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Abstract In some applications, there are signals with piecewise structure to be recovered. In

this paper, we propose a piecewise OMP (P OMP) method which aims to preserve the piecewise

sparse structure (or the small-scaled entries) of piecewise signals. Besides the merits of OMP,

the P OMP, which is a generalization of the combination of CoSaMP and OMMP (Orthogonal

Multi-matching Pursuit) on piecewise sparse recovery, possesses the advantages of comparable

approximation error decay as CoSaMP with more relaxed sufficient condition and better recovery

success rate. Moreover, the P OMP algorithm recovers the piecewise sparse signal according to its

piecewise structure, which results in better details preservation. Numerical experiments indicate

that compared with CoSaMP, OMP, OMMP and BP methods, the P OMP algorithm is more

effective and robust for piecewise sparse recovery.
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1. Introduction

In this paper, we consider recovering a sparse signal x∗ ∈ Rn from its noisy linear measure-

ments

b = Ax∗ + e, (1.1)

where b ∈ Rm is a measurement vector, A ∈ Rm×n is a measurement matrix, and e ∈ N(0, σ2In)

is Gaussian noise. The sparse vector x∗ has s ≤ m < n nonzero entries.

The key of recovering a signal from its noisy measurement (1.1) is to find the support of the

signal, i.e., find the set S satisfying supp(x∗) = S, it is named as “exact support recovery”. In

some applications, the signal is indeed “piecewise sparse”. To be general, we recover a sparse

signal x = (x1, . . . ,xN )T which is piecewise sparse structured by a partition of support set

S = (Si)
N
i=1. Denote the corresponding partition of D = {1, . . . , n} as D = (Di)

N
i=1. It is

clear that Si ⊆ Di. Then we recover N sub-signals xi (xi ∈ Rni is si-sparse vector on set Di,

where si = |Si|) for i = 1, . . . , N , respectively and simultaneously. We call this type of signal

as “piecewise sparse” vector, denoted by (s1, . . . , sN )-sparse vector. According to the piecewise

structure of the signal x, the measurement matrix A is also structured as A = [A1, . . . , AN ]
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where Ai ∈ Rm×ni . Then the linear measurements (1.1) can be rewritten as

b =

N∑
i=1

Aix
∗
i + ϵ.

Remark 1.1 It is necessary to claim that the piecewise sparse vector is quite different from block

sparse vector mentioned in [1–4]. A block s-sparse vector x = (x[1], . . . , x[N ])T is assumed to

have at most s blocks with nonzero entries while each block x[l] (l = 1, . . . , N) is not necessary

sparse. A piecewise sparse vector x = (x1, . . . ,xN )T is partitioned into N blocks and it is

assumed that every xi ∈ Rni containing nonzero entries is sparse.

Denote s = s1 + · · ·+ sN , the piecewise sparse vector x is also a global s-sparse vector. One

approach for solving (1.1) is greedy method, which approximates the l0 minimizing solution. One

of the most popular greedy method is the orthogonal matching pursuit (OMP) as proposed in [5–

7]. It iteratively adds components to the support of the approximation xk whose correlation to the

current residual is maximal. Many other greedy methods for sparse recovery have been proposed,

for example, iterative hard thresholding (IHT) [8], stagewise OMP (StOMP) [9], regularized OMP

(ROMP) [10, 11], compressive sampling matching pursuit (CoSaMP) [12], Orthogonal Multi-

matching Pursuit (OMMP) (or named KOMP, MOMP, OSGA and GOMP) [13–17], subspace

pursuit (SP) [18], iterative thresholding with inversion (ITI) [19], hard thresholding pursuit

(HTP) [20] and many others. Another approach is convex relaxation which solves a convex

program whose minimizer is known to approximate the target signal. Many algorithms have

been proposed to complete the optimization, including interior-point methods [21,22], projected

gradient methods [23], and iterative thresholding [24]. Besides, combinatorial algorithms which

acquire highly structured samples of the signal that support rapid reconstruction via group

testing are also widely used. For example, Fourier sampling [25, 26], chaining pursuit [27], and

HHS pursuit [28], as well as some algorithms in [29,30].

