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Abstract For α > 0, λ > 0 and β, η ∈ R, we consider the M(α, λ)b of normalized analytic

α − λ convex functions defined in the open unit disc U. In this paper we investigate the class

M(α, λ, β, η)b, with fb := z
(1−zn)b

being Koebe type. By making use of Jack’s Lemma as well

as several differential and other inequalities, the authors derive sufficient conditions for starlike-

ness of the class M(α, λ, β, η)b of n-fold symmetric analytic functions of Koebe type. Relevant

connections of the results presented here with those given in earlier works are also indicated.
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1. Introduction

Let A denote the class of normalized analytic functions of the form

f(z) = z +
∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. Also, as usual, let

S∗ = {f : f ∈ A and Re(
zf ′(z)

f(z)
) > 0, z ∈ U} (1.2)

and

K = {f : f ∈ A and Re(1 +
zf ′′(z)

f ′(z)
) > 0, z ∈ U} (1.3)

be the familiar classes of starlike functions in U and convex functions in U, respectively.
The expressions zf ′(z)

f(z) and (1+ zf ′′(z)
f ′(z) ) play an important role in the theory of univalent func-

tions. Several new classes have been introduced and studied by various researchers by combining

these expressions in different manners. As example, one can refer to the work done in [1–4].

The class M(α) was first introduced by Mocanu [1] who called it the class of α convex (or

α-starlike) functions.

M(α) = {f(z) ∈ A : Re{(1− α)
zf ′(z)

f(z)
+ α(1 +

zf ′′(z)

f ′(z)
)} > 0}.
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Miller et al. in [5] showed that M(α) is a subclass of S∗ for any real number α and also that

M(α) is a subclass of K for α ≥ 1. We note that M(0) = S∗ and M(1) = K.

Motivated essentially by the aforementioned earlier works, we aim here at deriving sufficient

conditions for starlikeness of n-fold symmetric function fb of Koebe type, defined by

fb(z) :=
z

(1− zn)b
, b ≥ 0; n ∈ N := {1, 2, 3, . . .} (1.4)

which obviously corresponds to the familiar Koebe function when n = 1 and b = 2.

In this paper we consider and denote by M(α, λ, β, η)b the class of functions f ∈ A, for α ≥ 0,

λ > 0, β, η ∈ R and z ∈ U that is

(
zf ′

b(z)

fb(z)
)β+ηi[(

zf ′
b(z)

fb(z)
)(1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

))]. (1.5)

We have the following inclusion relationships:

(i) M(0, λ, 0, 0) ⊂ S∗(0);

(ii) M(α, 1, 0, 0) ⊂ H(α) ⊂ S∗ with H(α), studied by Fukui et al. [6];

(iii) M(1, 0, 0, 0) = H(1) ⊂ S∗(1/2), investigated by Ramesha et al. [7];

(iv) M(1, 0, 0, 0) = H(1) ⊂ S∗(γ) where γ < 1/2, observed by Nunokawa et al. [8];

(v) M(α, 0, 0, 0) = H(α) ⊂ S∗, discussed by Kamali and Srivastava [9];

(vi) M(α, λ, 0, 0) = H(α) ⊂ S∗, discussed by Siregar and Darus [10];

(vii) M(α, 0, β, 0) = H(α, β) ⊂ S∗, studied by Siregar [3];

(viii) M(α, 1, β, η) = H(α, β) ⊂ S∗, investigated by Pauzi and Darus [11].

In this paper we investigate the subordination, superordination, best dominant, best subor-

dinant, sandwich theorem and sufficient conditions for starlikeness of n-fold symmetric function

of Koebe type and its applications in the class denoted by Mb(α, λ, β, η)b.

For two functions f and g analytic in the open unit disk U, we say that f is subordinate to

g in U and write as f ≺ g, if there exists a Schwarz function w analytic in U with w(0) = 0 and

w(z) < 1, z ∈ U such that f(z) = g(w), z ∈ U. In case the function g is univalent, the above

subordination is equivalent to f(0) = g(0) and f(U) ⊂ g(U).
Let Φ : C3 × U → C be an analytic function, p be an analytic function in U such that

(p(z), zp′(z), z2p′′(z); z) ∈ C3 × U for all z ∈ U and h be univalent in U. Then the function p is

said to satisfy a first order subordination if

Φ(p(z), zp′(z), z2p′′(z); z) ≺ h(z) and Φ(p(0), 0; 0) = h(0). (1.6)

A univalent function q is called a dominant of the differential subordination (1.6) if p(0) = q(0)

and p ≺ q for all p satisfying (1.6). A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1.6),

is said to be best dominant of (1.6).

