Point-Transitive Linear Spaces

Haiyan GUAN ${ }^{1,2}$
1. Department of Mathematics, China Three Gorges University, Hubei 443002, P. R. China;
2. Three Gorges Mathematical Research Center, Hubei 443002, P. R. China

Abstract

This work is a contribution to the classification of linear spaces admitting a pointtransitive automorphism group. Let \mathcal{S} be a regular linear space with 51 points, with lines of size 6 , and G be an automorphism group of \mathcal{S}. We prove that G cannot be point-transitive.

Keywords linear space; design; automorphism group; point-transitive
MR(2010) Subject Classification 05B05; 05B25; 20B25

1. Introduction

A linear space \mathcal{S} is an incidence structure $(\mathcal{P}, \mathcal{L})$ consisting of a set \mathcal{P} of points and a collection \mathcal{L} of distinguished subsets of \mathcal{P}, called lines with sizes ≥ 2, such that any two points are incident with exactly one line. We assume that \mathcal{S} is finite in the sense that \mathcal{P} is finite. Traditionally, we define $v=|\mathcal{P}|$ and $b=|\mathcal{L}|$. Let α be a point of \mathcal{P}, and k be a positive integer. Then r_{α}^{k} denotes the number of lines having size k through α, b^{k} the number of lines of size k, and r_{α} the number of all lines through α, called the degree of α. If all lines have a constant size k, then we say that \mathcal{S} is regular, so it is a $2-(v, k, 1)$ design. Moreover, a regular linear space is said to be non-trivial if it has at least two lines and every line contains at least three points.

An automorphism of \mathcal{S} is a permutation acting on \mathcal{P} which leaves \mathcal{L} invariant. The full automorphism group of \mathcal{S} is denoted by $\operatorname{Aut}(\mathcal{S})$ and any subgroup of $\operatorname{Aut}(\mathcal{S})$ is called an automorphism group of \mathcal{S}. If $G \leq \operatorname{Aut}(\mathcal{S})$ is transitive on \mathcal{P} (resp., \mathcal{L}), then we say that G is point-transitive (resp., line-transitive). Similarly, G is said to be point-primitive (resp., pointimprimitive) if it acts primitively (resp., imprimitively) on points.

Several papers have already been devoted to the existence of the $2-(v, k, 1)$ designs. In particular, existence results for $k<6$ are known, and the existence for certain $2-(v, 6,1)$ designs are proven. A summary of these results was given in [1]. According to [2, 3], there are only a finite number of $2-(v, 6,1)$ designs which need to be considered before all existence of $2-(v, 6,1)$ designs can be proven. In fact, the existence of the $2-(v, 6,1)$ designs is unknown if and only if $v \in$ $\{51,61,81,166,226,231,256,261,286,316,321,346,351,376,406,411,436,441,471,501,561,591$, $616,646,651,676,771,796,801\}$. Provided that \mathcal{S} is a $2-(51,6,1)$ design admitting a line-tansitive automorphism group G. Since the alternating group A_{51} is the only primitive group of degree

[^0]51 (see [4, Table B.4]), G cannot be point-primitive by [5, Main Theorem]. Moreover, we also know that G cannot be point-imprimitive according to [6]. So no line-transitive 2-(51, 6,1$)$ design exists. In this paper, we consider the $2-(51,6,1)$ designs admitting a point-transitive automorphism group, and the following is the main result.

Theorem 1.1 Let \mathcal{S} be a $2-(51,6,1)$ design. If G is an automorphism group of \mathcal{S}, then G cannot be point-transitive. That is to say: there is no point-transitive 2-(51, 6,1$)$ design.

The paper divides naturally into four parts. Section 2 presents some preliminary results and notation. Section 3 does a detailed analysis of bound of the size of $|\operatorname{Aut}(\mathcal{S})|$. Finally, Section 4 gives the proof of Theorem 1.1.

2. Preliminary results and notation

Let \mathcal{S} be a finite linear space with v points, K be a set of positive integers such that $v \geq k$ for every $k \in K$ and the set of line-sizes of \mathcal{S} is contained in K. Let α be a point of \mathcal{P}. Then

$$
\begin{equation*}
\sum_{k \in K}(k-1) r_{\alpha}^{k}=v-1 \tag{2.1}
\end{equation*}
$$

and for each $k \in K$, we have

$$
\begin{equation*}
\sum_{\alpha \in \mathcal{P}} r_{\alpha}^{k}=k \cdot b^{k} \tag{2.2}
\end{equation*}
$$

In particular, if \mathcal{S} is a non-trivial finite regular linear space, then the following result is well-known.