Each type of algorithm described above has its native shortcomings. Many of the combina-

torial algorithms are extremely fast–sublinear in the length of the target signal but they require

a large number of somewhat unusual samples that may not be easy to acquire [12]. The convex

relaxation tends to be computationally expensive when dealing with the case of large number

of measurements. Compared with convex relaxation, greedy pursuits are better in their run-

ning time but worse in recovery accuracy. In particular, for recovering (s1, . . . , sN )-piecewise

sparse signal in the noisy case, besides recovering the nonzero entries of signal, the convex re-

laxation methods may fail on some parts, such as recovering redundant entries. If one treats the

(s1, . . . , sN )-piecewise sparse signal as a global s-sparse signal recovered by greedy methods, they

may find “details” missing, i.e., recover the false entries instead of the exact smallest magnitudes.

The major algorithmic challenge in noisy piecewise sparse recovery is to locate every element

exactly and preserve the smallest magnitudes. Since greedy method requires the global sparsity

level s as part of its input, they rarely recover redundant entries. Thus the greedy methods tend

to perform better than the convex relaxation in terms of exact sparsity recovery.

Among these methods, one greedy method called compressive sampling matching pursuit
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(CoSaMP) which is inspired by the work on ROMP, is attracting extensive attention since it

incorporates ideas from the combinatorial algorithms to guarantee speed and to provide rigorous

error bounds [12]. Unlike the simplest greedy algorithms, CoSaMP identifies many components

during each iteration, which allows the algorithm to run faster for many types of signals. However,

CoSaMP is at heart a greedy algorithm which may also fail on exact support recovery (select false

small entries) for recovering piecewise sparse signals. In order to preserve the details of the signal

and overcome the disadvantages of CoSaMP. We propose a piecewise OMP (P OMP) method

to recover piecewise sparse signal, i.e., apply the main ideas of CoSaMP and OMMP to xi for

i = 1, . . . , N . OMMP, which is a generalization of OMP, selects multiple atoms per iteration,

enjoys the merit of less iterations compared to the OMP [13]. OMMP was also studied in [14-17],

named as KOMP, MOMP, OSGA and GOMP. The CoSaMP first locates the largest 2s entries

by proxy, then sorts the components of the vector solved by the least-square by magnitude and

selects the first s entries [12]. Different from the CoSaMP, the P OMP algorithm locates the

largest (s1+ · · ·+ sN ) entries by piecewise proxy which is inspired by the idea from OMMP, and

selects the first si entries for i = 1, . . . , N by piecewise pruning at the last step. The piecewise

proxy and pruning ensure that the P OMP algorithm finds the exact smallest magnitudes.

Organization. The rest of the paper is organized as follows. In Section 2 we give some

preliminaries for the analysis of P OMP. We provide the P OMP algorithm and state the major

theorems in more detail about P OMP in Section 3. Finally, Section 4 shows the numerical

performance of P OMP in comparison with CoSaMP, OMP and BP methods.

2. Preliminaries

It is shown in [31] that when the sampling matrix satisfies the restricted isometry inequalities,

it has several other properties that one may require in the proof of the CoSaMP algorithm. In

this section we present these properties together with the CoSaMP algorithm and the OMMP

algorithm.

Definition 2.1 ([31]) RIC: The r-th restricted isometry constant of a matrix A is the least

number δr for which

(1− δr)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δr)∥x∥22 whenever ∥x∥0 ≤ r.

Here ∥ · ∥2 represents the l2 vector norm.

Proposition 2.2 ([12]) Suppose A has RIC δr. Let T be a set of r indices or fewer. AT is the

column sub–matrix of A whose columns are listed in the set T . Then

∥AT
Tx∥2 ≤

√
1 + δr∥x∥2, ∥A†

Tx∥2 ≤
1√

1− δr
∥x∥2,

∥AT
TATx∥2 S (1± δr)∥x∥2,

∥(AT
TAT )

−1x∥2 S 1

1± δr
∥x∥2

where the last two statements contain an upper and lower bound, depending on the sign chosen.
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Proposition 2.3 ([12]) Suppose A has RIC δr. Let T1 and T2 be disjoint sets of indices whose

combined cardinality does not exceed r. Then ∥AT
T1
AT2∥ ≤ δr.