Let Ψ : C3 × U → C be an analytic function in domain C3 × U, h be an analytic function in

U, p be analytic and univalent in U, with (p(z), zp′(z), z2p′′(z); z) ∈ C3 × U for all z ∈ U. Then
the function p is called a solution of the first order subordination if

h(z) ≺ Ψ(p(z), zp′(z), z2p′′(z); z) and h(0) = Ψ(p(0), 0; 0). (1.7)
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An analytic function q is called a subordinant of the differential superordination (1.7) if q ≺ p

for all p satisfying (1.7). A univalent subordinant q̃ that satisfies q ≺ q̃ for all subordinants q of

(1.7), is said to be best subordinant of (1.7).

The work of Siregar [3], Siregar and Darus [10] and Bansal and Raina [12] have motivated

us to come to these problem. See also Frasin and Darus [10] for different studies.

2. Preliminaries

In order to prove our subordination and superodination results, we make use of the following

known results.

Lemma 2.1 ([13]) Let the function q(z) be univalent in the open unit disc U and let the function

θ and ϕ be analytic in a domain D containing q(U), with ϕ(w) ̸= 0 when w ∈ q(U). Set

Q(z) = γzq′(z)ϕ(q(z)), γ > 0 and h(z) = θ(q(z)) +Q(z). (2.1)

Suppose that

(i) Q(z) is starlike univalent U and

(ii) Re zh′(z)
Q(z) = Re θ′(q(z))

ϕ(q(z)) + zQ′(z)
Q(z) > 0 for z ∈ U.

If p(z) is analytic in U with p(0) = q(0) = 1, p(U) ⊂ D and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)), (2.2)

then

p(z) ≺ q(z) (2.3)

and q is the best dominant of the subordination.

Lemma 2.2 ([14]) Let q(z) be univalent in the unit disk U and let ϑ and φ be analytic in a

domain D containing q(U). Suppose that

(i) zq′(z)φ(q(z)) is univalent and starlike in U;
(ii) Reϑ′(q(z))

φ(q(z)) > 0 for z ∈ U.
If p(z) ∈ H[q(0), 1] ∩ Q with p(U) ⊆ D and ϑp(z) + zp′(z)φ(p(z)) is univalent in U and

ϑ(q(z)) + zq′(z)φ(q(z)) ≺ ϑ(p(z)) + zp′(z)ϕ(p(z)), then q(z) ≺ p(z) is the best subordinant.

Lemma 2.3 ([15]) Let the (nonconstant) function w(z) be analytic in U such that w(0) = 0.

If |w(z)| attains its maximum value on circle |z| = r < 1 at a point zo ∈ U, we have zow
′(z) =

kw(zo), where k ≥ 1 is a real number.

Lemma 2.4 ([6]) The function defined by (1.5) is univalent if and only if

0 ≤ nb ≤ 2. (2.4)

Futhermore, the condition in (2.4) is necessary and sufficient for the function to be a starlike

function.

Lemma 2.5 ([16]) Let Θ(u, v) be a complex-valued function such that Θ : D → C(D ⊂ C×C).



The starlikeness of analytic functions of Koebe type with complex order 589

Here C is (as usual) the complex plane. Let u = u1 + iu2 and v = v1 + iv2. Suppose that the

functions Θ(u, v) satisfy each of the following conditions:

(i) Θ(u, v) is continuous in D;

(ii) (1, 0) ∈ D and Re(Θ(1, 0)) > 0;

(iii) Re(Θ(iu2, v1)) ≤ 0 for all (iu2, v1) ∈ D such that v1 ≤ − 1
2 (1 + u2

2).

Let p(z) = 1+ p1z+ p2z+ · · · be analytic (regular) in U such that (p(z), zp′(z)) ∈ D, z ∈ U.
If Re (Θ(p(z), zp′(z))) ∈ D, then Re (p(z)) > 0, z ∈ U.

