Journal of Mathematical Research with Applications Nov., 2018, Vol. 38, No. 6, pp. 551–556 DOI:10.3770/j.issn:2095-2651.2018.06.001 Http://jmre.dlut.edu.cn

Point-Transitive Linear Spaces

Haiyan GUAN^{1,2}

1. Department of Mathematics, China Three Gorges University, Hubei 443002, P. R. China;

2. Three Gorges Mathematical Research Center, Hubei 443002, P. R. China

Abstract This work is a contribution to the classification of linear spaces admitting a point-transitive automorphism group. Let S be a regular linear space with 51 points, with lines of size 6, and G be an automorphism group of S. We prove that G cannot be point-transitive.

Keywords linear space; design; automorphism group; point-transitive

MR(2010) Subject Classification 05B05; 05B25; 20B25

1. Introduction

A linear space S is an incidence structure $(\mathcal{P}, \mathcal{L})$ consisting of a set \mathcal{P} of points and a collection \mathcal{L} of distinguished subsets of \mathcal{P} , called lines with sizes ≥ 2 , such that any two points are incident with exactly one line. We assume that S is finite in the sense that \mathcal{P} is finite. Traditionally, we define $v = |\mathcal{P}|$ and $b = |\mathcal{L}|$. Let α be a point of \mathcal{P} , and k be a positive integer. Then r_{α}^{k} denotes the number of lines having size k through α , b^{k} the number of lines of size k, and r_{α} the number of all lines through α , called the degree of α . If all lines have a constant size k, then we say that S is regular, so it is a 2-(v, k, 1) design. Moreover, a regular linear space is said to be non-trivial if it has at least two lines and every line contains at least three points.

An automorphism of S is a permutation acting on \mathcal{P} which leaves \mathcal{L} invariant. The full automorphism group of S is denoted by $\operatorname{Aut}(S)$ and any subgroup of $\operatorname{Aut}(S)$ is called an automorphism group of S. If $G \leq \operatorname{Aut}(S)$ is transitive on \mathcal{P} (resp., \mathcal{L}), then we say that G is point-transitive (resp., line-transitive). Similarly, G is said to be point-primitive (resp., pointimprimitive) if it acts primitively (resp., imprimitively) on points.

Several papers have already been devoted to the existence of the 2-(v, k, 1) designs. In particular, existence results for k < 6 are known, and the existence for certain 2-(v, 6, 1) designs are proven. A summary of these results was given in [1]. According to [2, 3], there are only a finite number of 2-(v, 6, 1) designs which need to be considered before all existence of 2-(v, 6, 1)designs can be proven. In fact, the existence of the 2-(v, 6, 1) designs is unknown if and only if $v \in$ {51, 61, 81, 166, 226, 231, 256, 261, 286, 316, 321, 346, 351, 376, 406, 411, 436, 441, 471, 501, 561, 591, 616, 646, 651, 676, 771, 796, 801}. Provided that S is a 2-(51, 6, 1) design admitting a line-tansitive automorphism group G. Since the alternating group A_{51} is the only primitive group of degree

Received January 27, 2018; Accepted July 17, 2018

E-mail address: ghyan928@ctgu.edu.cn

Supported by the National Natural Science Foundation of China (Grant Nos. 11801311; 11626141).

51 (see [4, Table B.4]), G cannot be point-primitive by [5, Main Theorem]. Moreover, we also know that G cannot be point-imprimitive according to [6]. So no line-transitive 2-(51, 6, 1) design exists. In this paper, we consider the 2-(51, 6, 1) designs admitting a point-transitive automorphism group, and the following is the main result.

Theorem 1.1 Let S be a 2-(51, 6, 1) design. If G is an automorphism group of S, then G cannot be point-transitive. That is to say: there is no point-transitive 2-(51, 6, 1) design.

The paper divides naturally into four parts. Section 2 presents some preliminary results and notation. Section 3 does a detailed analysis of bound of the size of $|\operatorname{Aut}(S)|$. Finally, Section 4 gives the proof of Theorem 1.1.

