ are as in Lemma 2.3. Then there exists a positive constant C such that

Bζ,η(ξ) < C, ∀ξ ∈ Rd.

Lemma 2.5 Let 0 ̸= s ∈ R and ϕ = (ϕ1, ϕ2, . . . , ϕr)
T ∈ (Hs(Rd))r. If [ϕ̂n, ϕ̂n]t ∈ L∞(Rd) for

some t > s with n = 1, 2, . . . , r, then
r∑

n=1

∑
k∈Zd

|⟨g, ϕn;0,k⟩|2 ≤
r∑

n=1

∥[ϕ̂n, ϕ̂n]s∥L∞(Rd)∥g∥2H−s(Rd) (2.6)

for g ∈ H−s(Rd).

Proof Since for any n ∈ {1, 2, . . . , r}, ϕn ∈ Hs(Rd) and g ∈ H−s(Rd), we have ĝϕ̂n ∈ L1(Rd).

Applying the Plancherel theorem and the Parseval identity, by a simple computation we have∑
k∈Zd

|⟨g, ϕn(· − k)⟩|2 =
∑
k∈Zd

∣∣∣ ∫
Rd

ĝ(ξ)ϕ̂n(ξ)e
2πi⟨k, ξ⟩dξ

∣∣∣2
=

∑
k∈Zd

∣∣∣ ∑
k′∈Zd

∫
Td

ĝ(ξ + k′)ϕ̂n(ξ + k′)e2πi⟨k, ξ⟩dξ
∣∣∣2

=

∫
Td

∣∣∣ ∑
k′∈Zd

ĝ(ξ + k′)ϕ̂n(ξ + k′)
∣∣∣2dξ

=

∫
Td

|[ĝ, ϕ̂n]0(ξ)|2dξ. (2.7)

By the Cauchy Schwarz’s inequality, we have |[ĝ, ϕ̂n]0(ξ)|2 ≤ [ĝ, ĝ]−s(ξ)[ϕ̂n, ϕ̂n]s(ξ) for almost

every ξ ∈ Rd. Since t > s and [ϕ̂n, ϕ̂n]t ∈ L∞(Rd), it follows that

[ϕ̂n, ϕ̂n]s(ξ) ≤ [ϕ̂n, ϕ̂n]t(ξ).

Therefore, [ϕ̂n, ϕ̂n]s ∈ L∞(Rd), and thus we deduce from (2.7) that

r∑
n=1

∑
k∈Zd

|⟨g, ϕn(· − k)⟩|2 ≤
r∑

n=1

∫
Td

[ĝ, ĝ]−s(ξ)[ϕ̂n, ϕ̂n]s(ξ)dξ

≤
r∑

n=1

∥[ϕ̂n, ϕ̂n]s∥L∞(Rd)

∫
Td

[ĝ, ĝ]−s(ξ)dξ

=
r∑

n=1

∥[ϕ̂n, ϕ̂n]s∥L∞(Rd)

∫
Rd

|ĝ(ξ)|2(1 + ∥ξ∥22)−sdξ
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=

r∑
n=1

∥[ϕ̂n, ϕ̂n]s∥L∞(Rd)∥g∥2H−s(Rd). � (2.8)

Lemma 2.6 Let 0 ̸= s < t, and b̂l(·) = (b̂ln,m(·))rn,m=1, l = 1, 2, . . . , L be a sequence of r × r

order matrices of Zd-periodic measurable functions on Rd, define

∆s,t(ξ) =
∞∑
j=0

m−2js(1 + ∥ξ∥22)s
L∑

l=1

r∑
n=1

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2(1 + ∥M∗−j−1

ξ∥22)−t, ξ ∈ Rd.

If there exists a nonnegative number α > −s and a positive constant C such that

L∑
l=1

r∑
n=1

r∑
m=1

|b̂ln,m(·)|2 ≤ Cmin(1, ∥ · ∥2α2 ), a.e. on Rd, (2.9)

then ∆s,t ∈ L∞(Rd).

Proof Let us consider the two cases s > 0 and s < 0 separately.