3. The subordination and superordination results

Theorem 3.1 Let f(z) ∈ A satisfy f(z) ̸= 0, z ∈ U. Also let the function q(z) be univalent in

U, with q(0) = 1 and q(z) ̸= 0, such that

Re{1 + (β + ηi)
zq′(z)

q(z)
+ z

q′′(z)

q′(z)
} > 0, z ∈ U (3.1)

and

Re{1 + 1

λ
[(β + ηi+ 2)q(z) +

1

α
(β + ηi+ 1)− (β + ηi+ 1)]+

(β + ηi)
zq′(z)

q(z)
+

zq′′(z)

q′(z)
> 0}, z ∈ U (3.2)

for |β + ηi| ≤ 1 and α > 0. If

(
zf ′

b(z)

fb(z)
)β+ηi[(

zf ′
b(z)

fb(z)
)(1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

))] ≺ h(z), (3.3)

where

h(z) = α[q(z)]β+ηi+2 + (1− α)[q(z)]β+ηi+1 + αλzq′(z)[q(z)]β+ηi, (3.4)

then
zf ′

b(z)
fb(z)

≺ q(z), z ∈ U and q(z) is the best dominant of (3.3).

Proof Firstly, choose

p(z) =
zf ′

b(z)

fb(z)
, θ(w) = wβ+ηi[(1− α)w + aw2] and ϕ(w) = wβ+ηi,

then θ(w) and ϕ(w) exist and are analytic inside the domain D∗ = C \ {0} which contains

q(U), q(0) = 1 and ϕ(w) ̸= 0 when w ∈ q(U).
Now, if we define the functions Q(z) and h(z) by

Q(z) = αλzq′(z)ϕ[q(z)] = αλzq′(z)[q(z)]β+ηi

and

h(z) = θ[q(z)] +Q(z) = α[q(z)]β+ηi+2 + (1− α)[q(z)]β+ηi+1 + αλzq′(z)[q(z)]β+ηi,

then it follows from (3.1) and (3.2) that Q(z) is starlike in U and

Re(
zh′(z)

Q(z)
) =1 +

1

λ
[(β + ηi+ 2)q(z) +

1

α
(β + ηi+ 1)− (β + ηi+ 1)]+

(β + ηi)
zq′(z)

q(z)
+

zq′′(z)

q′(z)
> 0, z ∈ U.
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We also note that the function p(z) is analytic in U, with p(0) = q(0) = 1. Since 0 /∈ p(U),
therefore p(U) ⊂ D∗ and αλ > 0. Hence, the hypotheses of Lemma 2.1 are satisfied.

Since p(z) =
zf ′

b(z)
fb(z)

, we have

p′(z) =
fb(z)[zf

′′
b (z) + f ′

b(z)]− z[f ′
b(z)]

2

[fb(z)]2

=
[zfb(z)f

′′
b (z) + fb(z)f

′
b(z)]− z[f ′

b(z)]
2

[fb(z)]2

=z
f ′′
b (z)

fb(z)
+

f ′
b(z)

fb(z)
− z[

f ′
b(z)

fb(z)
]2.

Multiplying p′(z) with z, we have

zp′(z) = z2
f ′′
b (z)

fb(z)
+ z

f ′
b(z)

fb(z)
− [z

f ′
b(z)

fb(z)
]2.

Applying Lemma 2.1, we find that

(
zf ′

b(z)

fb(z)
)β+ηi[(

zf ′
b(z)

fb(z)
)(1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

))]

= (
zf ′

b(z)

fb(z)
)β+ηi[(1− α+ αλ)(

zf ′
b(z)

fb(z)
) + α(1− λ)(

zf ′
b(z)

fb(z)
)2 + αλ(

z2f ′′
b (z)

fb(z)
)]

= (p(z))β+ηi[(1− α+ αλ)p(z) + α(1− λ)(p(z))2 + αλ(zp′(z)− p(z) + [p(z)]2)]

= (p(z))β+ηi[(1− α)p(z) + α(p(z))2 + αλzp′(z)]

