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Certain Subclasses of Harmonic Univalent Functions
Defined by Convolution and Subordination
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Abstract Let Sy be the class of functions f = h + g that are harmonic univalent and sense-
preserving in the open unit disk U = {z € C : |z| < 1} for which f(0) = f'(0) —1 = 0. In
the present paper, we introduce some new subclasses of Sy consisting of univalent and sense-
preserving functions defined by convolution and subordination. Sufficient coefficient conditions,
distortion bounds, extreme points and convolution properties for functions of these classes are
obtained. Also, we discuss the radii of starlikeness and convexity.
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1. Introduction and preliminaries

A complex valued harmonic function f in a simply connected domain D C C has the canonica
representation f = h+g, where h and g are analytic in D and g(z¢) = 0 for some prescribed point
zo € D. A necessary and sufficient condition for f to be locally univalent and sense preserving
in D is that |h/(2)] > |¢'(2)| in D (see [1]; also see [2-5]).

Denote by Sy the class of univalent and harmonic functions f that are sense preserving in
U={z€C:|z| <1} and have the form

f=h+7, (1.1)
where
oo oo
h(z) =z + Zakzk and g(z) = Zbkzk, |b1] < 1. (1.2)
k=2 k=1

In [2-6], many authors further investigated various subclasses of Sy and obtained some
important results.

For 0 < 3 < 1, we let S5,(8) and S%,(5), respectively, denote the subclasses of Sy consisting
of harmonic starlike and harmonic convex functions of order 3, that is [2]

fesyB) = %(argf(rem)) >0, 0<6<2m, |z]=r<1
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and
1 €5u(B) = %(arg %f(rew)) >B, 0<b<2m 2| =r<1.

We say that an analytic function f : U — C is subordinate to an analytic function g : U — C,
and write f(z) < g(z), if there exists a complex value function w which maps U into itself with
w(0) =0 and |w(z)| <1 (2 € U), such that f(z) = g(w(z)) (z € U). Furthermore, if the function

g is univalent in U, then we have the following equivalence [7]:
f(2) < g(z) <= f(0) = g(0) and f(U) C g(U).

More recently, various differential and integral operators for harmonic functions have been
studied by Jahangiri et al. [8], Cotirla [9], El-Ashwah and Aouf [10], Yal¢cin and Altinkaya [11]
and by using convolution, some subclasses of harmonic functions have been studied by Ahuja [12],
Ali et al. [13], Nagpal and Ravichandran [14], Li et al. [15,16] and Cakmak et al. [17].

Let F be fixed harmonic function given by

F=H(z)+G(z) —z+ZAkz +ZBkzk |B1| < 1. (1.3)
k=2 k=1

We define the convolution (or Hadamard product) of F' and f by

(F * f) fz+ZakAkz +Zbk8kzk = (f * F)(2). (1.4)
Also, we denote by Ty the class of harmonic functions f(z) and
F(2) = h(z)+g(z) =z =) la|z" + Y [bu]2". (1.5)
k=2 k=1

Now we introduce the following two classes.

Definition 1.1 Let the function f € Sy of the form (1.1), and i,j € {0,1}, A,B € R;
—1 < B < A<1. The function f(z) € Su(¢i,¥;; A, B) if and only if

(f *¢i)(2) - 1+ Az

(Frig)) T4 B2 0
also, the function f(z) € Ky (¢;,;; A, B) if and only if
(F200) () _ 1442 .

(Feiy)() " T+Bs
where z = e, f'(2) = %f(rew),o <0 < 27 and

—Z+Zpk2 + ( Z%Z Yi(z —Z+Zuk2 + ( kaz (1.8)

for pp > up >0, qp > v >0, k > 2.
We let

Su(¢i,vj;A,B) =Ty ﬂSH(@M/)j;A,B)
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and
Kp(¢i i A, B) = T [ | Knu(¢i ¥ A, B).

The set classes Sy (¢:,vj; A, B) and Sy (¢:,v;; A, B) are comprehensive family that contains
several previously studied subclasses of Ty :

z+22  Z+7 z z
-2 " a-2p G-27 (1—5)2;1_25’_1)

=KuB)={feH:R(1+ z;/’;ij)) > B} (see [3]);
Su(¢i, ;1 —26,-1)

§H(

=TH(di, ¥j; 8) = {fEH:%m >B,0<8< 1} (see [14));
gH((1_zz)2 (1 _25)2’1; - 1251_%’_1)

—Su(B)={fecH: ;}%z}cé’;) > B} (see [4,18)).

Making use of the techniques and methods used by the paper [19], in this paper, we find
sufficient coefficient conditions, distortion bounds, extreme points, convolution and radii of star-

likeness and convexity for the above-defined class Sy (¢;,1;; A, B).

