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Abstract In this paper, a new steplength formula is proposed for unconstrained optimization,

which can determine the step-size only by one step and avoids the line search step. Global

convergence of the five well-known conjugate gradient methods with this formula is analyzed,

and the corresponding results are as follows: (1) The DY method globally converges for a strongly

convex LC1 objective function; (2) The CD method, the FR method, the PRP method and the

LS method globally converge for a general, not necessarily convex, LC1 objective function.
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1. Introduction

The conjugate gradient method is very useful in large-scale unconstrained optimization. For

a general unconstrained problem

min
x∈ℜn

f(x), (1.1)

the method takes the following form:

xk+1 = xk + αkdk, (1.2)

dk =

{
−gk, if k = 1,

−gk + βkdk−1, if k ≥ 2,
(1.3)

where gk = ∇f(xk), αk is a positive steplength determined by a line search, dk is a search

direction, and βk is a scalar given by different formulae which result in distinct conjugate gradient

methods. Several well-known formulae for βk are given by [1]

βCD
k =

∥gk∥2

−gTk−1dk−1
(The Conjugate Descent Method), (1.4)
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βFR
k =

∥gk∥2

∥gk−1∥2
(Fletcher-Reeves), (1.5)

βPRP
k =

gTk (gk − gk−1)

∥gk−1∥2
(Polak-Ribière-Polyak), (1.6)

βLS
k = −gTk (gk − gk−1)

gTk−1dk−1
(Liu-Storey), (1.7)

βDY
k =

∥gk∥2

dTk−1(gk − gk−1)
(Dai-Yuan), (1.8)

where ∥ · ∥ is the Euclidean norm and “T” stands for the transpose. For ease of presentation we

call the methods corresponding to (1.4)–(1.8) the CD method, the FR method, the PRP method,

the LS method and the DY method, respectively. The global convergence of these methods has

been studied.

As we all know that a key factor of global convergence is how to select the steplength αk.

The commonly-used line search rules are Armijo rule, Goldstein rule and Wolfe rule, and many

authors investigated the global convergence of related line search methods [1–3]. It is obvious

that any line search rule is a procedure for finding αk. This certainly adds the number of

evaluations for objective functions and gradients. So Dixon [4] proposed a conjugate gradient

method without line search. And then Sun and Zhang [5], Chen and Sun [6] investigated some

conjugate gradient methods without line search. In [5], the steplength formula is

αk = − δgTk dk
∥dk∥2Qk

, (1.9)

where δ is a parameter and ∥dk∥Qk
=

√
dTkQkdk in which {Qk} is a sequence of positive definite

matrices. Evidently, according to (1.9) the steplength is obtained only by one step. And with

(1.9), global convergence results are derived for well-known conjugate gradient methods, such as

the FR method, the LS method, the DY method, the PRP method and the CD method. In [7],

Shi and Shen proposed a new descent method without line search, in which

αk = − gTk dk
Lk∥dk∥2

, (1.10)

or

αk = − gTk dk
Mk∥dk∥2

, (1.11)

where Lk or Mk is a parameter required to be estimated. Under mild conditions, global conver-

gence of the relating algorithms was analyzed.

We note that in the papers without line search, the formula for αk generally takes (1.9) or

(1.10) (see [5–8]). It should be worth researching further whether the formula for αk can take

other forms or not. This motivates us to design a new steplength formula. And with this formula

we study global convergence of the five well-known conjugate gradient methods: the CD method,

the FR method, the PRP method, the LS method and the DY method. The results show that

the new steplength formula can guarantee the global convergence of them. The next section

concerns the global convergence.
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2. Analysis of global convergence

In order to establish the global convergence, we assume that

Assumption 2.1 The function f is LC1 in a neighborhood N of the level set £ = {x ∈
ℜn|f(x) ≤ f(x1)} and £ is bounded. Here LC1 means that the gradient g is Lipschitz continuous,

i.e., there exists µ > 0 such that ∥g(x)− g(y)∥ ≤ µ∥x− y∥ for any x, y ∈ N .

Remark 2.2 Since £ is bounded, both {xk} and {gk} are all bounded for the five well-known

conjugate gradient methods.