Lemma 2.1 ([5, Lemma 2.1]) Let \mathcal{S} be a non-trivial finite regular linear space. Then

$$
r=\frac{v-1}{k-1}, \quad b=\frac{v(v-1)}{k(k-1)}
$$

and

$$
k(k-1)+1 \leq v
$$

where k is the line-size of \mathcal{S}, and r is the number of lines through a point.
Let $\mathcal{S}=(\mathcal{P}, \mathcal{L})$ be a linear space and $G \leq \operatorname{Aut}(\mathcal{S}), \Delta$ be a subset of \mathcal{P} with $|\Delta| \geq 2$, and set $\mathcal{L}_{\Delta}=\{\lambda \cap \Delta:|\lambda \cap \Delta| \geq 2$ for $\lambda \in \mathcal{L}\}$. Then $\left(\Delta, \mathcal{L}_{\Delta}\right)$ forms an incidence structure, and the induced structure is a linear space. We are interested in the case when Δ is $\operatorname{Fix}(g)$ (or $\operatorname{Fix}(H)$), the set of fixed points of $g \in G$ (or $H \leq G$) on \mathcal{P}. The following result gives a bound of $|\operatorname{Fix}(H)|$ for a subgroup $H \leq G$.

Lemma 2.2 ([7, Lemma 1]) Let \mathcal{S} be a finite regular linear space, G be an automorphism group of \mathcal{S}, and $H \neq 1$ be a subgroup of G. Then $|\operatorname{Fix}(H)| \leq r$ unless every point lies on a fixed line and then $|\operatorname{Fix}(H)| \leq r+k-3$.

The next Lemma comes from [8], and will be of great help for our proof of Theorem 1.1.

Lemma 2.3 If \mathcal{S} is a linear space having lines of size 3 and 6 (with at least one line of size 3 and one line of size 6). Then $v=16$ or 18 , provided that $v<21$.

Throughout this paper, we assume that $\mathcal{S}=(\mathcal{P}, \mathcal{L})$ is a $2-(51,6,1)$ design, and G is a pointtransitive subgroup of $\operatorname{Aut}(\mathcal{S})$. Let $|G|_{p}$ be the p-part of $|G|$, that is, the highest power of the prime p dividing $|G|$.

3. The order of $|\operatorname{Aut}(\mathcal{S})|$

In this section we bound the size of $|\operatorname{Aut}(\mathcal{S})|$ and show that $|\operatorname{Aut}(\mathcal{S})|$ divides $2^{7} \cdot 3^{4} \cdot 5^{3} \cdot 17$.
Lemma 3.1 $|\operatorname{Aut}(\mathcal{S})|$ divides $2^{m} \cdot 3^{n} \cdot 5^{3} \cdot 17$ for two positive integers m and n.
Proof Let $p \geq 5$ be a prime divisor of $|\operatorname{Aut}(\mathcal{S})|$, and g be an element of $\operatorname{Aut}(\mathcal{S})$ of order p. Then $|\operatorname{Fix}(g) \cap \lambda|=0,1$ or 6 for $\lambda \in \mathcal{L}$.

Suppose that $\operatorname{Fix}(g) \nsubseteq \lambda$ for each $\lambda \in \mathcal{L}$, then $\operatorname{Fix}(g)$ induces a regular linear space, that is a $2-(|\operatorname{Fix}(g)|, 6,1)$ design. Thus $|\operatorname{Fix}(g)| \geq 6(6-1)+1=31$ by Lemma 2.1. But $|\operatorname{Fix}(g)| \leq$ $6+10-3=13$ according to Lemma 2.2, a contradiction. Hence there exists a line $\lambda \in \mathcal{L}$ such that $\operatorname{Fix}(g) \subseteq \lambda$ and $|\operatorname{Fix}(g)|=0,1$ or 6 . Therefore, the possible values of p are 5 and 17 , since $51-|\operatorname{Fix}(g)| \equiv 0(\bmod p)$. Let P be a Sylow p-subgroup of $\operatorname{Aut}(\mathcal{S})$.

