# Weak Hopf Algebras Corresponding to the Non-Standard Deformation of Type $B_{n}$ 

Cheng CHENG, Shilin YANG*<br>College of Applied Sciences, Beijing University of Technology, Beijing 100124, P. R. China


#### Abstract

We introduce a non-standard quantum group $X_{q}\left(B_{n}\right)$ of type $B_{n}$ which is a Hopf algebra. Then we replace the group of grouplike elements of $X_{q}\left(B_{n}\right)$, and obtain a weak Hopf algebra $\mathfrak{w} X_{q}\left(B_{n}\right)$. Finally, we describe the Ext-quiver of $\mathfrak{w} X_{q}\left(B_{n}\right)$ as a coalgebra.


Keywords non-standard quantum group; weak Hopf algebra; Ext quiver
MR(2010) Subject Classification 17B37; 17B10; 16T99

## 1. Introduction

All algebras in this paper are considered over the complex field $\mathbb{C}$, the nonzero parameter $q \in \mathbb{C}$ is not a root of unity.

Ge et al. [1] introduced a new quantum group and in [2] Jing et al. derived all finite dimensional irreducible representations of this new quantum group. Aghamohammadi et al. [3, 4] introduced mulliparametric generalizations of type $A_{n-1}$ and type $B_{n}$. On the other hand, Li and Duplij $[5,6]$ defined weak Hopf algebras, which are bialgebras with weak antipodes, but not Hopf algebras. Yang [7] constructed weak Hopf algebras corresponding to Cartan matrices, determined their PBW bases according to the definition, then some properties related to the weak Hopf algebra $\operatorname{wsl}_{q}(2)$ were studied in [8, 9]. Cheng [10] researched weak Hopf algebras corresponding to $U_{q}\left(s l_{n}\right)$, and gave their Ext quivers. In 2016, Cheng and Yang [11] constructed a weak Hopf algebra $\mathfrak{w} X_{q}\left(A_{1}\right)$ corresponding to the non-standard quantum group $X_{q}\left(A_{1}\right)$, and described the PBW basis of $\mathfrak{w} X_{q}\left(A_{1}\right)$. Following the non-standard quantum group $X_{q}\left(B_{n}\right)$ in [4], in this short note we construct a non-standard quantum group $\mathfrak{w} X_{q}\left(B_{n}\right)$ by weakening the grouplike elements, then study the Ext quiver of its coalgebra.

The paper is arranged as follows. In Section 2, we give some definitions and relations of $X_{q}\left(B_{n}\right)$. Then we establish a weak quantum algebra $\mathfrak{w} X_{q}\left(B_{n}\right)$ by weakening the antipode, and prove that $\mathfrak{w} X_{q}\left(B_{n}\right)$ is a weak Hopf algebra. In Section 3, we study the weak Hopf algebra structure of $\mathfrak{w} X_{q}\left(B_{n}\right)$, and give the Ext quiver of its coalgebra.

## 2. The weak Hopf algebra $\mathfrak{w} X_{q}\left(B_{n}\right)$

[^0]Definition 2.1 $X_{q}\left(B_{n}\right)$ is the associative algebra over the field $\mathbb{C}$ with 1 , generated by $K_{1}^{ \pm 1}, K_{2}^{ \pm 1}$, $\ldots, K_{n}^{ \pm 1}, E_{1}, \ldots, E_{n}, F_{1}, \ldots, F_{n}$ with the following relations

$$
\begin{gathered}
K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, K_{i} K_{j}=K_{j} K_{i}, \\
K_{i} E_{j}=E_{j} K_{i}, K_{i} F_{j}=F_{j} K_{i}, \quad i \neq j, j+1, \\
K_{i} E_{i}=q_{i}^{-1} E_{i} K_{i}, K_{i} F_{i}=q_{i} F_{i} K_{i}, \\
K_{i+1} E_{i}=q_{i+1} E_{i} K_{i+1}, K_{i+1} F_{i}=q_{i+1}^{-1} F_{i} K_{i+1}, \\
\left(q_{i}-q_{i+1}\right) E_{i}^{2}=\left(q_{i}-q_{i+1}\right) F_{i}^{2}=0, \quad i \neq n, \\
E_{i} E_{j}=E_{j} E_{i}, F_{i} F_{j}=F_{j} F_{i}, \quad|i-j| \geq 2, \\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i, j} \frac{K_{i}^{-1} K_{i+1}-K_{i} K_{i+1}^{-1}}{q-q^{-1}}, \quad i \neq n, \\
q_{i} E_{i}^{2} E_{i \pm 1}-\left(1+q_{i} q_{i+1}\right) E_{i} E_{i \pm 1} E_{i}+q_{i+1} E_{i \pm 1} E_{i}^{2}=0, \quad i \neq n, \\
q_{i} F_{i}^{2} F_{i \pm 1}-\left(1+q_{i} q_{i+1}\right) F_{i} F_{i \pm 1} F_{i}+q_{i+1} F_{i \pm 1} F_{i}^{2}=0, \quad i \neq n, \\
E_{n}^{3} E_{n-1}-\left[\begin{array}{l}
3 \\
1
\end{array}\right]_{q_{n}^{\frac{1}{2}}}^{E_{n}^{1}-K_{n}^{-\frac{1}{2}}}, \\
E_{n}^{2} E_{n-1} E_{n}+\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q_{n}^{\frac{1}{2}}} E_{n} E_{n-1} E_{n}^{2}-E_{n-1} E_{n}^{3}=0, \\
F_{n}^{3} F_{n-1}-\left[\begin{array}{l}
3 \\
1
\end{array}\right]_{q_{n}^{\frac{1}{2}}} F_{n}^{2} F_{n-1} F_{n}+\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q_{n}^{\frac{1}{2}}} F_{n} F_{n-1} F_{n}^{2}-F_{n-1} F_{n}^{3}=0,
\end{gathered}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{[n]_{q}!}{\left[k k_{q}![n-k]_{q}!\right.},[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}, q_{i}=q$ or $-q^{-1}, 1 \leq i \leq n$.
If all $q_{i}=q$, then Serre relations of $X_{q}\left(B_{n}\right)$ are the same with $U_{q}\left(B_{n}\right)$. If $q_{i} \neq q_{i+1}(1 \leq i \leq$ $n$ ), then $E_{i}^{2}=F_{i}^{2}=0$, and we call it the non-standard quantum groups corresponding to $B_{n}$, denoted by $X_{q}\left(B_{n}\right)$, where $q_{i}=q$ or $-q^{-1}(1 \leq i \leq n)$.