Corollary 2.4 ([12]) Suppose A has RIC δr. Let T be a set of indices, and let x be a vector.

Provided that r ≥ |T ∪ supp(x)|, ∥AT
TA · x|T c∥2 ≤ δr∥x|T c∥2.

Corollary 2.5 ([12]) Let c and r be positive integers. Then δcr ≤ c · δ2r.

Assumption 2.6 ([12]) The standing assumptions for CoSaMP are:

• The sparsity level s is fixed.

• The m× n matrix A has RIC δ4s ≤ 0.1.

• The vector b = Ax+ e.

Algorithm 1: CoSaMP Recovery Algorithm ([12])

Input: Matrix A, noisy vector b, sparsity level s

Output: An s-sparse approximation x of the target signal

Initialization: x0 ← 0, res← b, k ← 0

Repeat

k ← k + 1

y = AT res (Form signal proxy)

Ω← supp(y2s) (Identify 2s large components)

Λ← Ω
∪
supp(xk−1) (Merge supports)

x̃|Λ ← A†
Λb, x̃|Λc ← 0 (Signal estimation by least-squares)

xk ← x̃s (Select the first s large entries)

res← b−Axk (Update current residual)

Until Stopping criterion true

Theorem 2.7 ([12]) Assume the Assumption 2.6 hold. Then for each k ≥ 0, the signal approx-

imation xk is s-sparse, and

∥x∗ − xk+1∥2 ≤ 0.5∥x∗ − xk∥2 + 7.5∥e∥2. (2.1)

In particular,

∥x∗ − xk∥2 ≤ 2−k∥x∗∥2 + 15∥e∥2.

The theorem in [12] states that each iteration of the CoSaMP algorithm reduces the approx-

imation error by a constant factor, while adding a small multiple of the noise.

The orthogonal multi-matching pursuit (OMMP) in [13] is a natural extension of the or-

thogonal matching pursuit (OMP). The main difference between OMP and OMMP(M) is that

OMMP(M) selects M atoms per iteration, while OMP only adds one atom to the optimal atom

set. Results in [14–17] show that when RIP constant δ = O(
√
M/s), OMMP(M) can recover

the s-sparse signal in s iterations. In particular, results in [13] show that when the measurement
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matrix A satisfies (9s, 1
10 )-RIP, there exists an absolute constant M0 ≤ 8 so that OMMP(M0)

can recover s-sparse signal within s iterations.

Algorithm 2: OMMP Recovery Algorithm ([13])

Input: Matrix A, noisy vector b,

candidate number M for each step,

stopping iteration index H,

initial feature set Λ0 ∈ {1, . . . , n}
Output: An s-sparse approximation x of the target signal

Initialization: x0 = arg min
z:suppz⊂Λ0

∥b−Az∥2,

res← b−Ax0,k = 0

While k < H do

y = AT res (match)

Ω← supp(yM ) (Identify M largest components)

Λ← Ω
∪
supp(xk−1) (Merge supports)

x̃|Λ ← A†
Λb, x̃|Λc ← 0 (Signal estimation by least-squares)

res← b−Axk (Update current residual)

k = k + 1

end while

Notation. For convenience, let S = supp(x∗) and Sc be its complement, i.e., Sc = {i : x∗
i =

0}. AS denotes the submatrix of A formed by the columns of A in S, which are assumed to be

linearly independent. Similarly define ASc so that [AS ASc ] = A. Denote s = |S| = |supp(x∗)|,
si = |Si|. Define ⟨x,y⟩ = xTy. The pseudoinverse of a tall, full-rank matrix B is defined as

B† = (BTB)−1BT .

3. Analysis of P OMP iteration

Before proceeding the analysis of P OMP iteration, we give the hypotheses for P OMP.