2. Basic properties
Firstly, we give the sufficient coeflicient conditions for functions of these classes.

Theorem 2.1 Let f = h + g be such that h and g are given by (1.2). Also, suppose that
A BeRand -1<B<ALL1.If

> Aelag] + > plor] <1, (2.1)
k=2 k=1
where ( -t
k< )\ — 1-B)pr,—(1-A 'u.k’ k> 27
- 1-B AiBfl iTi1-A - (22)
kguk:( ) (_) ( )Uk’ kz]_’

then f(z) is sense-preserving harmonic univalent in U and f € Su(¢:,v;; A, B).

Proof If z; # z5, then
f(z1) — f(22) g(z1) — g(22)
h)—h() 21 hG) —hGa)|

> oney bk |(zF — 25)

-1 al

|(2’1 —22) + ) ps |a| (2} — Z§)|
o TR

1= s klak|

>1— EZ%}OMH()H >0,
1= 3" s Akla]
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which proves univalent. Note that f is sense-preserving harmonic in U. This is because

W/ ()] 2 1= klbillz* 71 > 1= puelb
k=1 k=1

oo [e’e]
>3 ltnl > 3 HlanllzF > 1g'(2)]
k=1 k=2

We first show that if the inequality (2.1) holds for the coefficients of f = h+g, then the required
condition (1.6) is satisfied. The function f € Su(¢i,¢;; A, B) if and only if there exists an
analytic function w(z),w(0) = 0, |w(2)| < 1(z € U) such that

F(z) 1+ Aw(z)

Gl) 1+ Bu(z) ?€H2EU
where , .
Fe) = (7+0)() = 2= 3 laulost + (1) 3 bl
k=2 k=1
and

G( ) = (f*z/}j =z - Z |ak|ukz + Z |bklvk2

or equivalently

(2) —G(2)
1( 2
yAG(Z) BE(: |< (z € U), (2.3)
it suffices to show that
|AG(z) — BF(2)| — |F(z) — G(2)| > 0. (2.4)
Therefore, we get
|AG(2) — BF(2)| — |F(2) — G(2)]
= ‘(A — B)z — Z(Auk — Bpp)apz® + (—1)¢ Z Y~ Avy, — Bay )b 2k |—
k=2 k=1
‘—Z i — ur)arz® + (=1 > (qr — (- jivk)bkzk’
k=2 k=1
> (A= B)|z| = Y _(Aux — Bpy)lax|[2]* = > ((=1)7 7" Avg — By,)[be]|2|*~
k=2 k=1
D ok —wi)larl2lF =D (ak — (=1)7 op) b |2/*
k=2 k=1
— (A= BaI[L - 3 Mdaaf* Zmbknzw ']
k=2 =

> (A B)|Z|[1 - Z)\k|ak| - Zﬂkwk\] > 0.
k=2 k=1

By hypothesis the last expression is nonnegative. Thus the proof is completed. [J

Using the same method as Theorem 2.1, we can get
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Theorem 2.2 Let f = h + g be such that h and g are given by (1.2). Also, suppose that
A BeRand -1<B<A<L1.If
o0 o0
> kMelar] + ) kuklbi] <1, (2.5)
k=2 k=1
where A\, and py are defined by (2.2). Then f(z) is sense-preserving harmonic univalent in U
and f € Ku(¢;,1;; A, B).

Theorem 2.3 Let f = h+ g be given by (1.5). Then f € Sg(¢i,v;; A, B) if and only if the
condition (2.1) holds true.

Proof Since Sy(¢i,vj; A, B) C Su(di,;; A, B). According to Theorem 2.1, we only need to
prove the “only if” part of the theorem. Let f € Sy(¢;,1;;A,B), =1 < B < A < 1. Then it

satisfies (1.6) or equivalently

| > neo (P — w)anz® — (1) T2 (g — (=1 o )biz*

— —| <1l (26)
(A= B)z + >207 o (Auk — Bpy)agz® + (=1)" 3207 ((=1)7 7" Avk — Bay,)bi2*
From (2.6), we have
R{ Z?;iipk — up)agz® — (1) Zii;(qkoo— (—l)jfiyk)w 1 e
(A= B)z =[5y (Aug — Bpr)agzh — (=1)" 3277, ((=1)7 7" Avy, — Bak)bi2*]
which is equivalent to
%{1 . Z;Ziigpk uk)akz - (* ) Zk 1(% - (*1)]‘71.}1@)1&7 S B
(A= B)z — [32p2o(Aug, — Bpr)agzh — (=1)" 3277 ((—1)7 =" Avy, — Bay,)br2"]
R{p(A, B)}
. (A — B)z — 332 s (Aug — Bpy)agz — (=1)" 3732 (1) Avy — Bay)b2*]

(A= B)z — [y (Aug, — Bpg)agz® — (=1)F 3232 ((—1)7¢ Avy, — Bai)bg 2]
Yoo (Pr — wp)arzb — (1) 33 (g — (=1)7 Pop )by 2"
(A= B)z — [2272,(Aug, — Bpg)agzh — (1) 3272, ((—1)7 " Avy, — By )by.2*]
which yields

3?{/)(14 B)}

}>0, (2.8)