If $p=5$ and $P \neq 1$, then $|\operatorname{Fix}(P)|=1$ or 6 . First we suppose that $|\operatorname{Fix}(P)|=6$, then P acts on $\mathcal{P} \backslash \operatorname{Fix}(P)$ semiregularly, hence $|P| \mid(51-6)$, thus $|P|$ divides 5 . Now suppose that $|\operatorname{Fix}(P)|=1$. If P acts semiregularly on $\mathcal{P} \backslash \operatorname{Fix}(P)$, then $|P| \mid 5^{2}$. If P is not semiregular on $\mathcal{P} \backslash \operatorname{Fix}(P)$, then there exists a point $\alpha \in \mathcal{P} \backslash \operatorname{Fix}(P)$ such that $P_{\alpha} \neq 1$, thus $\left|\operatorname{Fix}\left(P_{\alpha}\right)\right|=6$ and P_{α} is semiregular on $\mathcal{P} \backslash \operatorname{Fix}\left(P_{\alpha}\right)$, so $\left|P_{\alpha}\right|$ divides 5 and $|P|=\left|P: P_{\alpha}\right|\left|P_{\alpha}\right|$ divides 5^{3}.

If $P \neq 1$ is a Sylow 17-subgroup of $\operatorname{Aut}(\mathcal{S})$, then $|\operatorname{Fix}(P)|=0$ and P acts semiregularly on \mathcal{P}, thus $|P|$ divides 17 .

Lemma 3.2 $|\operatorname{Aut}(\mathcal{S})|_{3}$ divides 3^{4}.
Proof Let T be a Sylow 3 -subgroup of $\operatorname{Aut}(\mathcal{S})$. If $T \neq 1$, then T fixes a line $\lambda \in \mathcal{L}$. Thus $T / T_{(\lambda)} \leq S_{6}$ and then $\left|T: T_{(\lambda)}\right|$ divides 3^{2}. Now we suppose that $T_{(\lambda)} \neq 1$.

If $\left|\operatorname{Fix}\left(T_{(\lambda)}\right)\right| \neq 6$, then $T_{(\lambda)}$ is a point-set of a linear space. If the induced linear space is regular, then $\left|\operatorname{Fix}\left(T_{(\lambda)}\right)\right| \geq 31$ by Lemma 2.1, a contradiction to Lemma 2.2. Thus the induced linear space is not regular and at least has one line of size 6 and one of size 3 , but it is impossible by Lemma 2.3.

Therefore, $\left|\operatorname{Fix}\left(T_{(\lambda)}\right)\right|=6$ and $T_{(\lambda)}$ acts semiregularly on $\mathcal{P} \backslash \operatorname{Fix}\left(T_{(\lambda)}\right)$. Otherwise, there is another point $\beta \notin \lambda$ such that $T_{(\lambda \cup\{\beta\})} \neq 1$, then $\left|\operatorname{Fix}\left(T_{(\lambda \cup\{\beta\})}\right)\right|>6$ and $\operatorname{Fix}\left(T_{(\lambda \cup\{\beta\})}\right)$ induces a linear space. If the induced linear space is regular, then $\left|\operatorname{Fix}\left(T_{(\lambda \cup\{\beta\})}\right)\right| \geq 31$ by Lemma 2.1, a contradiction to Lemma 2.2. Thus the induced linear space is not regular and at least has one line of size 6 and one of size 3 , but it is impossible by Lemma 2.3. So $\left|T_{(\lambda)}\right| \mid(51-6)$ and $|T|$ divides $3^{2} \cdot 3^{2}$.

In the rest of this section, the paper deals with the maximal size of the 2-part of $|\operatorname{Aut}(\mathcal{S})|$.

Some information about the linear spaces in [8] is given. Assume that $2||\operatorname{Aut}(\mathcal{S})|$ and T is 2-subgroup of $\operatorname{Aut}(\mathcal{S})$. Let $\mathcal{D}=\left(\operatorname{Fix}(T), \mathcal{L}_{\operatorname{Fix}(T)}\right)$ be the linear space induced by $\operatorname{Fix}(T)$ and then $K=\{2,4,6\}$ containing the set of its line-sizes. In view of (2.1), we get

$$
\begin{equation*}
r_{\alpha}^{2}+3 r_{\alpha}^{4}+5 r_{\alpha}^{6}=|\operatorname{Fix}(T)|-1 \tag{3.1}
\end{equation*}
$$

for each $\alpha \in \operatorname{Fix}(T)$. Since a non-fixed point of T cannot be on two distinct fixed lines of it, all the non-fixed points of T which lie on its fixed lines are distinct. Thus

$$
\begin{equation*}
4 b^{2}+2 b^{4} \leq 51-|\operatorname{Fix}(T)| \tag{3.2}
\end{equation*}
$$