Under Assumption 2.1, it is easy to obtain the global convergence of the CD method, the FR

method, the PRP method and the LS method, but it seems not easy to derive the global conver-

gence of the DY method. Thus, for the method we impose the following stronger assumption.

Assumption 2.3 The function f is LC1 and strongly convex on N . That is to say, there exists

λ > 0 such that [g(x)− g(y)]T (x− y) ≥ λ∥x− y∥2 for any x, y ∈ N .

Remark 2.4 Note that Assumption 2.3 implies Assumption 2.1 since a strongly convex function

has bounded level sets.

First we present the new steplength formula as follows:

αk = − δgTk dk
∥gk∥2 + ∥dk∥2

, (2.1)

where 0 < δ < min{ 1
µ ,

1
λ}. Combining this formula, we now analyze the global convergence of

the five well-known conjugate gradient methods.

Lemma 2.5 Suppose that xk is given by (1.2), (1.3) and (2.1). Then

gTk+1dk ≤ ρkg
T
k dk (2.2)

and

|gTk+1dk| ≤ σk|gTk dk| (2.3)

hold for all k, where

ρk = 1− δϕk, σk = 1 + δϕk (2.4)

and

ϕk =

{
0, if αk = 0,
|(gk+1−gk)

T (xk+1−xk)|
∥xk+1−xk∥2 , if αk ̸= 0.

(2.5)

Proof The case of αk = 0 implies that ρk = 1, σk = 1 and gk+1 = gk. Hence (2.2) and (2.3)
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hold. In the following, we consider the case of αk ̸= 0. From (1.2) and (2.1) we have

gTk+1dk = gTk dk + (gk+1 − gk)
T dk = gTk dk + α−1

k (gk+1 − gk)
T (xk+1 − xk)

≤ gTk dk + α−1
k |(gk+1 − gk)

T (xk+1 − xk)| = gTk dk + α−1
k ϕk∥xk+1 − xk∥2

= gTk dk + αkϕk∥dk∥2 = gTk dk − δgTk dk
∥gk∥2 + ∥dk∥2

ϕk∥dk∥2

= (1− δϕk∥dk∥2

∥gk∥2 + ∥dk∥2
)gTk dk ≤ (1− δϕk)g

T
k dk = ρkg

T
k dk.

Similarly, we have

|gTk+1dk| ≤ (1− δϕk∥dk∥2

∥gk∥2 + ∥dk∥2
)|gTk dk| ≤ (1 +

δϕk∥dk∥2

∥gk∥2 + ∥dk∥2
)|gTk dk|

≤ (1 + δϕk)|gTk dk| = σk|gTk dk|.

The proof is completed. �

Lemma 2.6 Suppose that Assumption 2.1 holds. Then for all k there hold

0 < 1− µδ ≤ ρk ≤ 1 + µδ, 1 ≤ σk ≤ 1 + µδ; (2.6)

and suppose Assumption 2.3 holds, then for all k it holds that

0 < 1− µδ ≤ ρk ≤ 1− λδ. (2.7)

Proof By (2.4) and (2.5) we have

1− δ
∥gk+1 − gk∥∥xk+1 − xk∥

∥xk+1 − xk∥2
≤ ρk = 1− δ

|(gk+1 − gk)
T (xk+1 − xk)|

∥xk+1 − xk∥2

≤ 1 + δ
∥gk+1 − gk∥∥xk+1 − xk∥

∥xk+1 − xk∥2
,

σk = 1 + δϕk = 1 + δ
|(gk+1 − gk)

T (xk+1 − xk)|
∥xk+1 − xk∥2

≤ 1 + δ
∥gk+1 − gk∥∥xk+1 − xk∥

∥xk+1 − xk∥2
.

From Assumption 2.1 and 0 < δ < min{ 1
µ ,

1
λ}, we have 0 < 1−µδ ≤ ρk ≤ 1+µδ. Further, noting

ϕk ≥ 0, we have 1 ≤ σk ≤ 1 + µδ. Therefore, (2.6) holds.

