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Abstract In this paper, we present a general approach to the construction of the Said-type

generalized Ball basis functions. The advantage of our approach lies in the fact that it can be

used to derive the expressions for polynomials of not only odd degrees but also even degrees

in terms of the Said-type generalized Ball basis functions. We then define dual functionals for

the Said-type generalized Ball basis in a very natural manner and bring to light the integral

property of the Said-type generalized Ball basis functions. Last but not least, new polynomial

basis functions are defined which include the Said-type generalized Ball basis functions as their

special case, and the corresponding dual functionals and Marsden-like identity are obtained.
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1. Introduction

Since Ball developed a cubic basis in his lofting surface program Consurf [1,2] in 1974, the Ball

curves and surfaces, as a new method for computer aided geometric design, have aroused more and

more global attention. Said [3] introduced a kind of generalized Ball basis by extending the Ball’s

cubic basis to the general polynomials of arbitrary odd degrees, defined the so-called generalized

Ball curves of higher orders and obtained a recursive algorithm for efficient computation of the

generalized Ball curves. Wang [4] presented another kind of generalized Ball basis by extending

the Ball’s basis to the general polynomials of arbitrary degrees and defined the generalized

Ball curves of higher orders. The generalized Ball basis defined by Said [3] and Wang [4] are

usually called the Said-type generalized Ball basis and the Wang-type generalized Ball basis,

respectively. Goodman and Said [5, 6] investigated some properties of the Said-type generalized

Ball curves and surfaces, including degree raising and lowering properties, approximate degree

lowering properties and shape preserving properties. Hu et al. [7] further extended the Said-type

generalized Ball basis functions to the arbitrary polynomial space by introducing the Said-type

generalized Ball basis in even cases and studied the degree elevation and reduction, recursive
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algorithm, enveloping theorem and Bézier representation of both the Said-type and the Wang-

type generalized Ball curves. Xi [8], and Othman and Goldman [9] independently launched the

study of the dual basis functions for the Said-type generalized Ball basis of odd degrees, and

Ding et al. [10] further worked out the dual basis for the Said-type generalized Ball basis of

even degrees. As we know, the Hermite two-point Taylor interpolation method, as suggested

by Said in [3], can be used to construct the Said-type generalized Ball basis polynomials of

odd degrees, but fails for one to obtain the generalized Ball basis polynomials of even degrees.

Our purpose in this paper is to present a new approach to the unified construction of the Said-

type generalized Ball basis of both odd degrees and even degrees, which will be helpful and of

enlightenment to study the generalized Ball surfaces on a triangular domain. As a by-product,

we define the dual functionals in a very natural and easy manner, which seems to be a hard job

in Xi’s paper [8] and in the paper by Ding et al. [10]. We work out the integral property of the

Said-type generalized Ball basis functions and point out the difference between Bézier basis and

the Said-type generalized Ball basis in this respect. Last but not least, a new kind of polynomial

basis functions are defined by extending the two-point based Said-type generalized Ball basis to

multiple-point based ones which include the Said-type generalized Ball basis functions as their

special case, and obtain the corresponding dual functionals and Marsden-like identity.

2. Said-type generalized Ball basis

Othman and Goldman [9] gave an expression for polynomial p(t) of degree 2m+1 in terms of

the Said-type generalized Ball basis, which is based on the Hermite two-point Taylor interpolation

[3]. In this section we derive slightly different expressions for polynomial p(t) of degree 2m + 1

and degree 2m, respectively by a new approach.

Proposition 2.1 For any polynomial p(t) of degree 2m+ 1, there holds

p(t) =
m∑
i=0

ti(1− t)m+1
[ i∑
k=0

(
m+ i− k

m

)
1

k!
p(k)(0)

]
+

m∑
i=0

(1− t)itm+1
[ i∑
k=0

(
m+ i− k

m

)
(−1)k

k!
p(k)(1)

]
. (2.1)

Proof It is easy to show that the 2m+ 2 polynomials {ti(1− t)m+1}mi=0 and {(1− t)itm+1}mi=0

are linearly independent and therefore form a basis for the space P2m+1 of all polynomials of

degree 2m+ 1. For p(t) ∈ P2m+1, there exist ai, bi, i = 0, 1, . . . ,m such that

p(t) =
m∑
i=0

ait
i(1− t)m+1 +

m∑
i=0

bi(1− t)itm+1. (2.2)

In order to find out the coefficients ai,i = 0, 1, . . . ,m, we rewrite the above expression as

follows

(1− t)−(m+1)p(t) =
m∑
i=0

ait
i + (1− t)−(m+1)

m∑
i=0

bi(1− t)itm+1
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from which we see for k = 0, 1, . . . ,m.

ak =
1

k!

dk

dtk
[(1− t)−(m+1)p(t)]|t=0 =

1

k!

k∑
l=0

(
k

l

)
(m+ k − l)!

m!
p(l)(0)

=
k∑

l=0

(
m+ k − l

m

)
1

l!
p(l)(0).