2. Preliminary results and notation

Let S be a finite linear space with v points, K be a set of positive integers such that $v \ge k$ for every $k \in K$ and the set of line-sizes of S is contained in K. Let α be a point of \mathcal{P} . Then

$$\sum_{k \in K} (k-1) r_{\alpha}^{k} = v - 1$$
(2.1)

and for each $k \in K$, we have

$$\sum_{\alpha \in \mathcal{P}} r_{\alpha}^{k} = k \cdot b^{k}.$$
(2.2)

In particular, if S is a non-trivial finite regular linear space, then the following result is well-known.

Lemma 2.1 ([5, Lemma 2.1]) Let S be a non-trivial finite regular linear space. Then

$$r = \frac{v-1}{k-1}, \ b = \frac{v(v-1)}{k(k-1)},$$

and

$$k(k-1) + 1 \le v,$$

where k is the line-size of S, and r is the number of lines through a point.

Let $S = (\mathcal{P}, \mathcal{L})$ be a linear space and $G \leq \operatorname{Aut}(S)$, Δ be a subset of \mathcal{P} with $|\Delta| \geq 2$, and set $\mathcal{L}_{\Delta} = \{\lambda \cap \Delta : |\lambda \cap \Delta| \geq 2 \text{ for } \lambda \in \mathcal{L}\}$. Then $(\Delta, \mathcal{L}_{\Delta})$ forms an incidence structure, and the induced structure is a linear space. We are interested in the case when Δ is $\operatorname{Fix}(g)$ (or $\operatorname{Fix}(H)$), the set of fixed points of $g \in G$ (or $H \leq G$) on \mathcal{P} . The following result gives a bound of $|\operatorname{Fix}(H)|$ for a subgroup $H \leq G$.

Lemma 2.2 ([7, Lemma 1]) Let S be a finite regular linear space, G be an automorphism group of S, and $H \neq 1$ be a subgroup of G. Then $|Fix(H)| \leq r$ unless every point lies on a fixed line and then $|Fix(H)| \leq r + k - 3$.

The next Lemma comes from [8], and will be of great help for our proof of Theorem 1.1.

Lemma 2.3 If S is a linear space having lines of size 3 and 6 (with at least one line of size 3 and one line of size 6). Then v = 16 or 18, provided that v < 21.

Throughout this paper, we assume that $S = (\mathcal{P}, \mathcal{L})$ is a 2-(51, 6, 1) design, and G is a pointtransitive subgroup of Aut(S). Let $|G|_p$ be the *p*-part of |G|, that is, the highest power of the prime *p* dividing |G|.

3. The order of $|\operatorname{Aut}(\mathcal{S})|$

In this section we bound the size of $|\operatorname{Aut}(\mathcal{S})|$ and show that $|\operatorname{Aut}(\mathcal{S})|$ divides $2^7 \cdot 3^4 \cdot 5^3 \cdot 17$.

Lemma 3.1 |Aut(S)| divides $2^m \cdot 3^n \cdot 5^3 \cdot 17$ for two positive integers m and n.

Proof Let $p \ge 5$ be a prime divisor of $|\operatorname{Aut}(S)|$, and g be an element of $\operatorname{Aut}(S)$ of order p. Then $|\operatorname{Fix}(g) \cap \lambda| = 0, 1$ or 6 for $\lambda \in \mathcal{L}$.

Suppose that $\operatorname{Fix}(g) \not\subseteq \lambda$ for each $\lambda \in \mathcal{L}$, then $\operatorname{Fix}(g)$ induces a regular linear space, that is a 2-($|\operatorname{Fix}(g)|, 6, 1$) design. Thus $|\operatorname{Fix}(g)| \ge 6(6-1) + 1 = 31$ by Lemma 2.1. But $|\operatorname{Fix}(g)| \le 6 + 10 - 3 = 13$ according to Lemma 2.2, a contradiction. Hence there exists a line $\lambda \in \mathcal{L}$ such that $\operatorname{Fix}(g) \subseteq \lambda$ and $|\operatorname{Fix}(g)| = 0, 1$ or 6. Therefore, the possible values of p are 5 and 17, since $51 - |\operatorname{Fix}(g)| \equiv 0 \pmod{p}$. Let P be a Sylow p-subgroup of $\operatorname{Aut}(\mathcal{S})$.