Combining (2.2) with (3.2), we obtain

$$
\begin{equation*}
2 \sum_{\alpha \in \operatorname{Fix}(T)} r_{\alpha}^{2}+\frac{1}{2} \sum_{\alpha \in \operatorname{Fix}(T)} r_{\alpha}^{4} \leq 51-|\operatorname{Fix}(T)| \tag{3.3}
\end{equation*}
$$

Now for each point $\alpha \in \operatorname{Fix}(T)$, define the weight ([8]) $\omega(\alpha)$ of α

$$
\omega(\alpha)=2 r_{\alpha}^{2}+\frac{1}{2} r_{\alpha}^{4}
$$

So that (3.3) can be written as

$$
\begin{equation*}
\sum_{\alpha \in \operatorname{Fix}(T)} \omega(\alpha) \leq 51-|\operatorname{Fix}(T)| \tag{3.4}
\end{equation*}
$$

$$
\text { If } r_{\alpha}^{2}=x, r_{\alpha}^{4}=y \text { and } r_{\alpha}^{6}=z \text {, then we say that } \alpha \text { is of type }(x, y, z)
$$

Lemma 3.3 $|\operatorname{Aut}(\mathcal{S})|_{2}$ divides 2^{7}.
Proof Let $T \in \operatorname{Syl}_{2}(\operatorname{Aut}(\mathcal{S}))$. If $T \neq 1$, then T fixes a line $\lambda \in \mathcal{L}$. If $T_{(\lambda)} \neq 1$, then $\left|\operatorname{Fix}\left(T_{(\lambda)}\right)\right| \geq 7$ since $\left|\operatorname{Fix}\left(T_{(\lambda)}\right)\right| \equiv 1(\bmod 2)$. Let $S=T_{(\lambda)}$ and $\beta \notin \lambda$ be a fixed point of S. Then S fixes λ_{1}, where λ_{1} is a line through β such that $\lambda \cap \lambda_{1} \neq \emptyset$. Let $\lambda \cap \lambda_{1}=\{\alpha\}$. If $S_{\left(\lambda_{1}\right)} \neq 1$, then $\left|\operatorname{Fix}\left(S_{\left(\lambda_{1}\right)}\right)\right|=11$ or 13 by Lemma 2.2 and $\operatorname{Fix}\left(S_{\left(\lambda_{1}\right)}\right)$ induces a linear space with line-sizes form $K=\{2,4,6\}$ 。

Suppose first that $\left|\operatorname{Fix}\left(S_{\left(\lambda_{1}\right)}\right)\right|=11$, then $\operatorname{Fix}\left(S_{\left(\lambda_{1}\right)}\right)=\lambda \cup \lambda_{1}$. The type of α is $(0,0,2)$, and the types of other points of $\operatorname{Fix}\left(S_{\left(\lambda_{1}\right)}\right)$ are $(5,0,1)$. Thus

$$
\sum_{\delta \in \operatorname{Fix}\left(S_{\left(\lambda_{1}\right)}\right)} \omega(\delta)=0+10 \times 10=100
$$

a contradiction to inequation (3.4).
Now Suppose that $\left|\operatorname{Fix}\left(S_{\left(\lambda_{1}\right)}\right)\right|=13$, and β_{1}, β_{2} are the two fixed points which lie on neither λ nor λ_{1}. Then $r_{\beta_{i}}^{4} \leq 1$ and $r_{\beta_{i}}^{6}=0$ for $i=1,2$. Thus $\omega\left(\beta_{i}\right)=24$ or $18+\frac{1}{2}$. Moreover we have $\omega(\alpha)=4$. Hence

$$
\sum_{\delta \in \operatorname{Fix}\left(S_{\left(\lambda_{1}\right)}\right)} \omega(\delta) \geq \omega(\alpha)+\omega\left(\beta_{1}\right)+\omega\left(\beta_{2}\right) \geq 41
$$

which is impossible by inequation (3.4).
Therefore, $S_{\left(\lambda_{1}\right)}=1$ and $T_{(\lambda)}$ acts faithfully on $\lambda_{1} \backslash\{\alpha, \beta\}$. So $T_{(\lambda)} \leq S_{4}$ and then $|T|$ divides 2^{7} since $T / T_{(\lambda)} \leq S_{6}$.