To find out the coefficients bi,i = 0, 1, . . . ,m, we rewrite (2.2) as follows

t−(m+1)p(t) = t−(m+1)
m∑
i=0

ait
i(1− t)m+1 +

m∑
i=0

bi(1− t)i.

Differentiating the above expression k times at t = 1, one gets for k = 0, 1, . . . ,m

bk =
(−1)k

k!

dk

dtk
[t−(m+1)p(t)]|t=1

=
(−1)k

k!

k∑
l=0

(
k

l

)
(m+ k − l)!

m!
p(l)(1)(−1)k−l

=

k∑
l=0

(
m+ k − l

m

)
(−1)l

l!
p(l)(1).

Consequently

p(t) =
m∑
i=0

ti(1− t)m+1
[ i∑
k=0

(
m+ i− k

m

)
1

k!
p(k)(0)

]
+

m∑
i=0

(1− t)itm+1
[ i∑
k=0

(
m+ i− k

m

)
(−1)k

k!
p(k)(1)

]
.

Proposition 2.1 is proved. �
In particular, if one sets p(t) = 1 in (2.1), then one obtains

m∑
i=0

(
m+ i

m

)
ti(1− t)m+1 +

m∑
i=0

(
m+ i

m

)
(1− t)itm+1 = 1. (2.3)

Now let  β2m+1
i (t) =

(
m+i
m

)
ti(1− t)m+1, 0 ≤ i ≤ m;

β2m+1
2m+1−i(t) =

(
m+i
m

)
(1− t)itm+1, 0 ≤ i ≤ m,

(2.4)

which is the very Said-type generalized Ball basis defined in [5, 6], then the identical relation

(2.3) now turns out to be nothing but the property of partition of unity for Said-type generalized

Ball basis {β2m+1
i (t)}2m+1

i=0 and expression (2.1) can now be rewritten as

p(t) =
m∑
i=0

β2m+1
i (t)

(
m+ i

m

)−1[ i∑
k=0

(
m+ i− k

m

)
1

k!
p(k)(0)

]
+

m∑
i=0

β2m+1
2m+1−i(t)

(
m+ i

m

)−1[ i∑
k=0

(
m+ i− k

m

)
(−1)k

k!
p(k)(1)

]
. (2.5)
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In particular, if one sets p(t) = (t− x)r, then

p(k)(t)

k!
=

(
r

k

)
(t− x)r−k

and by (2.5) we have for 0 ≤ r ≤ 2m+ 1

(t− x)r =
m∑
i=0

β2m+1
i (t)

[ i∑
k=0

(−1)r−k

(
m+i−k

m

)(
r
k

)(
m+i
m

) xr−k
]
+

m∑
i=0

β2m+1
2m+1−i(t)

[ i∑
k=0

(−1)k
(
m+i−k

m

)(
r
k

)(
m+i
m

) (1− x)r−k
]
. (2.6)

This is the Marsden’s identity given in [9]. If one sets x = 0 in (2.6), then we obtain for 0 ≤ r ≤ m

tr =
m∑
i=r

β2m+1
i (t)

(
m+ i

m

)−1(
m+ i− r

m

)
+

m∑
i=0

β2m+1
2m+1−i(t)

(
m+ i

m

)−1 i∑
k=0

(
m+ i− k

m

)
(−1)k

(
r

k

)

=
m∑
i=r

β2m+1
i (t)

(
m+ i

m

)−1(
m+ i− r

m

)
+

m∑
i=0

β2m+1
2m+1−i(t)

(
m+ i

m

)−1(
m+ i− r

i

)
(2.7)

where the combinatorial identical relation

i∑
k=0

(
m+ i− k

m

)
(−1)k

(
r

k

)
=

i∑
k=0

(
m+ i− k

i− k

)(
k − r − 1

k

)
=

(
m− r + i

i

)
is used. If m < r ≤ 2m+ 1, then we have

tr =
m∑
i=0

β2m+1
2m+1−i(t)

(
m+ i

m

)−1 i∑
k=0

(
m+ i− k

m

)
(−1)k

(
r

k

)

=
m∑
i=0

β2m+1
2m+1−i(t)

(
m+ i

m

)−1(
m+ i− r

i

)
. (2.8)

(2.7) and (2.8) are the Marsden’s identities developed by Xi in [8].