Suppose s > 0. Since t > s, by Lemma 2.3, we have

∆s,t(ξ) ≤
∞∑
j=0

m−2js(1 + ϱ21∥ξ∥2)s
L∑

l=1

r∑
n=1

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2(1 +m−2j−2ϱ22∥ξ∥2)−t. (2.10)

By Lemma 2.4, there exists a poitive constant C ′ such that

Bs,t(ξ) =
∞∑
j=0

m−2js(1 + ϱ21∥ξ∥2)s(1 +m−2j−2ϱ22∥ξ∥2)−t ≤ C ′, ∀ξ ∈ Rd. (2.11)

This implies that ∆s,t(ξ) ≤ C ′C, ∀ξ ∈ Rd, i.e., ∆s,t ∈ L∞(Rd).

Suppose s < 0. Without loss of generality, we assume that s < t < 0. By Lemma 2.3, we

have

∆s,t(ξ) ≤
∞∑
j=0

m−2js(1 + ϱ22∥ξ∥2)s
L∑

l=1

r∑
n=1

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2(1 +m−2j−2ϱ21∥ξ∥2)−t

=: Θs,t(ξ). (2.12)

For ϱ1∥ξ∥ ≤ 1 and j ≥ 0, we have

(1 +m−2j−2ϱ21∥ξ∥2)−t ≤ 2−t and (1 + ϱ22∥ξ∥2)s ≤ 1.

Since α ≥ 0, α+ s > 0, by Lemma 2.3 and Eq. (2.9), we have the following estimate

Θs,t(ξ) ≤2−t
∞∑
j=0

m−2js
L∑

l=1

r∑
n=1

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2

≤2−tC

∞∑
j=0

m−2js∥M∗−j−1

ξ∥2α2

≤2−tCm−2α
∞∑
j=0

m−2j(α+s)(ϱ1∥ξ∥)2α

≤2−tCm−2α
∞∑
j=0

m−2j(α+s) =
2−tCm−2α

1−m−2(α+s)
<∞. (2.13)
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For ϱ1∥ξ∥ > 1, there exists J ∈ N0 such that mJ ≤ ϱ1∥ξ∥ < mJ+1. Then for j = 0, 1, . . . , J , we

have

(1 +m−2j−2ϱ21∥ξ∥2)−t ≤ (1 +m2(J−j))−t = m−2(J−j)t(m−2(J−j) + 1)−t ≤ 2−tm−2(J−j)t

and

(1 + ϱ22∥ξ∥2)s ≤ (1 + ϱ22ϱ
−2
1 m2J)s ≤ ϱ2s2 ϱ

−2s
1 m2Js.

Write Θs,t(ξ) = Θ1
s,t(ξ) + Θ2

s,t(ξ), where

Θ1
s,t(ξ) =

J∑
j=0

m−2js(1 + ϱ22∥ξ∥2)s
L∑

l=1

r∑
n=1

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2(1 +m−2j−2ϱ21∥ξ∥2)−t,

Θ2
s,t(ξ) =

∞∑
j=J+1

m−2js(1 + ϱ22∥ξ∥2)s
L∑

l=1

r∑
n=1

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2(1 +m−2j−2ϱ21∥ξ∥2)−t.

Then by mJ ≤ ϱ1∥ξ∥ < mJ+1 and J ∈ N0, it follows from s < t < 0 that

Θ1
s,t(ξ) =

J∑
j=0

m−2js(1 + ϱ22∥ξ∥2)s
L∑

l=1

r∑
n=1

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2(1 +m−2j−2ϱ21∥ξ∥2)−t

≤ Cϱ2s2 ϱ
−2s
1 2−t

J∑
j=0

m−2(J−j)(t−s) ≤ Cϱ2s2 ϱ
−2s
1 2−t

∞∑
j=0

m−2j(t−s)

= ϱ2s2 ϱ
−2s
1 2−t 1

1−m−2(t−s)
<∞. (2.14)

Since mJ ≤ ϱ1∥ξ∥ < mJ+1, we have for j ≥ J + 1

(1 +m−2j−2ϱ21∥ξ∥2)−t ≤ (1 +m2(J−j))−t ≤ 2−t

and

(1 + ϱ22∥ξ∥2)s ≤ (1 + ϱ22ϱ
−2
1 m2J)s ≤ ϱ2s2 ϱ

−2s
1 m2Js.