• The sparsity level s and piecewise sparsity level si for i = 1, . . . , N are fixed.

• The matrix A has RIC constant δ3s ≤ 0.1.

• The signal x∗ is s-sparse and sub-signal x∗
i is xi-sparse.

It is obvious that the major difference between P OMP and CoSaMP lies in the Identification

and Pruning steps. It is noticed that we locate s entries of a vector in step Identification similar

to the first step of OMMP. However, we locate the largest si entries of xi (i = 1, . . . , N) and

form all the components together as the s = (s1 + · · ·+ sN ) entries, which is different from both

CoSaMP and OMMP. Instead of selecting s-largest components of least-square solution, we sort

the components of the piecewise vector x̃ = (x̃1, . . . , x̃N )T solved by least-square by magnitudes

of each piece. The piecewise pruning process make progress in preserving small-scaled entries in

each piece from false chosen cause of noise perturbation.
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It was shown in [12] that compared with s iteration in OMP, the iteration cost of CoSaMP

is at most s. The iteration cost of P OMP is at most smax = max{s1, . . . , sN} ≤ s.

Algorithm 3: P OMP Recovery Algorithm

Input: Matrix A, noisy vector b,

sparsity level s, piecewise sparsity level si

for i = 1, . . . , N

Output: An (s1, . . . , sN )-piecewise sparse approximation

x = (x1, . . . ,xN )T of the target signal

Initialization: x0 ← 0, res← b, k ← 0

Repeat

k ← k + 1

For i = 1, . . . , N in parallel

yi = AT
i res (Form piecewise signal proxy)

Ωi ← supp(yi(si)) (Identify si large components of every piece)

Λ←
∪
Ωi

∪
supp(xk−1) (Merge supports)

x̃|Λ ← A†
Λb, x̃|Λc ← 0 (Signal estimation by least-squares)

xk ← (x̃1(s1), . . . , x̃N(sN ))
T (Select the first xi for each

piece and form together)

res← b−Axk (Update surrent residual)

Until Stopping criterion true

Theorem 3.1 Assume the above hypotheses hold. Then for each k ≥ 0, the signal approxima-

tion xk recovered by P OMP is (s1, . . . , sN )-piecewise sparse, and

∥x∗ − xk+1∥2 ≤ 0.75∥x∗ − xk∥2 + 7.5∥e∥2. (3.1)

It is obvious that (3.1) is comparable to the results of (2.1). We proceed with our proof of

the theorem by estimating each step in P OMP similar to the proof in [12].

Residual. For an iteration k ≥ 1, we use res to represent the residual vector

res = b−Axk−1

which in iteration k − 1 (or at the beginning of the iteration). Define r = x∗ − xk−1 as the part

of the signal we have not yet recovered. It is obvious the vector r is 2s-sparse since both x∗ and

xk−1 are always s-sparse. Then the residual vector res can be rewritten as

res = A(x∗ − xk−1) + e = Ar+ e.

Piecewise Identification. We apply the identification of OMMP to each piece, respectively

and simultaneously to obtain the piecewise identification of P OMP.

Lemma 3.2 (Piecewise Identification) The set Ω =
∪
Ωi =

∪
supp(yi(si)) contains at most s
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indices, and

∥r|Ωc∥2 ≤
2δ3s + δ2s
1− δ2s

∥r∥2 +
2
√
1 + δ2s +

√
1 + δ2s

1− δ2s
∥e∥2. (3.2)

The (3.2) is a relatively large bound on ∥r|Ωc∥2 derived from the following inequality:

∥r|Ωc∥2 ≤
2

N∑
i=1

δsi+2s +Nδ2s

N(1− δ2s)
∥r∥2 +

2
N∑
i=1

√
1 + δsi +N

√
1 + δ2s

N(1− δ2s)
∥e∥2, (3.3)

where (3.2) is a relaxed bound of (3.3).