Similarly we can get

Proposition 2.2 For any polynomial p(t) of degree 2m, it can be expressed as

p(t) =

m−1∑
i=0

ti(1− t)m+1
[ i∑
k=0

(
m+ i− k

m

)
1

k!
p(k)(0)

]
+

m−1∑
i=0

(1− t)itm+1
[ i∑
k=0

(
m+ i− k

m

)
(−1)k

k!
p(k)(1)

]
+

tm(1− t)m
[ m∑
k=0

(
2m− k

m

)
1

k!
p(k)(0)

]
(2.9)
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or

p(t) =
m−1∑
i=0

ti(1− t)m+1
[ i∑
k=0

(
m+ i− k

m

)
1

k!
p(k)(0)

]
+

m−1∑
i=0

(1− t)itm+1
[ i∑
k=0

(
m+ i− k

m

)
(−1)k

k!
p(k)(1)

]
+

tm(1− t)m
[ m∑
k=0

(
2m− k

m

)
(−1)k

k!
p(k)(1)

]
. (2.10)

This is the Said-type generalized Ball basis in even cases extended by Hu et al in [7]. Now

the identical relation (2.9) turns out to be the property of partition of unity for even Said-type

generalized Ball basis {β2m
i (t)}2mi=0 and expressions (2.9) and (2.10) can now be rewritten as

p(t) =

m∑
i=0

β2m
i (t)

(
m+ i

m

)−1[ i∑
k=0

(
m+ i− k

m

)
1

k!
p(k)(0)

]
+

m−1∑
i=0

β2m
2m−i(t)

(
m+ i

m

)−1[ i∑
k=0

(
m+ i− k

m

)
(−1)k

k!
p(k)(1)

]
(2.11)

or

p(t) =
m−1∑
i=0

β2m
i (t)

(
m+ i

m

)−1[ i∑
k=0

(
m+ i− k

m

)
1

k!
p(k)(0)

]
+

m∑
i=0

β2m
2m−i(t)

(
m+ i

m

)−1[ i∑
k=0

(
m+ i− k

m

)
(−1)k

k!
p(k)(1)

]
. (2.12)

In particular, if one sets p(t) = (t − x)r, then by (2.11) and (2.12) for 0 ≤ r ≤ 2m we have the

following Marsden’s identity

(t− x)r =
m∑
i=0

β2m
i (t)

[ i∑
k=0

(−1)r−k

(
m+i−k

m

)(
r
k

)(
m+i
m

) xr−k
]
+

m−1∑
i=0

β2m
2m−i(t)

[ i∑
k=0

(−1)k
(
m+i−k

m

)(
r
k

)(
m+i
m

) (1− x)r−k
]

(2.13)

or

(t− x)r =

m−1∑
i=0

β2m
i (t)

[ i∑
k=0

(−1)r−k

(
m+i−k

m

)(
r
k

)(
m+i
m

) xr−k
]
+

m∑
i=0

β2m
2m−i(t)

[ i∑
k=0

(−1)k
(
m+i−k

m

)(
r
k

)(
m+i
m

) (1− x)r−k
]
. (2.14)

3. Dual functionals of Said-type generalized Ball basis

In this section, we focus on how to construct the dual functionals for Said-type generalized

Ball basis functions. Although the dual basis was discussed in [8–10], our approach is construc-

tive and natural.
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Proposition 3.1 The dual functionals for the Said-type generalized Ball basis functions β2m+1
i (t)

are given by

λif =
(
m+i
m

)−1 ∑i
k=0

(
m+i−k

m

)
1
k!f

(k)(0), i = 0, 1, . . . ,m;

λ2m+1−if =
(
m+i
m

)−1 ∑i
k=0

(
m+i−k

m

) (−1)k

k! f (k)(1), i = 0, 1, . . . ,m.
(3.1)

Proof By (2.5) we have

β2m+1
j (t) =

m∑
i=0

β2m+1
i (t)λiβ

2m+1
j (t) +

m∑
i=0

β2m+1
2m+1−i(t)λ2m+1−iβ

2m+1
j (t). (3.2)

From the independence of {β2m+1
i (t)}2m+1

i=0 it follows

λiβ
2m+1
j = δij =

{
1, for i = j;

0, for i ̸= j.