If p = 5 and $P \neq 1$, then $|\operatorname{Fix}(P)| = 1$ or 6. First we suppose that $|\operatorname{Fix}(P)| = 6$, then P acts on $\mathcal{P}\setminus\operatorname{Fix}(P)$ semiregularly, hence $|P| \mid (51-6)$, thus |P| divides 5. Now suppose that $|\operatorname{Fix}(P)| = 1$. If P acts semiregularly on $\mathcal{P}\setminus\operatorname{Fix}(P)$, then $|P| \mid 5^2$. If P is not semiregular on $\mathcal{P}\setminus\operatorname{Fix}(P)$, then there exists a point $\alpha \in \mathcal{P}\setminus\operatorname{Fix}(P)$ such that $P_{\alpha} \neq 1$, thus $|\operatorname{Fix}(P_{\alpha})| = 6$ and P_{α} is semiregular on $\mathcal{P}\setminus\operatorname{Fix}(P_{\alpha})$, so $|P_{\alpha}|$ divides 5 and $|P| = |P : P_{\alpha}||P_{\alpha}|$ divides 5^3 .

If $P \neq 1$ is a Sylow 17-subgroup of Aut(S), then |Fix(P)| = 0 and P acts semiregularly on \mathcal{P} , thus |P| divides 17. \Box

Lemma 3.2 $|\operatorname{Aut}(\mathcal{S})|_3$ divides 3^4 .

Proof Let T be a Sylow 3-subgroup of Aut(S). If $T \neq 1$, then T fixes a line $\lambda \in \mathcal{L}$. Thus $T/T_{(\lambda)} \leq S_6$ and then $|T:T_{(\lambda)}|$ divides 3². Now we suppose that $T_{(\lambda)} \neq 1$.

If $|\operatorname{Fix}(T_{(\lambda)})| \neq 6$, then $T_{(\lambda)}$ is a point-set of a linear space. If the induced linear space is regular, then $|\operatorname{Fix}(T_{(\lambda)})| \geq 31$ by Lemma 2.1, a contradiction to Lemma 2.2. Thus the induced linear space is not regular and at least has one line of size 6 and one of size 3, but it is impossible by Lemma 2.3.

Therefore, $|\operatorname{Fix}(T_{(\lambda)})| = 6$ and $T_{(\lambda)}$ acts semiregularly on $\mathcal{P} \setminus \operatorname{Fix}(T_{(\lambda)})$. Otherwise, there is another point $\beta \notin \lambda$ such that $T_{(\lambda \cup \{\beta\})} \neq 1$, then $|\operatorname{Fix}(T_{(\lambda \cup \{\beta\})})| > 6$ and $\operatorname{Fix}(T_{(\lambda \cup \{\beta\})})$ induces a linear space. If the induced linear space is regular, then $|\operatorname{Fix}(T_{(\lambda \cup \{\beta\})})| \ge 31$ by Lemma 2.1, a contradiction to Lemma 2.2. Thus the induced linear space is not regular and at least has one line of size 6 and one of size 3, but it is impossible by Lemma 2.3. So $|T_{(\lambda)}| \mid (51 - 6)$ and |T|divides $3^2 \cdot 3^2$. \Box

In the rest of this section, the paper deals with the maximal size of the 2-part of $|\operatorname{Aut}(\mathcal{S})|$.