Proof Define a total proxy y = (y1, . . . ,yN )T with piecewise proxy yi = AT
i res. The piecewise

identification set Ω =
∪
Ωi contains s components, where Ωi is the index set in accordance with

selecting the largest si entries of yi. Similar to the proof of [12, Lemma 4.2], we use the notation

R = supp(r) which contains at most 2s elements, notation Ri = supp(x∗
i −xk−1

i ) which contains

at most 2si elements, and the notation Ω̂i which is the index set corresponding to selecting the

largest 2si entries of yi. Thus

∥y|R∥2 =
( N∑

i=1

∥yi|Ri∥22
)1/2

≤
( N∑

i=1

∥yi|Ω̂i
∥22
)1/2

≤
( N∑

i=1

2∥yi|Ωi∥22
)1/2

=
√
2∥y|Ω∥2.

By squaring this inequality and canceling the terms in R
∩

Ω, we obtain that

∥y|R\Ω∥2 ≤
√
2∥y|Ω\R∥2.

Next we use the RIC to provide bounds on both sides of the above inequality.

We start with the most strict bound (3.3) which is equipped with δsi for i = 1, . . . , N . It is

observed that the set R \ Ω contains at most 2s elements and the set Ω \ R contains at most s

elements. Therefore, we apply the Proposition 2.2 and Corollary 2.4 to obtain

∥y|Ω\R∥2 = (∥y1|Ω\R∥22 + · · ·+ ∥yN |Ω\R∥22)1/2

≤ ∥y1|Ω\R∥2 + · · ·+ ∥yN |Ω\R∥2
= ∥AT

1(Ω\R)(Ar+ e)∥2 + · · ·+ ∥AT
N(Ω\R)(Ar+ e)∥2

≤
N∑
i=1

(∥AT
i(Ω\R)Ar∥2 + ∥A

T
i(Ω\R)e∥2)

≤
N∑
i=1

(δsi+2s∥r∥2 +
√
1 + δsi∥e∥2)

by using Ai(Ω\R) = AΩi\R.

Likewise, the set R \Ω contains at most 2s elements, and we obtain the following inequality
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using Proposition 2.2 and Corollary 2.4

∥y|R\Ω∥2 = (∥y1|R\Ω∥22 + · · ·+ ∥yN |R\Ω∥22)1/2 ≥
√
2

2

N∑
i=1

∥yi|R\Ω∥2

=

√
2

2

N∑
i=1

(∥AT
i(R\Ω)A · r|R\Ω +AT

i(R\Ω)A · r|Ω +Ai(R\Ω)e∥2)

≥
√
2

2

N∑
i=1

(∥AT
i(R\Ω)A · r|R\Ω∥2 − ∥AT

i(R\Ω)A · r|Ω∥2 − ∥Ai(R\Ω)e∥2)

≥
√
2

2

N∑
i=1

((1− δ2s)∥r|R\Ω∥2 − δ2s∥r∥2 −
√

1 + δ2s∥e∥2)

=

√
2

2
N((1− δ2s)∥r|R\Ω∥2 − δ2s∥r∥2 −

√
1 + δ2s∥e∥2).

Since r is supported on R, then r|R\Ω = r|Ωc . Thus, combining the above three inequalities, we

have (3.3). Applying si = s for i = 1, . . . , N we obtain (3.2). �
Similar to [12, Lemmas 4.3 and 4.4], we obtain the same conclusion for the P OMP algorithm

in the following steps.

Support Merger. In the P OMP algorithm we merge the support of current signal approx-

imation xk−1 with the newly identified set Ω =
∪

Ωi, thus the set Λ = Ω
∪
supp(xk−1) contains

at most 2s indices and ∥x∗|Λc∥2 ≤ ∥r|Λc∥2.
Piecewise Estimation. In this step, we solve a least-squares problem similar to all greedy

methods in the set Λ.

Lemma 3.3 Denote x̂ as x̂|Λ = (AT
ΛAΛ)

−1AT
Λb, x̂|Λc = 0. Then

∥x∗ − x̂∥2 ≤ (1 +
δ3s

1− δ2s
)∥x∗|Λc∥2 +

1√
1− δ2s

∥e∥2.