Proposition $2.2 X_{q}\left(B_{n}\right)$ is a Hopf algebra with comultiplication $\Delta$, counit $\varepsilon$ and antipode $S$ defined as follows

$$
\begin{gathered}
\Delta: X_{q}\left(B_{n}\right) \rightarrow X_{q}\left(B_{n}\right) \otimes X_{q}\left(B_{n}\right) \\
\Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \Delta\left(K_{i}^{-1}\right)=K_{i}^{-1} \otimes K_{i}^{-1} \\
\Delta\left(E_{i}\right)=K_{i} K_{i+1}^{-1} \otimes E_{i}+E_{i} \otimes 1, i \neq n, \Delta\left(E_{n}\right)=K_{n} \otimes E_{n}+E_{n} \otimes 1 \\
\Delta\left(F_{i}\right)=1 \otimes F_{i}+F_{i} \otimes K_{i}^{-1} K_{i+1}, i \neq n, \Delta\left(F_{n}\right)=1 \otimes F_{n}+F_{n} \otimes K_{n}^{-1} \\
\varepsilon: X_{q}\left(B_{n}\right) \rightarrow \mathbb{C} \\
\varepsilon\left(K_{i}\right)=1, \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0 \\
S: X_{q}\left(B_{n}\right) \rightarrow X_{q}\left(B_{n}\right)
\end{gathered}
$$

$$
S\left(K_{i}\right)=K_{i}^{-1}, S\left(E_{i}\right)=-K_{i}^{-1} K_{i+1} E_{i}, S\left(F_{i}\right)=-F_{i} K_{i} K_{i+1}^{-1}
$$

Proof Indeed, $\Delta$ defines a morphism of algebra from $X_{q}\left(B_{n}\right)$ into $X_{q}\left(B_{n}\right) \otimes X_{q}\left(B_{n}\right)$. It is easy to prove that $\Delta$ keeps relations similar to the proof of [12, Proposition VII.1.1] and [13, Appendix in Chap. 4].

Similiarly, one can easily prove that $\varepsilon$ defines an algebra morphism from $X_{q}\left(B_{n}\right)$ into $\mathbb{C}$ and $S$ defines an antipode of $X_{q}\left(B_{n}\right)$. Therefore, $X_{q}\left(B_{n}\right)$ is a Hopf algebra with the comultiplication $\Delta$, the counit $\varepsilon$ and the antipode $S$.

In the following, we construct a weak Hopf algebra $\mathfrak{w} X_{q}\left(B_{n}\right)$ corresponding to $X_{q}\left(B_{n}\right)$. Firstly, we replace $K_{i}^{ \pm 1}$ by $K_{i}, \bar{K}_{i}$, and add a new generator $J$ such that $K_{i} \bar{K}_{i}=\bar{K}_{i} K_{i}=J$ for all $i=1,2, \ldots, n$.

If $E_{i}$ (resp., $F_{i}$ ) satisfies

$$
\begin{gathered}
\left.K_{i} E_{j}=E_{j} K_{i} \text { (resp., } K_{i} F_{j}=F_{j} K_{i}\right), \quad i \neq j, j+1, \\
\left.K_{i} E_{i}=q_{i}^{-1} E_{i} K_{i} \text { (resp., } K_{i} F_{i}=q_{i} F_{i} K_{i}\right) \\
K_{i+1} E_{i}=q_{i+1} E_{i} K_{i+1} \text { (resp., } K_{i+1} F_{i}=q_{i+1}^{-1} F_{i} K_{i+1} \text { ), } \\
\left.\bar{K}_{i} E_{j}=E_{j} \bar{K}_{i} \text { (resp., } \bar{K}_{i} F_{j}=F_{j} \bar{K}_{i}\right), \quad i \neq j, j+1, \\
\bar{K}_{i} E_{i}=q_{i} E_{i} \bar{K}_{i}\left(\text { resp., } \bar{K}_{i} F_{i}=q_{i}^{-1} F_{i} \bar{K}_{i}\right) \\
\bar{K}_{i+1} E_{i}=q_{i+1}^{-1} E_{i} \bar{K}_{i+1}\left(\text { resp. }, \bar{K}_{i+1} F_{i}=q_{i+1} F_{i} \bar{K}_{i+1}\right),
\end{gathered}
$$