= α(p(z))2(p(z))β+ηi + (1− α)p(z)(p(z))β+ηi + αλzp′(z)(p(z))β+ηi

= (p(z))β+ηi[(1− α)p(z) + α(p(z))2] + αλzp′(z)(p(z))β+ηi

= θ(p(z)) + αλzp′(z)(p(z))β+ηi

≺ h(z) = α(q(z))2(q(z))β+ηi + (1− α)q(z)(q(z))β+ηi + αλzq′(z)(q(z))β+ηi

= θ(q(z)) + αλzq′(z)(q(z))β+ηi

which implies

(
zf ′

b(z)

fb(z)
) ≺ q(z), z ∈ U

and it is proved that q(z) is the best dominant of (3.3). �

Theorem 3.2 Let f be analytic in U such that f(0) = 0, h be convex univalent in U and

h ∈ H[0, 1] ∩Q. Assume that

(
zf ′

b(z)

fb(z)
)β+ηi[(

zf ′
b(z)

fb(z)
)(1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

))]

is a univalent function in U, where |β + ηi| ≤ 1 and α > 0.

If h ∈ A and the subordination

h(z) = θ(q(z)) + αλzq′(z)(q(z))β+ηi

≺ (
zf ′

b(z)

fb(z)
)β+ηi[(

zf ′
b(z)

fb(z)
)(1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

))]
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holds, then q(z) ≺ (
zf ′

b(z)
fb(z)

) implies that q(z) ≺ p(z), where p(z) = (
zf ′

b(z)
fb(z)

) and q(z) is the best

subordinant.

Proof Our aim is to apply Lemma 2.2. By setting

p(z) =
zf ′

b(z)

fb(z)
, ϑ(w) = wβ+ηi[(1− α)w + aw2], φ(w) = wβ+ηi,

then ϑ(w) and φ(w) exist and are analytic inside the domain D∗ = C \ {0} which contains p(U),
p(0) = 1 and φ(w) ̸= 0 when w ∈ p(U).

It can be observed that ϑ(w) and φ(w) are analytic in C. Thus

Re{ϑ
′(q(z))

φ(q(z))
} > 0.

Now, we must show that

h(z) = ϑ(q(z)) + αλzq′(z)φ(q(z)) ≺ φ(p(z)) + αλzp′(z)φ(p(z)).

By the assumption of the theorem

h(z) = ϑ(q(z)) + αλzq′(z)φ(q(z))

= α(q(z))2(q(z))β+ηi + (1− α)q(z)(q(z))β+ηi + αλzq′(z)(q(z))β+ηi

≺ α(q(z))2(q(z))β+ηi + (1− α)q(z)(q(z))β+ηi + αλzq′(z)(q(z))β+ηi

= ϑ(p(z)) + αλzp′(z)φ(p(z))

= (
zf ′

b(z)

fb(z)
)β+ηi[(

zf ′
b(z)

fb(z)
)(1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

))].

Thus in view of Lemma 2.2, q(z) ≺ p(z) which implies q(z) ≺ (
zf ′

b(z)
fb(z)

) and q(z) is the best

subordinant. �
If we combine Theorems 3.1 and 3.2, then we obtain the differential Sandwich-Type theorem.

Remark 3.3 From Theorems 3.1 and 3.2 it follows

(i) Setting β = η = 0, we obtain the result as asserted by Siregar and Darus [10];

(ii) Putting β = η = 0 and λ = 1, we get the result obtained by Siregar [3];

(iii) Substituting λ = 1, we have the result as shown by Pauzi and Darus [14].

4. The properties of the class Mb(α, λ, β, η)

The method of proving the next theorem is similar to Kamali and Srivastava [9].

Theorem 4.1 Let the n-fold symmetric function fb(z), defined by (1.4), be analytic in U, with
fb(z)
z ̸= 0, z ∈ U. If fb(z) satisfies the inequality

(
zf ′

b(z)

fb(z)
)β+ηi[(

zf ′
b(z)

fb(z)
)(1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

))]

> (1− nb

2
)β [

cos ln(2− nb)

2
][(1− nb

2
)(1− αnb

2
)− αλnb

4
], (4.1)
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then fb(z) is starlike in U for α > 0 and |β + ηi| ≤ 1 and

(0 ≤ nb < 2;
αλ+ 2α+ 2−

√
∆

2α
≤ nb ≤ αλ+ 2α+ 2 +

√
∆

2α
),

where ∆ := α2(λ+ 2)2 + 4α(λ− 2) + 4.