Since α ≥ 0, α+ s > 0, by Lemma 2.3 and Eq. (2.9), we have

Θ2
s,t(ξ) =

∞∑
j=J+1

m−2js(1 + ϱ22∥ξ∥2)s
L∑

l=1

r∑
n=1

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2(1 +m−2j−2ϱ21∥ξ∥2)−t

≤2−tϱ2s2 ϱ
−2s
1

∞∑
j=J+1

m−2(j−J)s
L∑

l=1

r∑
n=1

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2

≤2−tϱ2s2 ϱ
−2s
1 C

∞∑
j=J+1

m−2(j−J)s∥M∗−j−1

ξ∥2α2

≤2−tϱ2s2 ϱ
−2s
1 C

∞∑
j=J+1

m−2(j−J)sm−2α(j+1)(ϱ1∥ξ∥)2α

≤2−tϱ2s2 ϱ
−2s
1 C

∞∑
j=J+1

m−2(j−J)(α+s) = 2−tϱ2s2 ϱ
−2s
1 C

∞∑
j=1

m−2j(α+s)

=2−tϱ2s2 ϱ
−2(α+s)
1 C

m−2(α+s)

1−m−2s
<∞. (2.15)
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Therefore, for the case s < 0, we conclude that ∆s,t ∈ L∞(Rd). �

3. Multi-wavelet Bessel sequences

In this section, we will study multi-wavelet Bessel sequences in Sobolev spaces setting.

Theorem 3.1 Given s ∈ R, let ϕ = (ϕ1, ϕ2, . . . , ϕr)
T ∈ (Hs(Rd))r be an M -refinable function

vector satisfying the refinable Eq. (1.1), and let b̂l(·) = (b̂ln,m(·))rn,m=1, l = 1, 2, . . . , L be a se-

quence of r×r order matrices of Zd-periodic measurable functions on Rd, ψl = (ψl
1, ψ

l
2, . . . , ψ

l
r)

T ,

l = 1, 2, . . . , L, be the wavelet function vectors defined by (1.2), and Xs(ϕ;ψ1, ψ2, . . . , ψL) be the

multi-wavelet systems defined by (1.3). Assume that

(i) [ϕ̂n, ϕ̂n]t ∈ L∞(Rd) for some t > s with n = 1, 2, . . . , r;

(ii) There exists a nonnegative number α > −s and a positive constant C such that

L∑
l=1

r∑
n=1

r∑
m=1

|b̂ln,m(·)|2 ≤ Cmin(1, ∥ · ∥2α2 ), a.e. on Rd.

Then Xs(ϕ;ψ1, ψ2, . . . , ψL) is a MWBS in Hs(Rd).

Proof For the case s = 0, we take 0 < s0 < min{t, α}, then the conditions (i) and (ii) hold for

s = s0. Therefore, the conclusion holds for s = 0 if it holds for s = s0. So, in order to finish

the proof, we need to prove the conclusion holds for s ̸= 0. By Lemma 2.2, it is enough to prove

that there exists a positive constant B such that

r∑
n=1

∑
k∈Zd

|⟨g, ϕn;0,k⟩|2 +
r∑

n=1

L∑
l=1

∞∑
j=0

∑
k∈Zd

|⟨g, ψl,s
n;j,k⟩|

2 ≤ B∥g∥2H−s(Rd) for g ∈ H−s(Rd). (3.1)

For the first part, by Lemma 2.5, we have

r∑
n=1

∑
k∈Zd

|⟨g, ϕn;0,k⟩|2 ≤
r∑

n=1

∥[ϕ̂n, ϕ̂n]s∥L∞(Rd)∥g∥2H−s(Rd) for g ∈ H−s(Rd). (3.2)

Next, we check the second part. For g ∈ H−s(Rd), compute∑
k∈Zd

|⟨g, ψl,s
n;j,k⟩|

2 = m−j(d+2s)
∑
k∈Zd

∣∣∣ ∫
Rd

ĝ(ξ)ψ̂l
n(M

∗−jξ)e2πi⟨k,M
∗−j

ξ⟩dξ
∣∣∣2

= mj(d−2s)
∑
k∈Zd

∣∣∣ ∑
k′∈Zd

∫
Td

ĝ(M∗j

(ξ + k′))ψ̂l
n(ξ + k′)e2πi⟨k, ξ⟩dξ

∣∣∣2
= mj(d−2s)

∫
Td

∣∣∣ ∑
k′∈Zd

ĝ(M∗j

(ξ + k′))ψ̂l
n(ξ + k′)