then $E_{i}$ (resp., $F_{i}$ ) is said to be of type I.
If $E_{i}$ (resp., $F_{i}$ ) satisfies

$$
\begin{gathered}
K_{i} E_{j} \bar{K}_{i}=E_{j}\left(\text { resp., } K_{i} F_{j} \bar{K}_{i}=F_{j}\right), \quad i \neq j, j+1, \\
K_{i} E_{i} \bar{K}_{i}=q_{i}^{-1} E_{i}\left(\text { resp., } K_{i} F_{i} \bar{K}_{i}=q_{i} F_{i}\right) \\
K_{i+1} E_{i} \bar{K}_{i+1}=q_{i+1} E_{j}\left(\text { resp., } K_{i+1} F_{i} \bar{K}_{i+1}=q_{i+1}^{-1} F_{i}\right),
\end{gathered}
$$

then $E_{i}$ (resp., $F_{i}$ ) is said to be of type II.
Remark 2.3 We define the notation $d_{i}=\left(k_{i} \mid \bar{k}_{i}\right), k_{i}, \bar{k}_{i}=0$ or 1 to represent the type of $E_{i}$ and $F_{i}$. The information before $\mid$ is related to $E_{i}$ and the information after $\mid$ is related to $F_{i}$. The notation $d_{i}=\left(k_{i} \mid \bar{k}_{i}\right)$ indicates that if $k_{i}$ or $\bar{k}_{i}=1$, then the corresponding generator $E_{i}$ or $F_{i}$ is of type I; if $k_{i}$ or $\bar{k}_{i}=0$, then the corresponding generator $E_{i}$ or $F_{i}$ is of type II. We say that $E_{i}$ and $F_{i}$ are of type $d_{i}$ if $E_{i}$ and $F_{i}$ are of type I or type II according to $d_{i}$.

Now we give the definition of the algebra $\mathfrak{w} X_{q}\left(B_{n}\right)$.
Definition 2.4 The algebra $\mathfrak{w} X_{q}\left(B_{n}\right)$ is an associative algebra over $\mathbb{C}$ with 1 generated by $J, K_{1}, K_{2}, \ldots, K_{n}, \bar{K}_{1}, \bar{K}_{2}, \ldots, \bar{K}_{n}, E_{1}, \ldots, E_{n}, F_{1}, \ldots, F_{n}$, satisfying the following relations:

$$
\begin{gather*}
K_{i} K_{j}=K_{j} K_{i}, \bar{K}_{i} \bar{K}_{j}=\bar{K}_{j} \bar{K}_{i}, K_{i} \bar{K}_{j}=\bar{K}_{j} K_{i},  \tag{2.1}\\
K_{i} \bar{K}_{i}=J=\bar{K}_{i} K_{i}, K_{i} J=J K_{i}=K_{i}, \bar{K}_{i} J=J \bar{K}_{i}=\bar{K}_{i}, \tag{2.2}
\end{gather*}
$$

$$
\begin{gather*}
E_{i}, F_{i} \text { are of type di, }  \tag{2.3}\\
\left(q_{i}-q_{i+1}\right) E_{i}^{2}=\left(q_{i}-q_{i+1}\right) F_{i}^{2}=0, \quad i \neq n,  \tag{2.4}\\
E_{i} E_{j}=E_{j} E_{i}, F_{i} F_{j}=F_{j} F_{i},|i-j| \geq 2,  \tag{2.5}\\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i, j} \frac{\bar{K}_{i} K_{i+1}-K_{i} \bar{K}_{i+1}}{q-q^{-1}}, \quad i \neq n,  \tag{2.6}\\
E_{n} F_{j}-F_{j} E_{n}=\delta_{n, j} \frac{\bar{K}_{n}-K_{n}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}},  \tag{2.7}\\
q_{i} E_{i}^{2} E_{i \pm 1}-\left(1+q_{i} q_{i+1}\right) E_{i} E_{i \pm 1} E_{i}+q_{i+1} E_{i \pm 1} E_{i}^{2}=0, \quad i \neq n,  \tag{2.8}\\
q_{i} F_{i}^{2} F_{i \pm 1}-\left(1+q_{i} q_{i+1}\right) F_{i} F_{i \pm 1} F_{i}+q_{i+1} F_{i \pm 1} F_{i}^{2}=0, \quad i \neq n,  \tag{2.9}\\
E_{n}^{3} E_{n-1}-\left[\begin{array}{l}
3 \\
1
\end{array}\right]_{q_{n}^{\frac{1}{2}}} E_{n}^{2} E_{n-1} E_{n}+\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q_{n}^{\frac{1}{2}}} E_{n} E_{n-1} E_{n}^{2}-E_{n-1} E_{n}^{3}=0,  \tag{2.10}\\
F_{n}^{3} F_{n-1}-\left[\begin{array}{l}
3 \\
1
\end{array}\right]_{q_{n}^{\frac{1}{2}}} F_{n}^{2} F_{n-1} F_{n}+\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q_{n}^{\frac{1}{2}}} F_{n} F_{n-1} F_{n}^{2}-F_{n-1} F_{n}^{3}=0, \tag{2.11}
\end{gather*}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!},[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}, q_{i}=q$ or $-q^{-1}, 1 \leq i \leq n$.
Remark 2.5 We use the notation $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ to denote the type of $E_{i}, F_{i}$ in $\mathfrak{w} X_{q}\left(B_{n}\right)$. The algebra $\mathfrak{w} X_{q}\left(B_{n}\right)$ is said to be of type $d$.