This completes the proof of Proposition 3.1. �
Similarly by using (2.14) and (3.1) one can work out the following proposition concerning

the even case.

Proposition 3.2 The dual functionals for the Said-type generalized Ball basis functions β2m
i (t)

are given by

µif =

(
m+ i

m

)−1 i∑
k=0

(
m+ i− k

m

)
1

k!
f (k)(0), i = 0, 1, . . . ,m;

µ2m−if =

(
m+ i

m

)−1 i∑
k=0

(
m+ i− k

m

)
(−1)k

k!
f (k)(1), i = 0, 1, . . . ,m− 1

(3.3)

or

µif =

(
m+ i

m

)−1 i∑
k=0

(
m+ i− k

m

)
1

k!
f (k)(0), i = 0, 1, . . . ,m− 1;

µ2m−if =

(
m+ i

m

)−1 i∑
k=0

(
m+ i− k

m

)
(−1)k

k!
f (k)(1), i = 0, 1, . . . ,m.

(3.4)

4. Integral property of Said-type generalized Ball basis

For the Bézier basis functions

Bn
i (t) =

(
n

i

)
ti(1− t)n−i,

there is a well known integral formula∫ 1

0

Bn
i (t)dt =

1

n+ 1
, ∀i = 0, 1, . . . , n.

This formula shows that the Bézier basis functions are uniformly distributed on the interval [0, 1],

or in other words, each of the n+ 1 basis functions has the same moment. However, this is not

the case for the Said-type generalized Ball basis functions.

Proposition 4.1 For the Said-type generalized Ball basis functions β2m+1
i (t) defined in (2.4)
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there holds∫ 1

0

β2m+1
i (t)dt =

∫ 1

0

β2m+1
2m+1−i(t)dt =

m+ 1

(m+ i+ 1)(m+ i+ 2)
, i = 0, 1, . . . ,m, (4.1)

and for the Said-type generalized Ball basis functions β2m
i (t) defined in (2.13) there holds∫ 1

0

β2m
i (t)dt =

∫ 1

0

β2m
2m−i(t)dt =

m+ 1

(m+ i+ 1)(m+ i+ 2)
, i = 0, 1, . . . ,m− 1, (4.2)

and ∫ 1

0

β2m
m (t)dt =

1

2m+ 1
. (4.3)

Proof Making use of the definition of the beta functions and the relation between beta functions

and gamma functions, we have∫ 1

0

β2m+1
i (t)dt =

∫ 1

0

β2m+1
2m+1−i(t)dt =

(
m+ i

m

)∫ 1

0

ti(1− t)m+1dt

=

(
m+ i

m

)∫ 1

0

(1− t)itm+1dt =

(
m+ i

m

)
B(i+ 1,m+ 2)

=
(m+ i)!

m!i!

Γ(i+ 1)Γ(m+ 2)

Γ(m+ i+ 3)
=

(m+ i)!

m!i!

i!(m+ 1)!

(m+ i+ 2)!

=
m+ 1

(m+ i+ 1)(m+ i+ 2)
, i = 0, 1, . . . ,m.

Similarly one can prove (4.2) and (4.3). Proposition 4.1 is proved. �

Clearly the Said-type generalized Ball basis functions neither in odd cases nor in even cases

are uniformly distributed on the interval [0, 1]. Their moments are symmetric and decrease with

increasing index i. β2m+1
m (t) and β2m+1

m+1 (t) have the minimum moment 1/(4m+2) while β2m
m−1(t)

and β2m
m+1(t) share the minimum moment (m+ 1)/[m(4m+ 2)]. It is easy to get

m∑
i=0

∫ 1

0

β2m+1
i (t)dt =

m∑
i=0

∫ 1

0

β2m+1
2m+1−i(t)dt =

1

2
,

m−1∑
i=0

∫ 1

0

β2m
i (t)dt =

m−1∑
i=0

∫ 1

0

β2m
2m−i(t)dt =

m

2m+ 1
,

which implies that the total moments of the Said-type generalized Ball basis functions in both

odd and even cases sum up to the unit one.