Proof Note that ∥x∗ − x̂∥2 ≤ ∥x∗|Λc∥2 + ∥x∗|Λ − x̂|Λ∥2. By computation:

∥x∗|Λ − x̂|Λ∥2 = ∥x∗|Λ −A†
Λ(A · x

∗|Λ +A · x∗|Λc + e)∥2
= ∥A†

Λ(A · x
∗|Λc + e)∥2

≤ ∥(AT
ΛAΛ)

−1AT
ΛA · x∗|Λc∥2 + ∥A†

Λe∥2.

The set Λ contains at most 2s entries, thus by using Proposition 2.2 and Corollary 2.4 we obtain

that

∥x∗|Λ − x̂|Λ∥2 ≤
1

1− δ2s
∥AT

ΛA · x∗|Λc∥2 +
1√

1− δ2s
∥e∥2

≤ δ3s
1− δ2s

∥x∗|Λc∥2 +
1√

1− δ2s
∥e∥2.

Then we obtain the inequality

∥x∗ − x̂∥2 ≤ (1 +
δ3s

1− δ2s
)∥x∗|Λc∥2 +

1√
1− δ2s

∥e∥2. �

Piecewise Pruning. The final step of P OMP algorithm is to prune the current estimation

x̂ = (x̂1, . . . , x̂N )T to its largest piecewise s terms, i.e., prune each x̂i to its largest si terms for
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i = 1, . . . , N . The pruned approximation x̂s = (x̂s1 , . . . , x̂sN )T , where x̂si is the vector with

pruning x̂i to its largest si terms, satisfies

∥x∗ − x̂s∥2 ≤ 2∥x∗ − x̂∥2.

whose proof can be found in [12].

Proof of Theorem 3.1 We now complete the proof of Theorem 3.1. After the five pro-

cedures described above of P OMP, the algorithm reachs a new approximation xk = x̂s =

(x̂s1 , . . . , x̂sN )T , which is (s1, . . . , sN )-piecewise sparse. Using the lemmas we have provided:

∥x∗ − xk∥2 = ∥x∗ − x̂s∥2 ≤ 2∥x∗ − x̂∥2

≤ 2 · ((1 + δ3s
1− δ2s

)∥x∗|Λc∥2 +
1√

1− δ2s
∥e∥2)

≤ 2 · ((1 + δ3s
1− δ2s

)∥r∗|Λc∥2 +
1√

1− δ2s
∥e∥2)

≤ 2(1 +
δ3s

1− δ2s
)
2δ3s + δ2s
1− δ2s

∥r∥2 + 2
1√

1− δ2s

2
√
1 + δ2s +

√
1 + δ2s

1− δ2s
∥e∥2

< 0.75∥r∥2 + 7.5∥e∥2
by invoking the assumption that δs ≤ δ2s ≤ δ3s ≤ 0.1. Then we complete the proof. �

4. Numerical experiments

Since the P OMP algorithm is at heart a piecewise greedy algorithm. In this section, we

show the numerical performance of the P OMP algorithm for recovering piecewise sparse signals,

compared with the CoSaMP, OMP, OMMP and BP algorithms for recovering the same signal

as global sparse vector.

It is worth noting that P OMP is proposed aiming at recovering piecewise sparse signals,

especially signals with both large and very small scaled elements. For example, the signal x

is (|S1| + |S2|)-sparse, where both large entries and very small entries lie in S1 and S2 (or S1

contains large elements and small components lie in S2). In this part, the m×n matrix A is the

partial discrete cosine transform (DCT) matrix with m rows chosen randomly from the n × n

DCT matrix. n is the dimension of the signal and s is the total number of nonzero entries of

x∗. Similar to the notation of “distinct weights” in [32], we suppose that the support set S is

partitioned by S = (Si)
N
i=1 with |Si| = ρi|S|, i.e., si = ρis. Thus the structure of the piecewise

sparse signal is denoted by (ρ1, . . . , ρN ). In order to demonstrate the effectiveness of support

recovery, we use the “distance” between two support sets which is measured by [33]:

D(S1, S2) =
max{|S1|, |S2|} − |S1 ∩ S2|

max{|S1|, |S2|}
. (4.1)

which is a useful tool for estimating exact support recovery. A exact support recovery means the

distance between S̃ recovered by algorithm and true support set S is 0.