Now, we define the comultiplication and counit of $\mathfrak{w} X_{q}\left(B_{n}\right)$ as follows,

$$
\Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \Delta\left(\bar{K}_{i}\right)=\bar{K}_{i} \otimes \bar{K}_{i}, \Delta(J)=J \otimes J
$$

if $E_{i}$ (resp., $F_{i}$ ) is of type I,

$$
\begin{gathered}
\Delta\left(E_{i}\right)=K_{i} \bar{K}_{i+1} \otimes E_{i}+E_{i} \otimes 1(i \neq n), \Delta\left(E_{n}\right)=K_{n} \otimes E_{n}+E_{n} \otimes 1 \\
\text { (resp., } \left.\Delta\left(F_{i}\right)=1 \otimes F_{i}+F_{i} \otimes K_{i+1} \bar{K}_{i}(i \neq n), \Delta\left(F_{n}\right)=1 \otimes F_{n}+F_{n} \otimes \bar{K}_{n}\right)
\end{gathered}
$$

if $E_{i}$ (resp., $F_{i}$ ) is of type II,

$$
\begin{gathered}
\Delta\left(E_{i}\right)=K_{i} \bar{K}_{i+1} \otimes E_{i}+E_{i} \otimes J(i \neq n), \Delta\left(E_{n}\right)=K_{n} \otimes E_{n}+E_{n} \otimes J ; \\
\left(\text { resp., } \Delta\left(F_{i}\right)=J \otimes F_{i}+F_{i} \otimes \bar{K}_{i} K_{i+1}(i \neq n), \Delta\left(F_{n}\right)=J \otimes F_{n}+F_{n} \otimes \bar{K}_{n}\right) . \\
\varepsilon\left(K_{i}\right)=\varepsilon\left(\bar{K}_{i}\right)=\varepsilon(J)=1, \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0 .
\end{gathered}
$$

The maps $\Delta, \varepsilon$ can be extended to $\mathfrak{w} X_{q}\left(B_{n}\right)$ naturally such that $\mathfrak{w} X_{q}\left(B_{n}\right)$ is a bialgebra.
Theorem 2.6 Keeping notations as above and assume that $J \neq 1$, then $\mathfrak{w} X_{q}\left(B_{n}\right)$ is a weak Hopf algebra with the weak antipode

$$
\begin{gathered}
T\left(K_{i}\right)=\bar{K}_{i}, T\left(\bar{K}_{i}\right)=K_{i}, T(J)=J, \\
T\left(E_{i}\right)=-\bar{K}_{i} K_{i+1} E_{i}, T\left(F_{i}\right)=-F_{i} K_{i} \bar{K}_{i+1} .
\end{gathered}
$$

Moreover, it is not a Hopf algebra.
Proof It is sufficient to prove that $T$ can define a weak antipode of $\mathfrak{w} X_{q}\left(B_{n}\right)$.
It is easy to see that $T$ is an algebra isomorphism from $\mathfrak{w} X_{q}\left(B_{n}\right)$ to $\mathfrak{w} X_{q}\left(B_{n}\right)^{o p}$ as algebra. The proof is more or less similar to [7, Theorem 3.1].

Now we need to show that $T$ is a weak antipode, that is,

$$
(\mathrm{id} * T * \operatorname{id})(x)=\operatorname{id}(x),(T * \operatorname{id} * T)(x)=T(x)
$$

for all $x \in \mathfrak{w} X_{q}\left(B_{n}\right)$.
Let

$$
\Delta_{2}=(\mathrm{id} \otimes \Delta) \circ \Delta
$$

If $E_{i}$ is of type I, then
$\Delta_{2}\left(E_{i}\right)=K_{i} \bar{K}_{i+1} \otimes \Delta\left(E_{i}\right)+E_{i} \otimes \Delta(1)=K_{i} \bar{K}_{i+1} \otimes K_{i} \bar{K}_{i+1} \otimes E_{i}+K_{i} \bar{K}_{i+1} \otimes E_{i} \otimes 1+E_{i} \otimes 1 \otimes 1$.
In this case,

$$
\begin{gathered}
(\mathrm{id} * T * \mathrm{id})\left(E_{i}\right)=K_{i} \bar{K}_{i+1} T\left(K_{i} \bar{K}_{i+1}\right) E_{i}+K_{i} \bar{K}_{i+1} T\left(E_{i}\right)+E_{i}=E_{i}=\operatorname{id}\left(E_{i}\right), \\
(T * \mathrm{id} * T)\left(E_{i}\right)=T\left(K_{i} \bar{K}_{i+1}\right) K_{i} \bar{K}_{i+1} T\left(E_{i}\right)+T\left(K_{i} \bar{K}_{i+1}\right) E_{i} T(1)+T\left(E_{i}\right)=J^{2} T\left(E_{i}\right)=T\left(E_{i}\right) .
\end{gathered}
$$

If $E_{i}$ is of type II, then

$$
\begin{aligned}
\Delta_{2}\left(E_{i}\right) & =K_{i} \bar{K}_{i+1} \otimes \Delta\left(E_{i}\right)+E_{i} \otimes \Delta(J) \\
& =K_{i} \bar{K}_{i+1} \otimes K_{i} \bar{K}_{i+1} \otimes E_{i}+K_{i} \bar{K}_{i+1} \otimes E_{i} \otimes 1+E_{i} \otimes J \otimes J
\end{aligned}
$$