Proof Let α > 0, λ > 0 and fb(z) satisfy the hypothesis of Theorem 4.1. We put

zf ′
b(z)

fb(z)
=

1 + (nb− 1)w(z)

1− w(z)
, (4.2)

where w(U) is analytic in U with w(0) = 0 and w(z) ̸= 1.

Then by differentiating (4.2) respect to z, we have

[f ′
b(z) + zf ′′

b (z)]fb(z)− z[f ′
b(z)]

2

[fb(z)]2

=
(nb− 1)w′(z)(1− w(z)) + w′(z)[1 + (nb− 1)w(z)]

(1− w(z))2

which implies that

zf ′′
b (z)

fb(z)
+

f ′
b(z)

fb(z)
− z[

f ′
b(z)

fb(z)
]2 =

nbw′(z)

[1− w(z)]2

and when multiplied by fb(z)
f ′
b(z)

gives

1 +
zf ′′

b (z)

f ′
b(z)

− zf ′
b(z)

fb(z)
=

nbzw′(z)

[1− w(z)][1 + (nb− 1)w(z)]
.

We can write

1 +
zf ′′

b (z)

f ′
b(z)

=
nbzw′(z)

[1− w(z)][1 + (nb− 1)w(z)]
+

1 + (nb− 1)w(z)

1− w(z)
(4.3)

which in turn from (4.2) and (4.3) implies (1.5). Therefore

(
zf ′

b(z)

fb(z)
)β+ηi[(

zf ′
b(z)

fb(z)
)(1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

))]

= (
1 + (nb− 1)w(z)

1− w(z)
)β+ηi[(

1 + (nb− 1)w(z)

1− w(z)
)(1− α+ α(1− λ)(

1 + (nb− 1)w(z)

1− w(z)
)+

αλ(
nbzw′(z)

(1− w(z))[1 + (nb− 1)w(z)]
+

1 + (nb− 1)w(z)

1− w(z)
))]

= (
1 + (nb− 1)w(z0)

1− w(z0)
)β+ηi[(1− α)(

1 + (nb− 1)w(z)

1− w(z)
)+

α(
[1 + (nb− 1)w(z)]2 + λnbzw′(z)

(1− w(z))2
)].

Now, we claim that w(z) < 1 (z ∈ U). If there exists a zo in U such that |w(zo)| = 1, then by using

Lemma 2.3, zow
′(z) = kw(zo), where k ≥ 1 is a real number. Setting w(zo) = eiθ (0 ≤ θ ≤ 2π)
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gives

Re{(zof
′
b(zo)

fb(zo)
)β+ηi[(

zof
′
b(zo)

fb(zo)
)(1− α+ α(1− λ)

zof
′
b(zo)

fb(zo)
+ αλ(1 +

zof
′′
b (zo)

f ′
b(zo)

))]}

= Re{(1 + (nb− 1)w(z0)

1− w(z0)
)β+ηi[(1− α)(

1 + (nb− 1)w(z0)

1− w(z0)
)+

α(
[1 + (nb− 1)w(z0)]

2 + λnbz0w
′(z0)

(1− w(z0))2
)]}

= Re{(1 + (nb− 1)w(z0)

1− w(z0)
)β+ηi[(1− α)(

1 + (nb− 1)w(z0)

1− w(z0)
)+

α(
[1 + (nb− 1)w(z0)]

2 + λnbkw(z0)

(1− w(z0))2
)]}

= Re{(1 + (nb− 1)eiθ

1− eiθ
)β+ηi[(1− α)(

1 + (nb− 1)eiθ

1− eiθ
)+

α(
λnbkeiθ + [1 + (nb− 1)eiθ]2

(1− eiθ)2
)]}

= Re{(1 + (nb− 1)eiθ

1− eiθ
)β+ηi[(1− α)(

1 + (nb− 1)eiθ

1− eiθ
)+

α(
λnbkeiθ

(1− eiθ)2
+ [

1 + (nb− 1)eiθ

(1− eiθ)
]2)]}

= Re{(1− nb

2
)β [

cos ln(2− nb) + sin ln(2− nb)i

2
][(1− α)(1− nb

2
)+

α(
−λnbk

4 sin2( θ2 )
+ (1− nb

2
)2 + (

nb

2
)2(

1 + cos θ

1− cos θ
))]}

= (1− nb

2
)β [

cos ln(2− nb)