5. New polynomial basis functions

In this section, we define a new kind of polynomial basis functions based on divided d-

ifferences, which include the Said-type generalized Ball basis functions as their special case.

As we know, the divided differences [11] of a bivariate function f(x, y) at the grid of points



616 Xinjue WANG and Jieqing TAN

{x1, x2, . . . , xr} × {y1, y2, . . . , ys} are defined as follows

f [x; y] = f(x, y),

f [x; y1, y2] =
f [x; y2]− f [x; y1]

y2 − y1
,

f [x; y1, y2, . . . , ys] =
f [x; y1, . . . , ys−2,ys]− f [x; y1, . . . , ys−1]

ys − ys−1
,

f [x1, x2; y] =
f [x2; y]− f [x1; y]

x2 − x1
,

f [x1, x2, . . . , xr; y] =
f [x1, . . . , xr−2, xr; y]− f [x1, . . . , xr−1; y]

xr − xr−1
,

f [x1, . . . , xr; y1, . . . , ys] =
f [x1, . . . , xr; y1, . . . , ys−2,ys]− f [x1, . . . , xr; y1, . . . , ys−1]

ys − ys−1

=
f [x1, . . . , xr−2, xr; y1, . . . , ys]− f [x1, . . . , xr−1; y1, . . . , ys]

xr − xr−1
.

Proposition 5.1 Suppose that p(t) is a polynomial of degree 2m+1. Then p(t) can be expressed

as

p(t) =
m∑
i=0

i∏
j=1

(t− uj)
m+1∏
j=1

(t− vj)
i+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , ui+1; v1, . . . , vm+1]+

m∑
i=0

i∏
j=1

(t− vj)

m+1∏
j=1

(t− uj)

i+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vi+1;u1, . . . , um+1],

where ui ̸= vj for i = 0, 1, . . . ,m; j = 0, 1, . . . ,m, q(x, y) = 1/(x− y), and p[u1, . . . , uk] denotes

the divided difference of p(t) at points u1, . . . , uk while q[uk, . . . , ui+1; v1, . . . , vm+1] stands for the

divided difference of bivariate function q(x, y) at grid of points {uk, . . . , ui+1} × {v1, . . . , vm+1}.

Proof It is easy to verify that {
∏i

j=1(t−uj)
∏m+1

j=1 (t−vj)}mi=0, {
∏i

j=1(t−vj)
∏m+1

j=1 (t−uj)}mi=0

are the basis functions of the polynomial space P2m+1 of degree 2m+1, which means that there

exist ai, bi, i = 0, 1, . . . ,m such that

p(t) =
m∑
i=0

ai

i∏
j=1

(t− uj)
m+1∏
j=1

(t− vj) +
m∑
i=0

bi

i∏
j=1

(t− vj)
m+1∏
j=1

(t− uj).

Therefore

ai = (
p(t)∏m+1

j=1 (t− vj)
)[u1, . . . , ui+1]

=
i+1∑
k=1

p[u1, . . . , uk](
1∏m+1

j=1 (t− vj)
)[uk, . . . , ui+1]

=
i+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , ui+1; v1, . . . , vm+1]
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and

bi = (
p(t)∏m+1

j=1 (t− uj)
)[v1, . . . , vi+1]

=
i+1∑
k=1

p[v1, . . . , vk](
1∏m+1

j=1 (t− uj)
)[vk, . . . , vi+1]

=
i+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vi+1;u1, . . . , um+1].

Substituting the above ai, bi into the expression of p(t), one gets

p(t) =

m∑
i=0

i∏
j=1

(t− uj)

m+1∏
j=1

(t− vj)

i+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , ui+1; v1, . . . , vm+1]+

m∑
i=0

i∏
j=1

(t− vj)
m+1∏
j=1

(t− uj)
i+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vi+1;u1, . . . , um+1]

as asserted. �
Let p(t) = 1. Then we have by Proposition 5.1

m∑
i=0

q[u1, . . . , ui+1; v1, . . . , vm+1]
i∏

j=1

(t− uj)
m+1∏
j=1

(t− vj)+

m∑
i=0

q[v1, . . . , vi+1;u1, . . . , um+1]
i∏

j=1

(t− vj)
m+1∏
j=1

(t− uj) = 1.