In our simulations, the following algorithms are considered.

(1) P OMP algorithm (N = 2).
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(2) CoSaMP algorithm (http://www.cmc.edu/pages/faculty/DNeedell/index.html).

(3) OMP algorithm.

(4) OMMP(M =
√
s) algorithm, which is also equivalent to GOMP algorithm.

(5) LP technique for solving l1-minimization (http://cvxr.com/cvx/).

Example 4.1 Random data test 1 (Recoverability on randomly generated problems). For our

first set of experiments, we test these algorithms for solving several problems including a set of

small-scale components, including “pathological” problems where the magnitudes of the nonzero

entries of the exact solutions lie in a large range, i.e., the largest magnitudes are significantly

larger than the smallest magnitudes. The measurement noise e is i.i.d. Gaussian with mean zero

and standard deviation 0.1x∗
min. The information of the dataset and recovery numerical results

are displayed in Table 1 and Figures 1–3. We set N = 2 and vary the size of ρ1 and ρ2 while

maintaining that ρ1 + ρ2 = 1.

Problem Structure

(m,n, s)
Algorithm D(S̃,S) Running Time Num. of False

Problem 1

(128, 256, 28)

P OMP(ρ1 = 0.2, ρ2 = 0.8) 0 0.035 0

P OMP(ρ1 = 0.5, ρ2 = 0.5) 0 0.021 0

P OMP(ρ1 = 0.8, ρ2 = 0.2) 0 0.033 0

CoSaMP 0.0357 0.043 1

OMP 0.0357 0.011 1

OMMP(M =
√
s) 0.1428 0.001 4

BP 0.1786 0.102 3

Problem 2

(128, 512, 28)

P OMP(ρ1 = 0.2, ρ2 = 0.8) 0 0.032 0

P OMP(ρ1 = 0.5, ρ2 = 0.5) 0 0.021 0

P OMP(ρ1 = 0.8, ρ2 = 0.2) 0 0.032 0

CoSaMP 0.0536 0.013 15

OMP 0 0.004 0

OMMP(M =
√
s) 0 0.009 0

BP 0.7811 0.102 100

Problem 3

(128, 512, 28)

P OMP(ρ1 = 0.2, ρ2 = 0.8) 0 0.033 0

P OMP(ρ1 = 0.5, ρ2 = 0.5) 0 0.020 0

P OMP(ρ1 = 0.8, ρ2 = 0.2) 0 0.034 0

CoSaMP 0.0357 0.806 1

OMP 0.0357 0.006 1

OMMP(M =
√
s) 0.0357 0.013 1

BP 0.7811 0.039 100

Table 1 Comparison of results by the P OMP, CoSaMP, OMP, OMMP and BP methods for Example

4.1 (the size of the dataset is described as (m,n, s) where the measurement matrix A ∈ Rm×n and

piecewise sparse signal x∗ has totally s nonzero entries
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We show the magnitude and location of true signal x∗ and approximated piecewise sparse

signal x recovered by algorithms in Figures 1–3 with x-axis denoting the index of the signal from

1 to n, and y-axis representing the absolute value of nonzero entries in log–scale of x∗ and x. In

the plots of Figurers 1–3, the red diamonds represent the true vector x∗, the blue stars are the

nonzero entries of vector x on the true support S solved by algorithms while the red dots show

the entries of x outside the support set S.
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(b) P OMP(ρ1 = 0.5, ρ2 = 0.5)
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(d) CoSaMP
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(e) OMP
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(f) OMMP(M =
√
s)
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Figure 1 Recovery results of P OMP, CoSaMP, OMP, OMMP and BP methods on Problem 1

From Table 1, the superiority of P OMP is obvious on exact support recovery. It is observed

from Figurers 1–3 that signal with same global sparsity and different piecewise structure can be

exactly support recovered by P OMP while CoSaMP, OMP, OMMP and BP may always lose

the smallest magnitude and recover false entries.