On the other hand, by Assumption 2.3 we get

ρk = 1− δ
|(gk+1 − gk)

T (xk+1 − xk)|
∥xk+1 − xk∥2

= 1− δ
(gk+1 − gk)

T (xk+1 − xk)

∥xk+1 − xk∥2
≤ 1− λδ. (2.8)

Since Assumption 2.3 implies Assumption 2.1 and 0 < δ < min{ 1
µ ,

1
λ}, then (2.7) holds. �

Lemma 2.7 Suppose that Assumption 2.1 holds and that xk is given by (1.2), (1.3) and (2.1).

Then ∑
k≥1

(gTk dk)
2

∥gk∥2 + ∥dk∥2
< +∞. (2.9)

Proof By the mean-value theorem, the Cauchy-Schwartz inequality, (1.2), (2.1) and Assumption

2.1, we obtain

f(xk+1)− f(xk) = ḡT (xk+1 − xk) = gTk (xk+1 − xk) + (ḡ − gk)
T (xk+1 − xk)
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≤ gTk (xk+1 − xk) + ∥ḡ − gk∥∥xk+1 − xk∥ ≤ gTk (xk+1 − xk) + µ∥xk+1 − xk∥2

= αkg
T
k dk + µα2

k∥dk∥2 = αkg
T
k dk − µδαkg

T
k dk∥dk∥2

∥gk∥2 + ∥dk∥2
= αkg

T
k dk(1−

µδ∥dk∥2

∥gk∥2 + ∥dk∥2
)

≤ αkg
T
k dk(1−

µδ∥dk∥2

∥dk∥2
) = (1− µδ)αkg

T
k dk = −δ(1− µδ)

(gTk dk)
2

∥gk∥2 + ∥dk∥2
, (2.10)

where ḡ = ∇f(x̄) for some x̄ ∈ [xk, xk+1]. Evidently, (2.10) shows f(xk+1) ≤ f(xk). It follows

by Assumption 2.1 that limk→∞ f(xk) exists. Thus from (2.10) we obtain

(gTk dk)
2

∥gk∥2 + ∥dk∥2
≤ 1

δ(1− µδ)
[f(xk)− f(xk+1)].

This completes the proof. �

Lemma 2.8 Suppose that Assumption 2.1 holds and xk is given by (1.2), (1.3) and (2.1). Then

∥xk+1 − xk∥ → 0 (2.11)

as k → ∞. Further, for the FR, the PRP and the LS methods {∥dk∥} is uniformly bounded.

Proof From (1.2), (2.1) and Lemma 2.7, we have∑
k≥1

∥xk+1 − xk∥2 =
∑
k≥1

∥αkdk∥2 =
∑
k≥1

δ2(gTk dk)
2

(∥gk∥2 + ∥dk∥2)2
∥dk∥2

≤ δ2
∑
k≥1

(gTk dk)
2(∥gk∥2 + ∥dk∥2)

(∥gk∥2 + ∥dk∥2)2
= δ2

∑
k≥1

(gTk dk)
2

∥gk∥2 + ∥dk∥2
< +∞.

Hence (2.11) holds.

In addition, from (1.5), (1.6), (1.7) and (2.11), it is evident that

|βFR
k | = ∥gk∥2

∥gk−1∥2
→ 1, (2.12)

|βPRP
k | = |g

T
k (gk − gk−1)

∥gk−1∥2
| → 0 (2.13)

and

|βLS
k | ≤ |gTk (gk − gk−1|)

1
4∥gk−1∥2

→ 0 (2.14)

as k → ∞. Noting Remark 2.2 and using

∥dk∥ ≤ ∥gk∥+ |βk|∥dk−1∥, (2.15)

we easily know that {∥dk∥} is uniformly bounded for the FR, the PRP and the LS methods.

This completes the proof. �

Lemma 2.9 (1) Suppose that Assumption 2.1 holds and xk is given by (1.2), (1.3) and (2.1).