2
][(1− α)(1− nb

2
)+

α(
−λnbk

4 sin2( θ2 )
+ (1− nb

2
)2 + (

nb

2
)2(

1 + cos θ

1− cos θ
))]

= (1− nb

2
)β [

cos ln(2− nb)

2
][(1− αnb

2
)(1− nb

2
)− αnb

4
(
k + λnbk cos2( θ2 )

sin2( θ2 )
)]

≤ (1− nb

2
)β [

cos ln(2− nb)

2
][(1− nb

2
)(1− αnb

2
)− αλnb

4
], z ∈ U,

since k ≥ 1.

If we let

Re{(zof
′
b(zo)

fb(zo)
)β+ηi[(

zof
′
b(zo)

fb(zo)
)(1− α+ α(1− λ)

zof
′
b(zo)

fb(zo)
+ αλ(1 +

zof
′′
b (zo)

f ′
b(zo)

))]}

≤ (1− nb

2
)β [

cos ln(2− nb)

2
][(1− nb

2
)(1− αnb

2
)− αλnb

4
] = τ(nb), (4.4)

then τ(nb) ≤ 0. From (4.4) we get 0 ≤ nb < 2 and

αλ+ 2α+ 2
√
∆

2α
≤ nb ≤ αλ+ 2α+ 2

√
∆

2α
; ∆ := α2(λ+ 2)2 + 4α(λ− 2) + 4.
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Thus we have

Re{(zof
′
b(zo)

fb(zo)
)β+ηi[(

zof
′
b(zo)

fb(zo)
)(1− α+ α(1− λ)

zof
′
b(zo)

fb(zo)
+ αλ(1 +

zof
′′
b (zo)

f ′
b(zo)

))]}

≤ 0, (4.5)

where 0 ≤ nb < 2 and αλ+2α+2
√
∆

2α ≤ nb ≤ αλ+2α+2
√
∆

2α with ∆ := α2(λ + 2)2 + 4α(λ − 2) + 4,

which is a contradiction to the hypotheses of (4.1).

Therefore, |w(z)| < 1 for all z in U. Hence fb is starlike in U. This completes the proof of

our theorem. �
By taking β = η = 0 in Theorem 4.1, then we get the following corollary as asserted by

Siregar and Darus [10].

Corollary 4.2 Let the n-fold symmetric function fb(z), defined by (1.7), be analytic in U, with
fb(z)
z ̸= 0, z ∈ U. If fb(z) satisfies the inequality:

Re{zf
′
b(z)

fb(z)
[1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

)]}

> (1− nb

2
)(1− αnb

2
)− αλnb

4
, (4.6)

then fb(z) is starlike in U for α > 0 and |β + ηi| ≤ 1 and

(
αλ+ 2α+ 2−

√
∆

2α
≤ nb ≤ αλ+ 2α+ 2 +

√
∆

2α
),

where ∆ := α2(λ+ 2)2 + 4α(λ− 2) + 4.

Remark 4.3 Setting λ = 1 in Theorem 4.1, we arrive to Theorem 4.1 obtained by Pauzi and

Darus [11].

5. Applications of differential inequalities

We apply the following result involving differential inequalities with a view to deriving several

further sufficient conditions for starlikeness of the n-fold symmetric function fb defined by (1.4)

by using Lemma 2.5.