Some information about the linear spaces in [8] is given. Assume that $2 \mid |\operatorname{Aut}(S)|$ and T is 2-subgroup of $\operatorname{Aut}(S)$. Let $\mathcal{D} = (\operatorname{Fix}(T), \mathcal{L}_{\operatorname{Fix}(T)})$ be the linear space induced by $\operatorname{Fix}(T)$ and then $K = \{2, 4, 6\}$ containing the set of its line-sizes. In view of (2.1), we get

$$r_{\alpha}^{2} + 3r_{\alpha}^{4} + 5r_{\alpha}^{6} = |\text{Fix}(T)| - 1, \qquad (3.1)$$

for each $\alpha \in Fix(T)$. Since a non-fixed point of T cannot be on two distinct fixed lines of it, all the non-fixed points of T which lie on its fixed lines are distinct. Thus

$$4b^2 + 2b^4 \le 51 - |\operatorname{Fix}(T)|. \tag{3.2}$$

Combining (2.2) with (3.2), we obtain

$$2\sum_{\alpha\in\operatorname{Fix}(T)}r_{\alpha}^{2} + \frac{1}{2}\sum_{\alpha\in\operatorname{Fix}(T)}r_{\alpha}^{4} \le 51 - |\operatorname{Fix}(T)|.$$
(3.3)

Now for each point $\alpha \in Fix(T)$, define the weight ([8]) $\omega(\alpha)$ of α

$$\omega(\alpha) = 2r_{\alpha}^2 + \frac{1}{2}r_{\alpha}^4.$$

So that (3.3) can be written as

$$\sum_{\alpha \in \operatorname{Fix}(T)} \omega(\alpha) \le 51 - |\operatorname{Fix}(T)|.$$
(3.4)

If $r_{\alpha}^2 = x, r_{\alpha}^4 = y$ and $r_{\alpha}^6 = z$, then we say that α is of type (x, y, z).

Lemma 3.3 $|\operatorname{Aut}(\mathcal{S})|_2$ divides 2^7 .

Proof Let $T \in \text{Syl}_2(\text{Aut}(S))$. If $T \neq 1$, then T fixes a line $\lambda \in \mathcal{L}$. If $T_{(\lambda)} \neq 1$, then $|\text{Fix}(T_{(\lambda)})| \geq 7$ since $|\text{Fix}(T_{(\lambda)})| \equiv 1 \pmod{2}$. Let $S = T_{(\lambda)}$ and $\beta \notin \lambda$ be a fixed point of S. Then S fixes λ_1 , where λ_1 is a line through β such that $\lambda \cap \lambda_1 \neq \emptyset$. Let $\lambda \cap \lambda_1 = \{\alpha\}$. If $S_{(\lambda_1)} \neq 1$, then $|\text{Fix}(S_{(\lambda_1)})| = 11$ or 13 by Lemma 2.2 and $\text{Fix}(S_{(\lambda_1)})$ induces a linear space with line-sizes form $K = \{2, 4, 6\}$.

Suppose first that $|\operatorname{Fix}(S_{(\lambda_1)})| = 11$, then $\operatorname{Fix}(S_{(\lambda_1)}) = \lambda \cup \lambda_1$. The type of α is (0, 0, 2), and the types of other points of $\operatorname{Fix}(S_{(\lambda_1)})$ are (5, 0, 1). Thus

$$\sum_{\delta \in \operatorname{Fix}(S_{(\lambda_1)})} \omega(\delta) = 0 + 10 \times 10 = 100,$$

a contradiction to inequation (3.4).

Now Suppose that $|\text{Fix}(S_{(\lambda_1)})| = 13$, and β_1, β_2 are the two fixed points which lie on neither λ nor λ_1 . Then $r_{\beta_i}^4 \leq 1$ and $r_{\beta_i}^6 = 0$ for i = 1, 2. Thus $\omega(\beta_i) = 24$ or $18 + \frac{1}{2}$. Moreover we have $\omega(\alpha) = 4$. Hence

$$\sum_{\delta \in \operatorname{Fix}(S_{(\lambda_1)})} \omega(\delta) \ge \omega(\alpha) + \omega(\beta_1) + \omega(\beta_2) \ge 41,$$

which is impossible by inequation (3.4).