Remark 4.2 It is shown in Example 4.1 that P OMP may produce different results for different
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piecewise structure. It seems that P OMP with (ρ1 = ρ2 = 0.5) runs faster than other structures.

In our future work, selection on piecewise structure for P OMP in order to obtain best recovery

results is taken into consideration.
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(h) P OMP(ρ1 = 0.2, ρ2 = 0.8)
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(i) P OMP(ρ1 = 0.5, ρ2 = 0.5)
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(j) P OMP(ρ1 = 0.8, ρ2 = 0.2)
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(k) CoSaMP
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(l) OMP
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(m) OMMP(M =
√
s)
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Figure 2 Recovery results of P OMP, CoSaMP, OMP, OMMP and BP methods on Problem 2

Example 4.3 Random data Test 2 (Success Frequency). In this example, we test these al-

gorithms by several problems with the same settings as difficult problem settings in [34]. We

generate these problems in the same way as “CalTechTest” problems in [34] and run 500 times

for each setting in order to obtain a frequency result of the comparison. Figure 4 shows the plot

of these problems. We generate random piecewise sparse signals with global sparsity from 10 to

70 in order to test the robustness of our algorithm. We display the success rate in Figure 5.

We define the “succeed” when the distance between the support set and the true support

set is 0, i.e., exact support recovery. The plots in Figures 5–7 show that the P OMP algorithm

always performs better in terms of success recovery rate than other algorithms.
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(o) P OMP(ρ1 = 0.2, ρ2 = 0.8)
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(p) P OMP(ρ1 = 0.5, ρ2 = 0.5)
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Figure 3 Recovery results of P OMP, CoSaMP, OMP, OMMP and BP methods on Problem 3
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Figure 4 Difficult problems in Example 4.3
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Figure 5 Comparison of success recovery rate (left plot) and average running time (right plot) for

Problem 4 in Example 4.3
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Figure 6 Comparison of success recovery rate (left plot) and average running time (right plot) for

Problem 5 in Example 4.3

10 20 30 40 50 60 70

global sparsity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
eq

ue
nc

y 
of

 e
xa

ct
 s

up
po

rt
 r

ec
ov

er
y

1=0.2, 2=0.8
1=0.5, 2=0.5
1=0.8, 2=0.2

CoSaMP
OMP
BPDN
OMMP

10 20 30 40 50 60 70

Global Sparsity

0

0.5

1

1.5

2

2.5

3

av
er

ag
e 

ru
nn

in
g 

tim
e

1=0.2, 2=0.8
1=0.5, 2=0.5
1=0.8, 2=0.2

CoSaMP
OMP
BPDN
OMMP

Figure 7 Comparison of success recovery rate (left plot) and average running time (right plot) for

Problem 6 in Example 4.3
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5. Conclusion and discussion

In this paper, we study the recovery of piecewise sparse signal by Piecewise OMP. The P OMP

algorithm recovers a (|S1|, . . . , |SN |) sparse signal by parallel selecting si largest entries of each

piece and obtaining a least-square solution of x = (x1, . . . ,xN )T . Equipped with piecewise prun-

ing xi to its largest si terms, P OMP which enjoys the merits of less running time than CoSaMP

and exact support recovery better than CoSaMP, OMP, OMMP and BP methods, is more suit-

able for piecewise sparse recovery. Moreover, the P OMP has comparable approximation error

decay rate to CoSaMP with more relaxed sufficient condition δ3s ≤ 0.1. Finally, extensions are to

be discussed on the partition method on support set S, i.e., what is the best choice of (s1, . . . , sN )

(or piecewise structure (ρ1, . . . , ρN )) for P OMP if given a piecewise sparse signal with global

sparsity s and piecewise structure (s1, . . . , sN ) is unknown. Our future study is related with this

discussion.
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