Let us now consider the following implication:

Re{(zf
′
b(z)

fb(z)
)β+ηi[(

zf ′
b(z)

fb(z)
)(1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

)])}

> (1− nb

2
)β [

cos ln(2− nb)

2
][(1− nb

2
)(1− αnb

2
)− αλnb

4
] (5.1)

⇒ Re{(zf
′
b(z)

fb(z)
)µ} > 0, z ∈ U (5.2)

and

(1− nb

2
)β [

cos ln(2− nb)

2
][(1− nb

2
)(1− αnb

2
)− αλnb

4
] < 1, α ≥ 0, λ > 0, β ∈ R; µ ≥ 1.
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If we put p(z) = { zf ′
b(z)

fb(z)
}µ, then (5.2) is equivalent to

Re{αλ
µ

{p(z)}
1−µ
µ zp′(z) + α{p(z)}2/µ + (1− α)p(z)

1
µ − (1− nb

2
)β

[
cos ln(2− nb)

2
]((1− nb

2
)(1− αnb

2
) +

λαnb

4
)} > 0

⇒ Re(p(z)) > 0, z ∈ U. (5.3)

By setting p(z) = u and zp′(z) = v, and letting

Θ(z) =
αλ

µ
u

1−µ
µ v + αu2/µ + (1− α)u

1
µ−

(1− nb

2
)β [

cos ln(2− nb)

2
]((1− nb

2
)(1− αnb

2
) +

λαnb

4
)

for α ≥ 0 and µ ≥ 1, we have Θ(u, v) is continuous in D = (C \ {0} × C), (1, 0) ∈ D and

Re(Θ(1, 0)) = 1− (1− nb

2
)β [

cos ln(2− nb)

2
]((1− nb

2
)(1− αnb

2
) +

λαnb

4
) > 0.

Since

(1− nb

2
)β [

cos ln(2− nb)

2
]((1− nb

2
)(1− αnb

2
) +

λαnb

4
) < 1,

the condition (i) and (ii) of Lemma 2.5 are satisfied. Moreover, for (iu2, v1) ∈ D and v1 ≤
−1

2 (1 + u2
2), we obtain

Re(Θ(iu2, v1)) =
αλ

µ
|u2|

(1−µ)
µ v1 cos(

(1− µ)π

2µ
) + α|u2|

2
µ cos(

π

µ
) + (1− α)|u2|

1
µ cos(

π

2µ
)−

(1− nb

2
)β [

cos ln(2− nb)

2
][(1− nb

2
)(1− αnb

2
) +

λαnb

4
]

≤− αλ

2µ
(1 + u2

2)|u2|
(1−µ)

µ sin(
π

2µ
) + α|u2|

2
µ cos(

π

µ
) + (1− α)|u2|

1
µ cos(

π

2µ
)−

(1− nb

2
)β [

cos ln(2− nb)

2
][(1− nb

2
)(1− αnb

2
) +

λαnb

4
],

which upon putting |u2| = ζ (ζ > 0), yields

Re(Θ(iu2, v1)) ≤ Φ(ζ), (5.4)

where

Φ(ζ) :=− αλ

2µ
(1 + ζ2)ζ

(1−µ)
µ sin(

π

2µ
) + αζ

2
µ cos(

π

µ
) + (1− α)ζ

1
µ cos(

π

2µ
)−

(1− nb

2
)β [

cos ln(2− nb)

2
][(1− nb

2
)(1− αnb

2
) +

λαnb

4
]. (5.5)

Remark 5.1 If, for some choices of the parameters α, λ, µ and nb, we find that Φ(ζ) ≤ 0,

ζ > 0, then we can conclude from (5.4) and Lemma 2.5 that the corresponding implication (5.2)

holds true.

First of all, for the choice: µ = 1 and nb = 1, we have

Theorem 5.2 If n-fold symmetric function fb, defined by (1.4) and analytic in U with

fb(z)

z
̸= 0, z ∈ U,
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satisfies the following inequality:

Re{(zf
′
b(z)

fb(z)
)β+ηi[(

zf ′
b(z)

fb(z)
)([1− α+ α(1− λ)

zf ′
b(z)

fb(z)
+ αλ(1 +

zf ′′
b (z)

f ′
b(z)

))]} > 0, (5.6)

then fb ∈ S∗ for any real α ≥ 0 and λ > 0.

Proof For µ = 1 and nb = 1, from (5.5) we find that

Φ(ζ) := −α

2
(1 + 3αs2)− 1

8
(α− 2)(1− αλ

2
)β+ηi ≤ 0, ζ ∈ R,

which implies Theorem 5.2 in view of the remark. �
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