4. Proof of Theorem 1.1

According to Lemmas $3.1-3.3$, we get $|\operatorname{Aut}(\mathcal{S})|$ divides $2^{7} \cdot 3^{4} \cdot 5^{3} \cdot 17$. In this section, we will prove that there is no point-transitive $2-(51,6,1)$ design.

Lemma 4.1 G cannot be isomorphic to Z_{51}.
Proof Suppose otherwise that $G=\langle g\rangle \cong Z_{51}$. Then G is regular on \mathcal{P}. Thus we can identify the point set \mathcal{P} with G and the elements of G act by multiplication. Since \mathcal{S} has 85 lines and $\left|\lambda^{G}\right|=17$ or 51 for $\lambda \in \mathcal{L}$, then there at least exists one orbit λ^{G} such that $\left|\lambda^{G}\right|=17$. Then $\lambda^{g^{17}}=\lambda$ and then λ is a union of two orbits of $\left\langle g^{17}\right\rangle$ on \mathcal{P}. Let $\left\{g^{i}, g^{i+17}, g^{i+34}\right\}$ and $\left\{g^{j}, g^{j+17}, g^{j+34}\right\}$ be two orbits such that

$$
\lambda=\left\{g^{i}, g^{i+17}, g^{i+34}\right\} \cup\left\{g^{j}, g^{j+17}, g^{j+34}\right\}
$$

where $1 \leq i<j \leq 51$. Then

$$
\lambda^{g^{j-i}}=\left\{g^{2 j-i}, g^{2 j-i+17}, g^{2 j-i+34}\right\} \cup\left\{g^{j}, g^{j+17}, g^{j+34}\right\}
$$

hence $g^{j-i} \in G_{\lambda}$, thus $17 \mid(j-i)$. It implies that

$$
\left\{g^{i}, g^{i+17}, g^{i+34}\right\}=\left\{g^{j}, g^{j+17}, g^{j+34}\right\}
$$

which is impossible. Therefore, G cannot be isomorphic to Z_{51}.
Lemma 4.2 Assume that N is a minimal normal subgroup of G. Then $N \cong \operatorname{PSL}(2,16)$.
Proof $N \unlhd G$ and G is point-transitive, N is $\frac{1}{2}$-transitive on \mathcal{P}, and the common length of orbits is 3,17 or 51 . Let $N \cong T^{\ell}$ be a direct product of $\ell \geq 1$ copies of simple groups T.

If N is elementary, then $N \cong Z_{3}^{\ell}(1 \leq \ell \leq 4)$ or $N \cong Z_{17}$. For the former case, we have $G / C_{G}(N) \leq G L(\ell, 3)$. But for $\ell=1,2,3$ and $4,17 \nmid|G L(\ell, 3)|$, thus $\left|C_{G}(N)\right|$ must be divisible by 17 and $C_{G}(N)$ is transitive on \mathcal{P}. Choose $g \in C_{G}(N)$ and $t \in N$ such that the order of g is 17 and the order of t is 3 , then $\langle g, t\rangle \cong Z_{51}$ is transitive on \mathcal{P}, which is impossible by Lemma 4.1. For the later case, we have $G / C_{G}(N) \leq Z_{16}$ and similar discussion implies that there also exists a point-transitive subgroup of G which is isomorphic to Z_{51}, a contradiction.

Now suppose that T is a non-abelian simple group. If the length of orbits is 3 , then N does not have an element g of order 5 or 17 , otherwise $\operatorname{Fix}(g)=\mathcal{P}$. Thus $|N|$ divides $2^{7} \cdot 3^{4}$, this implies that N is solvable, which is impossible. Hence, the common length of orbits of N on \mathcal{P} is 17 or 51 , and then $|T|$ is divisible by 17 . Therefore, $N=T$. Using the list of non-abelian simple groups, it is easy to check that $N \cong \operatorname{PSL}(2,16)$ or $\operatorname{PSL}(2,17)$, for 17 divides $|N|$ and $|N|$ divides $2^{7} \cdot 3^{7} \cdot 5^{3} \cdot 17$. According to [9, Theorem 8.27, Chapter II], PSL $(2,17)$ has no subgroup of index 17 and 51. Therefore, $N \cong \operatorname{PSL}(2,16)$.