In this case,

$$
\begin{gathered}
(\mathrm{id} * T * \operatorname{id})\left(E_{i}\right)=K_{i} \bar{K}_{i+1} T\left(K_{i} \bar{K}_{i+1}\right) E_{i}+K_{i} \bar{K}_{i+1} T\left(E_{i}\right)+E_{i} T(J) J \\
=E_{i} J=\operatorname{id}\left(E_{i}\right)\left(\text { note that } E_{i} J=E_{i}\right) \\
(T * \operatorname{id} * T)\left(E_{i}\right)=T\left(K_{i} \bar{K}_{i+1}\right) K_{i} \bar{K}_{i+1} T\left(E_{i}\right)+T\left(K_{i} \bar{K}_{i+1}\right) E_{i} T(J)+T\left(E_{i}\right) J T(J) \\
=J^{2} T\left(E_{i}\right)=T\left(E_{i}\right)
\end{gathered}
$$

The other relations can be checked similarly.
On the other hand, similar to [7], one can show that
(a) The comultiplication of generators is a linear expression of generators;
(b) $(T * \operatorname{id})(x)$ or $(\mathrm{id} * T)(x)$ (for $x$ being the generators $\left.K_{i}, \bar{K}_{i}, E_{i}, F_{i}\right)$ is a central element of $\mathfrak{w} X_{q}\left(B_{n}\right)$.

Now we assume that

$$
\mathrm{id} * T * \operatorname{id}(x)=x, T * \mathrm{id} * T(x)=T(x)
$$

and

$$
\mathrm{id} * T * \operatorname{id}(y)=y, T * \operatorname{id} * T(y)=T(y)
$$

for $x, y \in \mathfrak{w} X_{q}\left(B_{n}\right)$, we can prove

$$
(\mathrm{id} * T * \mathrm{id})(x y)=x y,(T * \operatorname{id} * T)(x y)=T(x y)
$$

by induction. This means that $T$ indeed is a weak antipode. Hence $\mathfrak{w} X_{q}\left(B_{n}\right)$ is a weak Hopf algebra.

Moreover, $T$ is not an antipode. If $T: \mathfrak{w} X_{q}\left(B_{n}\right) \longrightarrow \mathfrak{w} X_{q}\left(B_{n}\right)$ is an antipode, then

$$
(T * \mathrm{id})(J)=u \varepsilon(J)=(\mathrm{id} * T)(J)
$$

We get

$$
T(J) J=1=J T(J)
$$

and $J$ is invertible. However, $J(1-J)=0$ and $J \neq 1$. That is a contradiction. Hence $\mathfrak{w} X_{q}\left(B_{n}\right)$ is not a Hopf algebra.

## 3. Algebraic structure of $\mathfrak{w} X_{q}\left(B_{n}\right)$

It is easy to see that the elements $J$ and $1-J$ are a pair of orthogonal central idempotent elements. Let $\omega_{q}=\mathfrak{w} X_{q}\left(B_{n}\right) J, \bar{\omega}_{q}=\mathfrak{w} X_{q}\left(B_{n}\right)(1-J)$. We have

Proposition 3.1 If the weak Hopf algebra $\mathfrak{w} X_{q}\left(B_{n}\right)$ is of type $d$, then $\mathfrak{w} X_{q}\left(B_{n}\right)=\omega_{q} \oplus \bar{\omega}_{q}$. Moreover, $\omega_{q}$ is isomorphic to $X_{q}\left(B_{n}\right)$ as Hopf algebra.

Proof Since $J$ is a central idempotent element, we get $\mathfrak{w} X_{q}\left(B_{n}\right)=\omega_{q} \oplus \bar{\omega}_{q}$. The subalgebra $\omega_{q}$ can be viewed as an algebra generated by $E_{1} J, \ldots, E_{n} J, F_{1} J, \ldots, F_{n} J, K_{1}, \ldots, K_{n+1}, \bar{K}_{1}, \ldots, \bar{K}_{n+1}$ with the induced relations. It is easy to see that $\omega_{q}$ is a Hopf subalgebra of $\mathfrak{w} X_{q}\left(B_{n}\right)$.

Set $\rho: X_{q}\left(B_{n}\right) \longrightarrow \omega_{q}$,

$$
\rho\left(K_{i}^{\prime}\right)=K_{i}, \rho\left(K_{i}^{\prime-1}\right)=\bar{K}_{i}, \rho\left(E_{j}^{\prime}\right)=E_{j} J, \rho\left(F_{j}^{\prime}\right)=F_{j} J
$$

where $K_{i}^{\prime}, K_{i}^{\prime-1}(1 \leq i \leq n+1), E_{j}^{\prime}, F_{j}^{\prime}(1 \leq j \leq n)$ are generators of $X_{q}\left(B_{n}\right)$. It is easy to see that $\rho$ is a well-defined surjective algebra homomorphism.

Let $\phi: \mathfrak{w} X_{q}\left(B_{n}\right) \longrightarrow X_{q}\left(B_{n}\right)$ be a map given by

$$
\phi(1)=1, \phi(J)=1, \phi\left(E_{j}\right)=E_{j}^{\prime}, \phi\left(F_{j}\right)=F_{j}^{\prime}, \phi\left(K_{i}\right)=K_{i}^{\prime}, \phi\left(\bar{K}_{i}\right)=K_{i}^{\prime-1} .
$$

We can check that $\phi$ is a well-defined algebra homomorphism. If we consider the restricted homomorphism $\left.\phi\right|_{\omega_{q}}$ of $\phi$, then we have $\left.\phi\right|_{\omega_{q}} \circ \rho=\operatorname{id}_{X_{q}\left(B_{n}\right)}$. So $\rho$ is injective. Hence, $\omega_{q} \cong$ $X_{q}\left(B_{n}\right)$.