Then the CD and the FR methods satisfy

(gTk dk)
2 > ∥gk∥4, (2.16)
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and for large k the PRP and the LS methods satisfy

(gTk dk)
2 ≥ ∥gk∥4

4
. (2.17)

(2) Suppose that Assumption 2.3 holds and xk is given by (1.2), (1.3) and (2.1). Then the

DY method satisfies

(gTk dk)
2 ≥ ∥gk∥4. (2.18)

Proof (1) First, for the CD method, from (1.4), (2.2) and (2.6) we have

gTk dk = gTk (−gk +
∥gk∥2

−gTk−1dk−1
dk−1) = −∥gk∥2(1 +

gTk dk−1

gTk−1dk−1
)

≤ −∥gk∥2(1 +
ρk−1g

T
k−1dk−1

gTk−1dk−1
) = −(1 + ρk−1)∥gk∥2 < −∥gk∥2.

Therefore (2.16) holds.

Now we consider the FR method. It follows from (1.5), (2.2) that

gTk dk = gTk (−gk +
∥gk∥2

∥gk−1∥2
dk−1) = (

gTk dk−1

∥gk−1∥2
− 1)∥gk∥2 ≤ (

ρk−1g
T
k−1dk−1

∥gk−1∥2
− 1)∥gk∥2.

By the recursive principle we obtain the following inequalities

gTk dk
∥gk∥2

≤
ρk−1g

T
k−1dk−1

∥gk−1∥2
− 1 ≤ ρk−1(

ρk−2g
T
k−2dk−2

∥gk−2∥2
− 1)− 1 ≤ · · ·

≤ ρk−1ρk−2 · · · ρ1
gT1 d1
∥g1∥2

− ρk−1ρk−2 · · · ρ2 − · · · − ρk−1ρk−2 − ρk−1 − 1.

Noting
gT
1 d1

∥g1∥2 = −1, then

gTk dk
∥gk∥2

≤ −ρk−1ρk−2 · · · ρ1 − ρk−1ρk−2 · · · ρ2 − · · · − ρk−1ρk−2 − ρk−1 − 1.

By (2.6) we have
gT
k dk

∥gk∥2 < −1, i.e., (2.16) holds.

Next we prove that (2.17) is valid for the PRP method. From Lemma 2.8 and (2.13), we

conclude that for large k, ∥βPRP
k dk−1∥ ≤ ∥gk∥

2 , which leads to

|gTk dk| = |gTk (−gk + βPRP
k dk−1)| ≥ ∥gk∥2 − |βPRP

k |∥gk∥∥dk−1∥ ≥ ∥gk∥2

2
.

Then it follows that (2.17) holds.

Finally, as to the LS method, from (1.7), the Cauchy-Schwartz inequality, (2.3) and (2.6), we

obtain

gTk dk = −∥gk∥2 −
gTk (gk − gk−1)

gTk−1dk−1
gTk dk−1 ≤ −∥gk∥2 +

∥gk∥∥gk − gk−1∥
|gTk−1dk−1|

· |gTk dk−1|

≤ −∥gk∥2 +
∥gk∥∥gk − gk−1∥

|gTk−1dk−1|
· σk−1|gTk−1dk−1| = −∥gk∥2 + σk−1∥gk∥∥gk − gk−1∥

≤ −∥gk∥2 + (1 + µδ)∥gk∥∥gk − gk−1∥.
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By (2.11) we have gk − gk−1 → 0 as k → ∞, then ∥gk − gk−1∥ ≤ ∥gk∥
2(1+µδ) . Hence

gTk dk ≤ −∥gk∥2 + (1 + µδ)∥gk∥ ·
∥gk∥

2(1 + µδ)
= (−1 +

1

2
)∥gk∥2 = −1

2
∥gk∥2,

i.e., (2.17) holds.

(2) For the DY method, from (2.2) we know gTk dk−1 < 0, and under Assumption 2.3 it holds

that

0 < dTk−1(gk − gk−1) < −gTk−1dk−1,

which, together with (1.8) and (2.7), leads to

gTk dk = −∥gk∥2 +
∥gk∥2

dTk−1(gk − gk−1)
gTk dk−1 < −∥gk∥2 +

∥gk∥2

−gTk−1dk−1
gTk dk−1

≤ −∥gk∥2 +
ρk−1g

T
k−1dk−1

−gTk−1dk−1
∥gk∥2 = −(1 + ρk−1)∥gk∥2 ≤ −∥gk∥2.