Proof of Theorem 1.1 According to Lemma 4.2, if N is a minimal normal subgroup of G, then $N \cong \operatorname{PSL}(2,16)$ and the common length of orbits of N on \mathcal{P} is 17 or 51 . Now suppose that the common length is 17 , then N acting on each orbit is permutation isomorphic to $\operatorname{PSL}(2,16)$
acting on projective lines, and N is 3 -transitive on Δ_{i} for $i=1,2$ and 3 , where Δ_{i} is an orbit of N on points. Let $g \in N$ be of order $2, \alpha_{i}$ be the only one fixed point of g on $\Delta_{i}(i=1,2)$, and λ be the unique line through α_{1} and α_{2}. Then g fixes the line λ, hence λ is a union of orbits of g. Let $\Sigma=\left\{\beta_{1}, \beta_{2}\right\} \subset \lambda$ be an orbit of g. If $\Sigma \subset \Delta_{1}$, then for any other point $\gamma \in \Delta_{1}$, there exists an element $\tau \in N$ such that $\left\{\alpha_{1}, \beta_{1}, \beta_{2}\right\}^{\tau}=\left\{\gamma, \beta_{1}, \beta_{2}\right\}$, a contradiction. Similar discussion for $\Sigma \subset \Delta_{2}$. So $\lambda \backslash\left\{\alpha_{1}, \alpha_{2}\right\} \subset \Delta_{3}$, which is also impossible for N is 3-transitive on Δ_{3}. Therefore, $N \cong \operatorname{PSL}(2,16)$ is point-transitive.

According to [9, Theorem 8.27, Chapter II], PSL $(2,16)$ has only one conjugacy class of groups of order 80. By MAGMA [10], the permutation representation of $\operatorname{PSL}(2,16)$ on \mathcal{P} can be obtained, and we also get the subdegrees of $\operatorname{PSL}(2,16)$ on \mathcal{P}, that is $1,1,1,16,16$ and 16 .

Let $N=\operatorname{PSL}(2,16), \alpha \in \mathcal{P}$, and $\beta \neq \alpha$ be one point fixed by N_{α}. Let λ be the unique line through α and β. Then $\lambda^{N_{\alpha}}=\lambda$. Thus λ is a union of orbits of N_{α}, which is impossible. Therefore, G cannot be point-transitive.

Acknowledgements We thank the referees and the editors for their careful reading and helpful suggestions.

References

[1] C. J. COLBOURN, J. H. DINITZD. Handbook of Combinatorial Designs (2nd edition). CRC Press, Boca Raton, FL, 2006.
[2] R. J. R. ABELL, W. H. MILLS. Some new BIBDs with $k=6$ and $\lambda=1$. J. Combin. Des., 1995, 3(5): 381-391.
[3] I. BLUSKOV, M. GREIG, J. DE HEER. Pair covering and other designs with block size 6. J. Combin. Des., 2007, 15(6): 511-533.
[4] J. D. DIXON, B. MORTIMER. Permutation Groups. Springer-Verlag, New York, 1996.
[5] A. R. CAMINA, P. M. NEUMANN, C. E. PRAEGER. Alternating groups acting on finite linear spaces. Proc. London Math. Soc. (3), 2003, 87(1): 29-53.
[6] A. R. CAMINA, S. MISCHKE. Line-transitive automorphism groups of linear spaces. Electron. J. Combin., 1996, 3(1): 1-16.
[7] A. R. CAMINA, J. SIEMONS. Block transitive automorphism groups of 2- $(v, k, 1)$ block designs. J. Combin. Theory Ser. A, 1989, 51(2): 268-276.
[8] A. R. CAMINA, L. DI MARTINO. The group of automorphisms of a transitive 2-(91, 6, 1) design. Geom. Dedicata, 1989, 31(2): 151-164.
[9] B. HUPPER. Endliche Gruppen I. Springer, Berlin, 1967.
[10] W. BOSMA, J. CANNON, C. PLAYOUST. The Magma algebra system I: The user language. J. Symbolic Comput., 1997, 24: 235-265.

[^0]: Received January 27, 2018; Accepted July 17, 2018
 Supported by the National Natural Science Foundation of China (Grant Nos. 11801311; 11626141).
 E-mail address: ghyan928@ctgu.edu.cn