Therefore, $S_{(\lambda_1)} = 1$ and $T_{(\lambda)}$ acts faithfully on $\lambda_1 \setminus \{\alpha, \beta\}$. So $T_{(\lambda)} \leq S_4$ and then |T| divides 2^7 since $T/T_{(\lambda)} \leq S_6$. \Box

Point-transitive linear spaces

4. Proof of Theorem 1.1

According to Lemmas 3.1–3.3, we get $|\operatorname{Aut}(S)|$ divides $2^7 \cdot 3^4 \cdot 5^3 \cdot 17$. In this section, we will prove that there is no point-transitive 2-(51, 6, 1) design.

Lemma 4.1 G cannot be isomorphic to Z_{51} .

Proof Suppose otherwise that $G = \langle g \rangle \cong Z_{51}$. Then G is regular on \mathcal{P} . Thus we can identify the point set \mathcal{P} with G and the elements of G act by multiplication. Since \mathcal{S} has 85 lines and $|\lambda^G| = 17$ or 51 for $\lambda \in \mathcal{L}$, then there at least exists one orbit λ^G such that $|\lambda^G| = 17$. Then $\lambda^{g^{17}} = \lambda$ and then λ is a union of two orbits of $\langle g^{17} \rangle$ on \mathcal{P} . Let $\{g^i, g^{i+17}, g^{i+34}\}$ and $\{g^j, g^{j+17}, g^{j+34}\}$ be two orbits such that

$$\lambda = \{g^i, g^{i+17}, g^{i+34}\} \cup \{g^j, g^{j+17}, g^{j+34}\},$$

where $1 \leq i < j \leq 51$. Then

$$\lambda^{g^{j-i}} = \{g^{2j-i}, g^{2j-i+17}, g^{2j-i+34}\} \cup \{g^j, g^{j+17}, g^{j+34}\},\$$

hence $g^{j-i} \in G_{\lambda}$, thus 17 | (j-i). It implies that

$$\{g^i,g^{i+17},g^{i+34}\}=\{g^j,g^{j+17},g^{j+34}\},$$

which is impossible. Therefore, G cannot be isomorphic to Z_{51} . \Box

Lemma 4.2 Assume that N is a minimal normal subgroup of G. Then $N \cong PSL(2, 16)$.

Proof $N \leq G$ and G is point-transitive, N is $\frac{1}{2}$ -transitive on \mathcal{P} , and the common length of orbits is 3,17 or 51. Let $N \cong T^{\ell}$ be a direct product of $\ell \geq 1$ copies of simple groups T.

If N is elementary, then $N \cong Z_3^{\ell}$ $(1 \leq \ell \leq 4)$ or $N \cong Z_{17}$. For the former case, we have $G/C_G(N) \leq GL(\ell,3)$. But for $\ell = 1, 2, 3$ and $4, 17 \nmid |GL(\ell,3)|$, thus $|C_G(N)|$ must be divisible by 17 and $C_G(N)$ is transitive on \mathcal{P} . Choose $g \in C_G(N)$ and $t \in N$ such that the order of g is 17 and the order of t is 3, then $\langle g, t \rangle \cong Z_{51}$ is transitive on \mathcal{P} , which is impossible by Lemma 4.1. For the later case, we have $G/C_G(N) \leq Z_{16}$ and similar discussion implies that there also exists a point-transitive subgroup of G which is isomorphic to Z_{51} , a contradiction.

Now suppose that T is a non-abelian simple group. If the length of orbits is 3, then N does not have an element g of order 5 or 17, otherwise $\operatorname{Fix}(g) = \mathcal{P}$. Thus |N| divides $2^7 \cdot 3^4$, this implies that N is solvable, which is impossible. Hence, the common length of orbits of N on \mathcal{P} is 17 or 51, and then |T| is divisible by 17. Therefore, N = T. Using the list of non-abelian simple groups, it is easy to check that $N \cong \operatorname{PSL}(2, 16)$ or $\operatorname{PSL}(2, 17)$, for 17 divides |N| and |N| divides $2^7 \cdot 3^7 \cdot 5^3 \cdot 17$. According to [9, Theorem 8.27, Chapter II], $\operatorname{PSL}(2, 17)$ has no subgroup of index 17 and 51. Therefore, $N \cong \operatorname{PSL}(2, 16)$. \Box