This means that (2.18) holds. �

Lemma 2.10 (1) Suppose that Assumption 2.1 holds and xk is given by (1.2), (1.3) and (2.1).

Then the CD and the FR methods satisfy∑
k≥1

∥gk∥4

∥gk∥2 + ∥dk∥2
< +∞, (2.19)

and for large k (2.19) is also true for the PRP and the LS methods.

(2) Suppose that Assumption 2.3 holds and xk is given by (1.2), (1.3) and (2.1). Then the

same conclusion holds for the DY method.

Proof (2.19) is evident from Lemmas 2.7 and 2.9. �

Lemma 2.11 Suppose that Assumption 2.1 holds and xk is given by (1.2), (1.3) and (2.1).

Then for the CD method we have

∥gk∥2 + ∥dk∥2

∥gk∥4
≤ ∥gk−1∥2 + ∥dk−1∥2

∥gk−1∥4
+

Ω

∥gk∥2
, (2.20)

where Ω is a positive constant.

Proof From Lemmas 2.5, 2.6 and 2.9, we have

∥dk∥2 = ∥ − gk + βCD
k dk−1∥2 = ∥ − gk +

∥gk∥2

−gTk−1dk−1
dk−1∥2

= ∥gk∥2 +
∥gk∥4

(gTk−1dk−1)2
∥dk−1∥2 +

2∥gk∥2

gTk−1dk−1
gTk dk−1

≤ ∥gk∥2 +
∥gk∥4

(gTk−1dk−1)2
∥dk−1∥2 +

2σk−1|gTk−1dk−1|
|gTk−1dk−1|

∥gk∥2

= (1 + 2σk−1)∥gk∥2 +
∥gk∥4

(gTk−1dk−1)2
∥dk−1∥2

≤ [1 + 2(1 + µδ)]∥gk∥2 +
∥gk∥4

∥gk−1∥4
∥dk−1∥2.
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Then

∥gk∥2 + ∥dk∥2 ≤ [2 + 2(1 + µδ)]∥gk∥2 +
∥gk∥4

∥gk−1∥4
∥dk−1∥2 = 2(2 + µδ)∥gk∥2 +

∥gk∥4

∥gk−1∥4
∥dk−1∥2.

Let Ω := 2(2 + µδ). Then

∥gk∥2 + ∥dk∥2

∥gk∥4
≤ ∥dk−1∥2

∥gk−1∥4
+

Ω

∥gk∥2
≤ ∥gk−1∥2 + ∥dk−1∥2

∥gk−1∥4
+

Ω

∥gk∥2
.

The proof is completed. �

Theorem 2.12 Suppose that Assumption 2.1 holds and xk is given by (1.2), (1.3) and (2.1).

Then the CD method will generate a sequence {xk} such that

lim infk→∞∥gk∥ = 0. (2.21)

Likewise, (2.21) also holds for the FR, the PRP and the LS methods under Assumption 2.1.

Proof If lim infk→∞∥gk∥ ̸= 0, then there exists γ > 0 such that ∥gk∥ ≥ γ for all k. We first

consider the CD method. From Lemma 2.11 we have

∥gk∥2 + ∥dk∥2

∥gk∥4
≤ ∥gk−1∥2 + ∥dk−1∥2

∥gk−1∥4
+

Ω

γ2
≤ ∥gk−2∥2 + ∥dk−2∥2

∥gk−2∥4
+

2Ω

γ2

≤ · · · ≤ ∥g1∥2 + ∥d1∥2

∥g1∥4
+

(k − 1)Ω

γ2
=

2

∥g1∥2
+

(k − 1)Ω

γ2
≤ kΩ− Ω+ 2

γ2
.

Let a = Ω
γ2 , b =

2
γ2 . Then

∥gk∥2+∥dk∥2

∥gk∥4 ≤ ka− a+ b, further it follows that

∥gk∥4

∥gk∥2 + ∥dk∥2
≥ 1

ka− a+ b
.