Set for i = 0, 1, . . . ,m

β2m+1
i (t;u, v) = q[u1, . . . , ui+1; v1, . . . , vm+1]

i∏
j=1

(t− uj)
m+1∏
j=1

(t− vj)

and

β2m+1
2m+1−i(t;u, v) = q[v1, . . . , vi+1;u1, . . . , um+1]

i∏
j=1

(t− vj)
m+1∏
j=1

(t− uj).

Then every p(t) in P2m+1 can be expressed in terms of the basis functions {β2m+1
i (t;u, v)}2m+1

i=0

p(t) =

m∑
i=0

β2m+1
i (t;u, v)

i+1∑
k=1

q[uk, . . . , ui+1; v1, . . . , vm+1]

q[u1, . . . , ui+1; v1, . . . , vm+1]
p[u1, . . . , uk]+

m∑
i=0

β2m+1
2m+1−i(t;u, v)

i+1∑
k=1

q[vk, . . . , vi+1;u1, . . . , um+1]

q[v1, . . . , vi+1;u1, . . . , um+1]
p[v1, . . . , vk].

Now we define the following linear functionals

λif =
i+1∑
k=1

q[uk, . . . , ui+1; v1, . . . , vm+1]

q[u1, . . . , ui+1; v1, . . . , vm+1]
f [u1, . . . , uk], i = 0, 1, . . . ,m,

λ2m+1−if =
i+1∑
k=1

q[vk, . . . , vi+1;u1, . . . , um+1]

q[v1, . . . , vi+1;u1, . . . , um+1]
f [v1, . . . , vk], i = 0, 1, . . . ,m.



618 Xinjue WANG and Jieqing TAN

Then

p(t) =
m∑
i=0

(λip)β
2m+1
i (t;u, v) +

m∑
i=0

(λ2m+1−ip)β
2m+1
2m+1−i(t;u, v)

and the independence of {β2m+1
i (t;u, v)}2m+1

i=0 implies

λiβ
2m+1
j (t;u, v) = δi,j , i, j = 0, 1, . . . , 2m+ 1.

Therefore λif, i = 0, 1, . . . , 2m + 1, are the dual functionals with respect to the basis functions

{β2m+1
i (t;u, v)}2m+1

i=0 . In order to derive the dual functionals in even cases, we need the following

lemma.

Lemma 5.2 For p(t) ∈ P2m and q(x, y) = 1/(x− y), there holds

m+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , um+1; v1, . . . , vm+1]

= −
m+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vm+1;u1, . . . , um+1].

Proof It suffices to prove that Lemma 5.2 is valid for p(t) =
∏n

j=1(t − uj) for 0 ≤ n ≤ m and

p(t) =
∏m+1

j=1 (t− uj)
∏n

j=1(t− vj) for 0 ≤ n ≤ m− 1. From

m+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vm+1;u1, . . . , um+1]

= (
p(t)∏m+1

j=1 (t− uj)
)[v1, . . . , vm+1],

it follows for p(t) =
∏n

j=1(t− uj) for 0 ≤ n ≤ m

m+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vm+1;u1, . . . , um+1]

= (
1∏m+1

j=n+1(t− uj)
)[v1, . . . , vm+1]

= q[v1, . . . , vm+1;un+1, . . . , um+1]

and
m+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , um+1; v1, . . . , vm+1]

= p[u1, . . . , un+1]q[un+1, . . . , um+1; v1, . . . , vm+1]

= −q[v1, . . . , vm+1;un+1, . . . , um+1],

since q(x, y) = −q(y, x).

Therefore Lemma 5.2 holds true for p(t) =
∏n

j=1(t−uj), 0 ≤ n ≤ m. Since p(t) =
∏m+1

j=1 (t−
uj)

∏n
j=1(t−vj) for 0 ≤ n ≤ m−1, we have p[u1, . . . , uk] = 0, k = 1, 2, . . . ,m+1, which leads to

m+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , um+1; v1, . . . , vm+1] = 0.
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In this case, we also have

m+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vm+1;u1, . . . , um+1]

= (
p(t)∏m+1

j=1 (t− uj)
)[v1, . . . , vm+1]

=
( n∏

j=1

(t− vj)
)
[v1, . . . , vm+1] = 0.

As a result, Lemma 5.2 also holds true for p(t) =
∏m+1

j=1 (t−uj)
∏n

j=1(t−vj) for 0 ≤ n ≤ m−1.