Proof of Theorem 1.1 According to Lemma 4.2, if N is a minimal normal subgroup of G, then $N \cong \text{PSL}(2, 16)$ and the common length of orbits of N on \mathcal{P} is 17 or 51. Now suppose that the common length is 17, then N acting on each orbit is permutation isomorphic to PSL(2, 16)

acting on projective lines, and N is 3-transitive on Δ_i for i = 1, 2 and 3, where Δ_i is an orbit of N on points. Let $g \in N$ be of order 2, α_i be the only one fixed point of g on Δ_i (i = 1, 2), and λ be the unique line through α_1 and α_2 . Then g fixes the line λ , hence λ is a union of orbits of g. Let $\Sigma = \{\beta_1, \beta_2\} \subset \lambda$ be an orbit of g. If $\Sigma \subset \Delta_1$, then for any other point $\gamma \in \Delta_1$, there exists an element $\tau \in N$ such that $\{\alpha_1, \beta_1, \beta_2\}^{\tau} = \{\gamma, \beta_1, \beta_2\}$, a contradiction. Similar discussion for $\Sigma \subset \Delta_2$. So $\lambda \setminus \{\alpha_1, \alpha_2\} \subset \Delta_3$, which is also impossible for N is 3-transitive on Δ_3 . Therefore, $N \cong PSL(2, 16)$ is point-transitive.

According to [9, Theorem 8.27, Chapter II], PSL(2, 16) has only one conjugacy class of groups of order 80. By MAGMA [10], the permutation representation of PSL(2, 16) on \mathcal{P} can be obtained, and we also get the subdegrees of PSL(2, 16) on \mathcal{P} , that is 1, 1, 1, 16, 16 and 16.

Let N = PSL(2, 16), $\alpha \in \mathcal{P}$, and $\beta \neq \alpha$ be one point fixed by N_{α} . Let λ be the unique line through α and β . Then $\lambda^{N_{\alpha}} = \lambda$. Thus λ is a union of orbits of N_{α} , which is impossible. Therefore, G cannot be point-transitive. \Box

Acknowledgements We thank the referees and the editors for their careful reading and helpful suggestions.

References

- C. J. COLBOURN, J. H. DINITZD. Handbook of Combinatorial Designs (2nd edition). CRC Press, Boca Raton, FL, 2006.
- [2] R. J. R. ABELL, W. H. MILLS. Some new BIBDs with k = 6 and $\lambda = 1$. J. Combin. Des., 1995, **3**(5): 381–391.
- [3] I. BLUSKOV, M. GREIG, J. DE HEER. Pair covering and other designs with block size 6. J. Combin. Des., 2007, 15(6): 511–533.
- [4] J. D. DIXON, B. MORTIMER. Permutation Groups. Springer-Verlag, New York, 1996.
- [5] A. R. CAMINA, P. M. NEUMANN, C. E. PRAEGER. Alternating groups acting on finite linear spaces. Proc. London Math. Soc. (3), 2003, 87(1): 29–53.
- [6] A. R. CAMINA, S. MISCHKE. Line-transitive automorphism groups of linear spaces. Electron. J. Combin., 1996, 3(1): 1–16.
- [7] A. R. CAMINA, J. SIEMONS. Block transitive automorphism groups of 2-(v, k, 1) block designs. J. Combin. Theory Ser. A, 1989, 51(2): 268–276.
- [8] A. R. CAMINA, L. DI MARTINO. The group of automorphisms of a transitive 2-(91, 6, 1) design. Geom. Dedicata, 1989, 31(2): 151–164.
- [9] B. HUPPER. Endliche Gruppen I. Springer, Berlin, 1967.
- [10] W. BOSMA, J. CANNON, C. PLAYOUST. The Magma algebra system I: The user language. J. Symbolic Comput., 1997, 24: 235–265.