Therefore, ∑
k≥1

∥gk∥4

∥gk∥2 + ∥dk∥2
= +∞,

which is contradictory to Lemma 2.10. Then (2.21) holds and the proof for the CD method is

completed.

Next is for the FR method. From Lemma 2.8, Remark 2.2 and (2.16), we have

(gTk dk)
2

∥gk∥2(∥gk∥2 + ∥dk∥2)
>

∥gk∥2

∥gk∥2 + ∥dk∥2
.

Combining ∥gk∥ ≥ γ, then there exists ϵ > 0 such that

(gTk dk)
2

∥gk∥2(∥gk∥2 + ∥dk∥2)
≥ ϵ,

i.e.,∑
k≥1

(gTk dk)
2

∥gk∥2 + ∥dk∥2
=

∑
k≥1

∥gk∥2 ·
(gTk dk)

2

∥gk∥2(∥gk∥2 + ∥dk∥2)
≥ ϵ

∑
k≥1

∥gk∥2 ≥ ϵ
∑
k≥1

γ2 = +∞. (2.22)

This contradicts Lemma 2.7. Hence the proof for the FR method is completed.

The proofs of the PRP and the LS methods are similar to that of the FR method, and are

omitted here.
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Hence the whole proof is completed. �

Theorem 2.13 Suppose that Assumption 2.3 holds and xk is given by (1.2), (1.3) and (2.1).

Then the DY method will generate a sequence {xk} such that (2.21) holds.

Proof By βDY
k = ∥gk∥2

dT
k−1(gk−gk−1)

=
gT
k dk

gT
k−1dk−1

, we have

∥gk∥2 + ∥dk∥2 + 2gTk dk = (βDY
k )2∥dk−1∥2 =

(gTk dk)
2

(gTk−1dk−1)2
∥dk−1∥2. (2.23)

Then
∥gk∥2 + ∥dk∥2

(gTk dk)
2

+
2

gTk dk
=

∥dk−1∥2

(gTk−1dk−1)2
≤ ∥gk−1∥2 + ∥dk−1∥2

(gTk−1dk−1)2
.

Let wk = ∥gk∥2+∥dk∥2

(gT
k dk)2

, then wk ≤ wk−1 − 2
gT
k dk

. From Lemma 2.9, −gTk dk ≥ ∥gk∥2, i.e., 1
−gT

k dk
≤

1
∥gk∥2 . Thus we get

wk ≤ wk−1 +
2

∥gk∥2
.

Further we have

wk ≤ wk−1 +
2

∥gk∥2
≤ wk−2 +

2

∥gk−1∥2
+

2

∥gk∥2

≤ wk−3 +
2

∥gk−2∥2
+

2

∥gk−1∥2
+

2

∥gk∥2

≤ w1 +
2

∥g2∥2
+

2

∥g3∥2
+ · · ·+ 2

∥gk−1∥2
+

2

∥gk∥2
.

Note w1 = ∥g1∥2+∥d1∥2

∥g1∥4 = 2
∥g1∥2 , then

wk ≤
k∑

i=1

2

∥gi∥2
.

From ∥gk∥ ≥ γ we have

wk ≤
k∑

i=1

2

γ2
=

2k

γ2
,

that is 1
wk

≥ γ2

2k . Then
(gT

k dk)
2

∥gk∥2+∥dk∥2 ≥ γ2

2k , thus∑
k≥1

(gTk dk)
2

∥gk∥2 + ∥dk∥2
≥ γ2

2

∑
k≥1

1

k
= +∞,

which contradicts Lemma 2.10. Therefore (2.21) holds. �

3. Final remarks

The new steplength formula for αk in this paper guarantees the global convergence of the

five well-known conjugate gradient methods, which indicates that proposing diverse forms of the

steplength formula is a feasible and meaningful topic. However, the drawback of the steplength

formula proposed here by us is that it cannot establish the global convergence of the HS conju-

gate gradient methods. Hence if one can present another steplength formula for αk, which can
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guarantee that the six well-known conjugate gradient methods are all globally convergent, then

it is a significant work. This is a topic needing to research further.
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