Remark 3.2 As Hopf algebra, we have

$$
\mathfrak{w} X_{q}\left(B_{n}\right) /\langle J-1\rangle \cong X_{q}\left(B_{n}\right)
$$

where $\langle J-1\rangle$ is a two-sides ideal generated by $J-1$.
Recall that the notation $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where $d_{i}=\left(k_{i} \mid \bar{k}_{i}\right), k_{i}, \bar{k}_{i}=0$ or 1 . Let $\sigma=\left\{i \mid k_{i} \neq 0\right\}, \bar{\sigma}=\left\{i \mid \overline{k_{i}} \neq 0\right\}$ and $X_{i}=E_{i}(1-J), Y_{j}=F_{j}(1-J)$, where $i \in \sigma, j \in \bar{\sigma}$. If $E_{i}$ (resp., $F_{i}$ ) is of type I, then $X_{i} \neq 0$ (resp., $Y_{i} \neq 0$ ); If $E_{i}$ (resp., $F_{i}$ ) is of type II, then $X_{i}=0$ (resp., $Y_{i}=0$ ). In fact, $\bar{\omega}_{q}$ can be viewed as an algebra generated by $\left\{X_{i}, Y_{j} \mid i \in \sigma, j \in \bar{\sigma}\right\} \cup\{1-J\}$ with the relation

$$
X_{i} Y_{j}=Y_{j} X_{i} \text { for all } i \in \sigma, j \in \bar{\sigma}
$$

In the following, we consider the coalgebra structure of $\mathfrak{w} X_{q}\left(B_{n}\right)$ by Ext quivers. Let $C$ be a graded coalgebra, and

$$
C=g r_{\mathcal{F}}(C)=\bigoplus_{n \geq 0}\left(C_{n} / C_{n-1}\right)
$$

where $C_{n}=\Delta^{-1}\left(C_{n-1} \otimes C+C \otimes C_{0}\right)$ and $\mathcal{F}=\left\{C_{n}\right\}_{n \geq 0}$ is a filtration of coradical of $C$. Let $C(n)=C_{n} / C_{n-1}$. We have

$$
C=\bigoplus_{n \geq 0} C(n), C(0)=\mathbb{C} G(C), G(C)=\{g \in C \mid \Delta(g)=g \otimes g, \varepsilon(g)=1\}
$$

The elements in $G(C)$ are called group-like elements.

$$
C(1)=\bigoplus_{g, h \in G(C)} C(1)^{h g}, C(1)^{h g}=\{c \in C(1) \mid \Delta(c)=h \otimes c+c \otimes g\},
$$

where the elements in $C(1)^{h g}$ are called $(h: g)$-skew primitive elements. Define the quiver $Q=Q(C)=\left(Q_{0}, Q_{1}\right)$ with the vertex set $Q_{0}=G(C)$ and for $g, h \in G(C)$, there are $t_{g h}$ arrows from $g$ to $h$, where $t_{g h}=\operatorname{dim}_{\mathbb{C}} C(1)^{h g}$. One can refer to [10,14-17]. In the following quivers, the labelling $x$ of the arrow $\bullet^{h} \longleftrightarrow^{x} \bullet^{g}$ means that $0 \neq x \in C(1)^{h g}$ consisting of a basis of $C(1)^{h g}$.

Theorem 3.3 For the weak Hopf algebra $\mathfrak{w} X_{q}\left(B_{n}\right)$ of type $d$, the Ext quiver of its coalgebra is a union of some of the following quivers.
(1) Assume that $d_{i}=(1 \mid 1)$. If $i \neq n$, the corresponding quiver is

if $i=n$, the corresponding quiver is

(2) Assume that $d_{i}=(1 \mid 0)$. If $i \neq n$, the corresponding quiver is


If $i=n$, the corresponding quiver is

(3) Assume that $d_{i}=(0 \mid 1)$. If $i \neq n$, the corresponding quiver is

if $i=n$, the corresponding quiver is

(4) Assume that $d_{i}=(0 \mid 0)$. If $i \neq n$, the corresponding quiver is
if $i=n$, the corresponding quiver is

$$
\ldots\left(K_{n}\right)^{2} \stackrel{F_{i}\left(K_{n}\right)^{2}}{<} \cdot E_{i}\left(K_{n}\right) \quad \cdot K_{n} \underset{E_{i} K_{n}}{<} \cdot J \underset{E_{i}}{<} \underset{F_{i} \bar{K}_{n}}{<} \cdot \bar{K}_{n} \underset{E_{i}\left(\bar{K}_{n}\right)^{2}}{<} \cdot\left(\bar{K}_{n}\right)^{2} \ldots .
$$