This completes the proof of Lemma 5.2. �

Proposition 5.3 For p(t) ∈ P2m and q(x, y) = 1/(x− y) there holds

p(t) =

m−1∑
i=0

i∏
j=1

(t− uj)

m+1∏
j=1

(t− vj)

i+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , ui+1; v1, . . . , vm+1]+

m−1∑
i=0

i∏
j=1

(t− vj)
m+1∏
j=1

(t− uj)
i+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vi+1;u1, . . . , um+1]+

m∏
j=1

(t− uj)(t− vj)(um+1 − vm+1)
m+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , um+1; v1, . . . , vm+1].

Proof By Proposition 5.1 and Lemma 5.2

p(t) =
m−1∑
i=0

i∏
j=1

(t− uj)
m+1∏
j=1

(t− vj)
i+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , ui+1; v1, . . . , vm+1]+

m−1∑
i=0

i∏
j=1

(t− vj)
m+1∏
j=1

(t− uj)
i+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vi+1;u1, . . . , um+1]+

m∏
j=1

(t− uj)(t− vj)((t− vm+1)
m+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , um+1; v1, . . . , vm+1]+

(t− um+1)
m+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vm+1;u1, . . . , um+1])

=
m−1∑
i=0

i∏
j=1

(t− uj)
m+1∏
j=1

(t− vj)
i+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , ui+1; v1, . . . , vm+1]+

m−1∑
i=0

i∏
j=1

(t− vj)
m+1∏
j=1

(t− uj)
i+1∑
k=1

p[v1, . . . , vk]q[vk, . . . , vi+1;u1, . . . , um+1]+

m∏
j=1

(t− uj)(t− vj)(um+1 − vm+1)
m+1∑
k=1

p[u1, . . . , uk]q[uk, . . . , um+1; v1, . . . , vm+1].

Proposition 5.3 is proved. �
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Let

β2m
i (t;u, v) = q[u1, . . . , ui+1; v1, . . . , vm+1]

i∏
j=1

(t− uj)

m+1∏
j=1

(t− vj), 0 ≤ i ≤ m− 1,

β2m
2m−i(t;u, v) = q[v1, . . . , vi+1;u1, . . . , um+1]

i∏
j=1

(t− vj)
m+1∏
j=1

(t− uj), 0 ≤ i ≤ m− 1,

β2m
m (t;u, v) = (um+1 − vm+1)q[u1, . . . , um+1; v1, . . . , vm+1]

m∏
j=1

(t− uj)(t− vj).

Then p(t) can be expressed as the linear combination of β2m
i (t;u, v), i = 0, 1, . . . , 2m

p(t) =

m−1∑
i=0

β2m
i (t;u, v)

i+1∑
k=1

q[uk, . . . , ui+1; v1, . . . , vm+1]

q[u1, . . . , ui+1; v1, . . . , vm+1]
p[u1, . . . , uk]+

m−1∑
i=0

β2m
2m−i(t;u, v)

i+1∑
k=1

q[vk, . . . , vi+1;u1, . . . , um+1]

q[v1, . . . , vi+1;u1, . . . , um+1]
p[v1, . . . , vk]+

β2m
m (t;u, v)

m+1∑
k=1

q[uk, . . . , um+1; v1, . . . , vm+1]

q[u1, . . . , um+1; v1, . . . , vm+1]
p[u1, . . . , uk].

Now we define the following linear functionals

λif =
i+1∑
k=1

q[uk, . . . , ui+1; v1, . . . , vm+1]

q[u1, . . . , ui+1; v1, . . . , vm+1]
f [u1, . . . , uk], i = 0, 1, . . . ,m,

λ2m−if =

i+1∑
k=1

q[vk, . . . , vi+1;u1, . . . , um+1]

q[v1, . . . , vi+1;u1, . . . , um+1]
f [v1, . . . , vk], i = 0, 1, . . . ,m− 1.

Then

p(t) =
m∑
i=0

(λip)β
2m
i (t;u, v) +

m−1∑
i=0

(λ2m−ip)β
2m
2m−i(t;u, v).

From

β2m
j (t;u, v) =

m∑
i=0

(λiβ
2m
j (t;u, v))β2m

i (t;u, v) +

m−1∑
i=0

(λ2m−iβ
2m
j (t;u, v))β2m

2m−i(t;u, v)

and the independence of {β2m
i (t;u, v)}2mi=0 it follows

λiβ
2m
j (t;u, v) = δi,j , i, j = 0, 1, . . . , 2m.