∣∣∣2dξ
= mj(d−2s)

∫
Td

|[ĝ(M∗j

·), ψ̂l
n(·)]0(ξ)|2dξ. (3.3)

By the definition in (1.2), we can get each component of ψ̂l

ψ̂l
n(·) =

r∑
m=1

b̂ln,m(M∗−1

·)ϕ̂n(M∗−1

·) for n = 1, 2, . . . , r and l = 1, 2, . . . , L,
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and it follows from (3.3) that∑
k∈Zd

|⟨g, ψl,s
n;j,k⟩|

2

= mj(d−2s)

∫
Td

∣∣∣ ∑
k∈Zd

r∑
m=1

ĝ(M∗j

(ξ + k))b̂ln,m(M∗−1(ξ + k))ϕ̂n(M∗−1(ξ + k))
∣∣∣2dξ

= mj(d−2s)

∫
Td

∣∣∣ ∑
γ∈ΓM∗

r∑
m=1

b̂ln,m(M∗−1ξ + γ)[ĝ(M∗j+1

·), ϕ̂n]0(M∗−1

ξ + γ)
∣∣∣2dξ

≤ m(j+1)d−2js
∑

γ∈ΓM∗

∫
Td

∣∣∣ r∑
m=1

b̂ln,m(M∗−1

ξ + γ)[ĝ(M∗j+1

·), ϕ̂n]0(M∗−1

ξ + γ)
∣∣∣2dξ

≤ m(j+2)d−2js

∫
Td

r∑
m=1

|b̂ln,m(ξ)|2[ĝ(M∗j+1

·), ĝ(M∗j+1

·)]−t(ξ)[ϕ̂n, ϕ̂n]t(ξ)dξ

≤ m(j+2)d−2js max
1≤n≤r

{∥[ϕ̂n, ϕ̂n]t∥L∞(Rd)}
∫
Td

r∑
m=1

|b̂ln,m(ξ)|2[ĝ(M∗j+1

·), ĝ(M∗j+1

·)]−t(ξ)dξ

= m(j+2)d−2js max
1≤n≤r

{∥[ϕ̂n, ϕ̂n]t∥L∞(Rd)}
∫
Rd

r∑
m=1

|b̂ln,m(ξ)|2|ĝ(M∗j+1

ξ)|2(1 + ∥ξ∥22)−tdξ

= md−2js max
1≤n≤r

{∥[ϕ̂n, ϕ̂n]t∥L∞(Rd)}×∫
Rd

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2|ĝ(ξ)|2(1 + ∥M∗−j−1

ξ∥22)−tdξ. (3.4)

Hence, we conclude that

r∑
n=1

L∑
l=1

∞∑
j=0

∑
k∈Zd

|⟨g, ψl,s
n;j,k⟩|

2 ≤ md max
1≤n≤r

{∥[ϕ̂n, ϕ̂n]t∥L∞(Rd)}
∫
Rd

|ĝ(ξ)|2(1 + ∥ξ∥22)−s×

∞∑
j=0

m−2js(1 + ∥ξ∥22)s
L∑

l=1

r∑
n=1

r∑
m=1

|b̂ln,m(M∗−j−1

ξ)|2(1 + ∥M∗−j−1

ξ∥22)−tdξ. (3.5)

By Lemma 2.6, we get from (3.5) that

r∑
n=1

L∑
l=1

∞∑
j=0

∑
k∈Zd

|⟨g, ψl,s
n;j,k⟩|

2

≤ md max
1≤n≤r

{∥[ϕ̂n, ϕ̂n]t∥L∞(Rd)}∥∆s,t∥L∞(Rd)

∫
Rd

|ĝ(ξ)|2(1 + ∥ξ∥22)−s

= md max
1≤n≤r

{∥[ϕ̂n, ϕ̂n]t∥L∞(Rd)}∥∆s,t∥L∞(Rd)∥g∥2H−s(Rd).

Consequently, (3.1) holds with

B =
r∑

n=1

∥[ϕ̂n, ϕ̂n]s∥L∞(Rd) +md max
1≤n≤r

{∥[ϕ̂n, ϕ̂n]t∥L∞(Rd)}∥∆s,t∥L∞(Rd). (3.6)

The proof is completed. �
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