Proof (1) In first, it is easy to see that $\mathfrak{w} X_{q}\left(B_{n}\right)$ is a graded coalgebra, and we get $\mathfrak{w} X_{q}\left(B_{n}\right)=$ $\oplus_{n \geq 0} C(n)$, where $C(n)$ is defined as above. Let $h, g$ be the group-like elements of $\mathfrak{w} X_{q}\left(B_{n}\right)$, which are generated by $K_{i}, \bar{K}_{i}(1 \leq i \leq n)$. Similar to the method in [10] and [15], we can obtain that $\left(\left(K_{i} \bar{K}_{i+1}\right)^{m+1}:\left(K_{i} \bar{K}_{i+1}\right)^{m}\right)$-skew primitive elements, $\left(\left(K_{n}\right)^{m+1}:\left(K_{n}\right)^{m}\right)$-skew primitive elements, $\left(\left(K_{i+1} \bar{K}_{i}\right)^{m}:\left(K_{i+1} \bar{K}_{i}\right)^{m+1}\right)$-skew primitive elements, $\left(\left(\bar{K}_{n}\right)^{m}:\left(\bar{K}_{n}\right)^{m+1}\right)$ skew primitive elements in $C(1)$ as follows form the arrow set

$$
E_{i}\left(K_{i} \bar{K}_{i+1}\right)^{m}, F_{i}\left(K_{i} \bar{K}_{i+1}\right)^{m+1}, E_{i}\left(K_{n}\right)^{m}, F_{i}\left(K_{n}\right)^{m+1}
$$

$$
F_{i}\left(K_{i+1} \bar{K}_{i}\right)^{m}, E_{i}\left(K_{i+1} \bar{K}_{i}\right)^{m+1}, F_{i}\left(\bar{K}_{n}\right)^{m}, E_{i}\left(\bar{K}_{n}\right)^{m+1}
$$

Moreover, we calculate the comultiplication of these skew primitive elements.

$$
\begin{aligned}
& \Delta\left(E_{i}\left(K_{i} \bar{K}_{i+1}\right)^{m}\right)=\left(K_{i} \bar{K}_{i+1}\right)^{m+1} \otimes E_{i}\left(K_{i} \bar{K}_{i+1}\right)^{m}+E_{i}\left(K_{i} \bar{K}_{i+1}\right)^{m} \otimes\left(K_{i} \bar{K}_{i+1}\right)^{m}, \quad m \geq 1, i \neq n, \\
& \Delta\left(E_{i}\left(K_{n}\right)^{m}\right)=\left(K_{n}\right)^{m+1} \otimes E_{i}\left(K_{n}\right)^{m}+E_{i}\left(K_{n}\right)^{m} \otimes\left(K_{n}\right)^{m}, \quad m \geq 1, i=n, \\
& \Delta\left(F_{i}\left(K_{i+1} \bar{K}_{i}\right)^{m}\right)=\left(K_{i+1} \bar{K}_{i}\right)^{m} \otimes F_{i}\left(K_{i+1} \bar{K}_{i}\right)^{m}+F_{i}\left(K_{i+1} \bar{K}_{i}\right)^{m} \otimes\left(K_{i+1} \bar{K}_{i}\right)^{m+1}, \quad m \geq 1, i \neq n, \\
& \Delta\left(F_{i}\left(\bar{K}_{n}\right)^{m}\right)=\left(\bar{K}_{n}\right)^{m} \otimes F_{i}\left(\bar{K}_{n}\right)^{m}+F_{i}\left(\bar{K}_{n}\right)^{m} \otimes\left(\bar{K}_{n}\right)^{m+1}, \quad m \geq 1, i=n, \\
& \Delta\left(E_{i}\left(K_{i+1} \bar{K}_{i}\right)^{m}\right)=\left(K_{i+1} \bar{K}_{i}\right)^{m-1} \otimes E_{i}\left(K_{i+1} \bar{K}_{i}\right)^{m}+E_{i}\left(K_{i+1} \bar{K}_{i}\right)^{m} \otimes\left(K_{i+1} \bar{K}_{i}\right)^{m}, \quad m \geq 2, i \neq n, \\
& \Delta\left(E_{i}\left(\bar{K}_{n}\right)^{m}\right)=\left(\bar{K}_{n}\right)^{m-1} \otimes E_{i}\left(\bar{K}_{n}\right)^{m}+E_{i}\left(\bar{K}_{n}\right)^{m} \otimes\left(\bar{K}_{n}\right)^{m}, \quad m \geq 2, i=n, \\
& \Delta\left(F_{i}\left(K_{i} \bar{K}_{i+1}\right)^{m}\right)=\left(K_{i} \bar{K}_{i+1}\right)^{m} \otimes F_{i}\left(K_{i} \bar{K}_{i+1}\right)^{m}+F_{i}\left(K_{i} \bar{K}_{i+1}\right)^{m} \otimes\left(K_{i} \bar{K}_{i+1}\right)^{m-1}, \quad m \geq 2, i \neq n, \\
& \Delta\left(F_{i}\left(K_{n}\right)^{m}\right)=\left(K_{n}\right)^{m} \otimes F_{i}\left(K_{n}\right)^{m}+F_{i}\left(K_{n}\right)^{m} \otimes\left(K_{n}\right)^{m-1}, \quad m \geq 2, i=n,
\end{aligned}
$$

and

$$
\begin{gathered}
\Delta\left(E_{i} K_{i+1} \bar{K}_{i}\right)=J \otimes E_{i} K_{i+1} \bar{K}_{i}+E_{i} K_{i+1} \bar{K}_{i} \otimes K_{i+1} \bar{K}_{i}, \quad i \neq n \\
\Delta\left(E_{i} \bar{K}_{n}\right)=J \otimes E_{i} \bar{K}_{n}+E_{i} \bar{K}_{n} \otimes \bar{K}_{n}, \quad i=n \\
\Delta\left(F_{i} K_{i} \bar{K}_{i+1}\right)=K_{i} \bar{K}_{i+1} \otimes F_{i} K_{i} \bar{K}_{i+1}+F_{i} K_{i} \bar{K}_{i+1} \otimes J, \quad i \neq n \\
\Delta\left(F_{i} K_{n}\right)=K_{n} \otimes F_{i} K_{n}+F_{i} K_{n} \otimes J, \quad i=n
\end{gathered}
$$