Therefore λif, i = 0, 1, . . . , 2m, are the dual functionals with respect to the basis functions

{β2m
i (t;u, v)}2mi=0. Notice

(· − x)r[u1, . . . , uk] =

{
0, k > r + 1;∑k

j=1
(uj−x)r

(uj−u1)···(uj−uj−1)(uj−uj+1)···(uj−uk)
, k ≤ r + 1,
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we obtain the following Marsden-like identity

(t− x)r =
m∑
i=0

β2m+1
i (t;u, v)

min{r+1,i+1}∑
k=1

q[uk, . . . , ui+1; v1, . . . , vm+1]

q[u1, . . . , ui+1; v1, . . . , vm+1]
·

k∑
j=1

(uj − x)r

(uj − u1) · · · (uj − uj−1)(uj − uj+1) · · · (uj − uk)
+

m∑
i=0

β2m+1
2m+1−i(t;u, v)

min{r+1,i+1}∑
k=1

q[vk, . . . , vi+1;u1, . . . , um+1]

q[v1, . . . , vi+1;u1, . . . , um+1]
·

k∑
j=1

(vj − x)r

(vj − v1) · · · (vj − vj−1)(vj − vj+1) · · · (vj − vk)
.

Denote by I(u1, . . . , uk) the smallest interval that contains u1, . . . , uk. Then making use of

the relation between divided differences and derivatives, one gets

p[u1, . . . , uk] =
p(k−1)(ξk)

(k − 1)!
, ξk ∈ I(u1, . . . , uk),

p[v1, . . . , vk] =
p(k−1)(ηk)

(k − 1)!
, ηk ∈ I(v1, . . . , vk),

q[uk, . . . , ui+1; v1, . . . , vm+1] =
1

(i− k + 1)!m!

∂i−k+m+1

∂xi−k+1∂ym
q(ξk,i, η)

=(−1)m+1

(
m+ i− k + 1

m

)
(η − ξk,i)

−(m+i−k+2)

and

q[vk, . . . , vi+1;u1, . . . , um+1] = (−1)m+1

(
m+ i− k + 1

m

)
(ξ − ηk,i)

−(m+i−k+2),

where ξk,i ∈ I(uk, . . . , ui+1), η ∈ I(v1, . . . , vm+1), ξ ∈ I(u1, . . . , um+1), ηk,i ∈ I(vk, . . . , vi+1).

Therefore for p(t) ∈ P2m+1, we have

p(t) =

m∑
i=0

i∏
j=1

(t− uj)

m+1∏
j=1

(vj − t)

i∑
k=0

(
m+ i− k

m

)
p(k)(ξk)

k!
(η − ξk+1,i)

−(m+i−k+1)+

m∑
i=0

i∏
j=1

(vj − t)
m+1∏
j=1

(t− uj)
i∑

k=0

(
m+ i− k

m

)
(−1)kp(k)(ηk)

k!
(ηk+1,i − ξ)−(m+i−k+1).

In the particular case when u1 = u2 = · · · = um+1 = 0, v1 = v2 = · · · = vm+1 = 1, the above

expression turns out to be

p(t) =
m∑
i=0

ti(1− t)m+1
i∑

k=0

(
m+ i− k

m

)
p(k)(0)

k!
+

m∑
i=0

(1− t)itm+1
i∑

k=0

(
m+ i− k

m

)
(−1)kp(k)(1)

k!

which is the very expression in Proposition 2.1.
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6. Conclusion

We first present a new approach to the unified construction of Said-type generalized Ball

basis of both odd degrees and even degrees. The advantage of our approach is based on the

fact that it can be used to derive the expressions for polynomials of not only odd degrees but

also even degrees in terms of the Said-type generalized Ball basis functions. We then define the

dual functionals for the Said-type generalized Ball basis in a very natural manner and bring

to light the integral property of the Said-type generalized Ball basis functions. Last we extend

the Said-type generalized Ball basis functions to multi-point case by defining new polynomial

basis functions, which include Said-type generalized Ball basis functions as their special case,

and the corresponding dual functionals and Marsden-like identity are obtained. Our future work

will be focused on exploring the applications of the new polynomial basis functions in numerical

approximation and geometric modeling.
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