We also know that if $E_{i}$ is of type I, then

$$
\Delta\left(E_{i}\right)=K_{i} \bar{K}_{i+1} \otimes E_{i}+E_{i} \otimes 1(i \neq n), \Delta\left(E_{n}\right)=K_{n} \otimes E_{n}+E_{n} \otimes 1
$$

if $F_{i}$ is of type I, then

$$
\Delta\left(F_{i}\right)=1 \otimes F_{i}+F_{i} \otimes K_{i+1} \bar{K}_{i}(i \neq n), \Delta\left(F_{n}\right)=1 \otimes F_{n}+F_{n} \otimes \bar{K}_{n}
$$

if $E_{i}$ is of type II, then

$$
\Delta\left(E_{i}\right)=K_{i} \bar{K}_{i+1} \otimes E_{i}+E_{i} \otimes J(i \neq n), \Delta\left(E_{n}\right)=K_{n} \otimes E_{n}+E_{n} \otimes J
$$

if $F_{i}$ is of type II, then

$$
\Delta\left(F_{i}\right)=J \otimes F_{i}+F_{i} \otimes \bar{K}_{i} K_{i+1}(i \neq n), \Delta\left(F_{n}\right)=J \otimes F_{n}+F_{n} \otimes \bar{K}_{n}
$$

Therefore, according to the value of $d_{i}$ which reflects the type of $E_{i}$ and $F_{i}$, the statements (1)-(4) are obtained directly.

Acknowledgements We thank the referees for their valuable comments.

## References

[1] Molin GE, Guangchun LIU, Kang XUE. New solutions of Yang-Baxter equations: Birman-Wenzl algebra and quantum group structures. J. Phys. A, 1991, 24(12): 2679-2690.
[2] Naihuan JING, Molin GE, Yongshi WU. A new quantum group associated with a "nonstandard" braid group representation. Lett. Math. Phys., 1991, 21(3): 193-203.
[3] A. AGHAMOHAMMADI, V. KARIMIPOUR, S. ROUHANI. The multiparametric non-standard deformation of $A_{n-1}$. J. Phys. A: Math. Gen., 1993, 26(3): L75-L82.
[4] A. AGHAMOHAMMADI, V. KARIMIPOUR, A. R. NEZAMI. Non-standard deformation of $B_{n}$ series. J. Phys. A: Math. Gen., 1994, 27: 1609-1616.
[5] Fang LI. Weak Hopf algebras and some new solutions of the quantum Yang-Baxter equation. J. Algebra, 1998, 208(1): 72-100.
[6] Fang LI, S. DUPLIJ. Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation. Comm. Math. Phys., 2002, 225(1): 191-217.
[7] Shilin YANG. Weak Hopf algebras corresponding to Cartan matrices. J. Math. Phys., 2005, 46(7): 1-18.
[8] Hong WANG, Shilin YANG. The isomorphisms and the center of weak quantum algebras $w s l_{q}(2)$. Tamkang J. Math., 2005, 36(4): 365-376.
[9] Shilin YANG, Hong WANG. The Clebsch-Gordan Decomposition for Quantum Algebra $w s l_{q}(2)$. World Sci. Publ., Hackensack, NJ, 2005.
[10] Dongming CHENG. Classification of weak Hopf algebras corresponding to $U_{q}\left(s l_{n}\right)$. Acta Math. Sci. Ser. A (Chin. Ed.), 2012, 32(3): 608-616. (in Chinese)
[11] Cheng CHENG, Shilin YANG. Weak Hopf algebras corresponding to non-standard quantum groups. Bull. Korean Math. Soc., 2017, 54(2): 463-484.
[12] C. KASSEL. Quantum Groups. GTM 155. Springer-Verlag, 1995.
[13] J. C. JANTZEN. Lectures on Quantum Groups. Grad. Stud. Math., 6, Amer. Math. Soc., 1995.
[14] W. CHIN, S. MONTGOMERY. Basic Coalgebras. Amer. Math. Soc., Providence, RI, 1997.
[15] W. CHIN, I. M. MUSSON. The coradical filtration for quantized enveloping algebras. J. London Math. Soc., 1996, 53(1): 319-320.
[16] W. CHIN. A Brief Introduction to Coalgebra Representation Theory. Marcel Dekker Inc, New York, 2004.
[17] Xiaowu CHEN, Pu ZHANG. Comodules of $U_{q}\left(\mathrm{sl}_{2}\right)$ and modules of $\mathrm{SL}_{q}(2)$ via quiver methods. J. Pure Appl. Algebra, 2007, 211(3): 862-876.


[^0]:    Received October 27, 2017; Accepted August 12, 2018
    Supported by the National Natural Science Foundation of China (Grant Nos. 11671024; 11471186) and the Natural Science Foundation of Beijing (Grant No. 1162002).

    * Corresponding author

    E-mail address: tanchengxiangdai@yeah.net (Cheng CHENG); slyang@bjut.edu.cn (Shilin YANG)