{ — [k (Aug — Bpy)lak|[2]*~ = (=1)" 3552, (=1)~* Avy — Ba)lbx|[2[* 1]
- A B) + 3 5Za [Aug — Bpgllal[z[*=1 + 352, [(—=1)7* Avk. — Bay|[bi|2|*

S~ wloal ol — (R G — Dbl
(A= B) + s [Au = Bpellanl[F 1+ X0, (=17 Avi — B [lbe [T

The above inequality must hold for all z € U. Taking |z| =7 (0 < r < 1), then (2.9) gives
Z)\k|ak|rk_1 +Zuk|bk|rk_1 < 1. (210)
k=2 k=1

Letting » — 1~ in (2.10), we will get (2.1). O
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Applying the same method as Theorem 2.3, we can obtain

Theorem 2.4 Let f = h+g be given by (1.5). Then f € K y(¢;,%;; A, B) if and only if the
condition (2.5) holds true.

Obviously, from Theorems 2.3 and 2.4, we have
Kp(¢i, 55 A, B) C Su(di, 5 A, B). (2.11)

Next, using Theorems 2.3 and 2.4, we give the distortion theorems for functions of these

classes.

Theorem 2.5 Let f € Su(¢i,;; A, B),\x and py be given by (2.2). If {\;} and {u} are
non-decreasing seqences, then
(A—B)(1 — pa|b1]) ,

(@~ [pufyr — AT Bl 2 ey < 1y + 2, o=,

T T
for all z € U, where T = min{Aq, po} and by = fz(0).

Proof Since f € Sy (¢, ;; A, B), using (1.5) and Theorem 2.3, we have

2)| =z - Z |ak|2" + Z |bi | 2|
k=2 k=1
oo oo
<@+ o)+ laglr® + > [bxlr
k=2 k=2

A-— B & T
< (@ baf)r + — ZA (lar| + [bx])r?
k=2

A B & T
< (L+ [ba))r k}; o] + o)
A-B &
< (14 |ba])r + Z (Mlaw| + pur|br])r?
k=2

- B
(1 — pu[ba])r?
The bounds given in Theorem 2.5 are respectively attained for the following functions

1) = (1= o)z - A= plnl) 2

A
< (X4 [b)r +

and

(A-B)(1—mlb) .

f(z) =1 +[bi])z +
Using Theorem 2.5, we obtain the following covering result.

Corollary 2.6 Let f € Sy(¢i,v;; A, B). Then
(A B) N’llbl } f

T

{w Slw| < (1= |by]) —

Similarly, we can obtain
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Theorem 2.7 Let f € Kpy(¢:i,vj; A, B), \, and py, be given by (2.2). If {\y} and {uy} are
non-decreasing sequences, then
(A—B)(1 = mbi])
2T
for all z € U, where T = min{ Ao, po} and by = fz(0).
Next, we give the extreme points of these classes.

(A—B)( — p|b1])
2T

(1= [ba])r = r? < |f(2) < (4 fouf)r + r? (2| = 1),

Theorem 2.8 Let f € Sy(¢i,v;; A, B), \, and uy, be given by (2.2). Then f € clcoSy(¢:,vj; A, B)
if and only if

f(z) = [Xihi + Yigr] 2z €U, (2.12)
k=1
where . .
hi=z hy=2——2k>2 gi=24+—32" k>1
Ak Pk
and

o0 o0
Xi=1-> Xp=) Vi, X >0, Y, >0, k=1,2,....
k=2 k=1
Proof Let -1 < B < A<1. We get

oo o0

1 Eh
f(z) = (k_ (X +Yk])z - ’;/\—kazk +k§::1 ﬁYkzk.

—

Since, 0 < X}, <1 (k=1,2,...), we obtain

Z)\kiXka +ZILkaYka = ZXk +2Yk =1-X;<1.
e ST =1 Mk =2 k=1

Consequently, using Theorem 2.3, we have f € Sy (¢;,1;; A, B).
Conversely, if f € Sy (¢:,v; A, B), then

1 1
< —, b | < —.
o < 5 Il <
Putting
X = Mela|, Yi = pu|br]
and
o0 o0
)(1 :l—sz_ZYkzov
k=2 k=1
we obtain

fl2)=2= laxlz" + > [belz*
k=1

k=2

= (ZX,CJFZYk)z—Z%XkaJFZLYkEk
k=1 k=1 k=2 "k =1 Mk

= > [he(2) Xk + gr(2)Ys].
k=1
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Thus f can be expressed in the form (2.12). O

Theorem 2.9 Let f € K y(¢s,v; A, B), A\, and i, be given by (2.2). Then f € clcoK (¢, 153 A, B)
if and only if

oo
Zthk"‘Ykgk zeU,
k=1

where

1 1
hi =z, hkfzfﬁz k>2, gkfz+k7kz k>1

and - -
X1=1-> Xp= ) Vi, X >0, Y, >0, k=1,2,....
k=2 k=1
Theorem 2.10 The classes Sy (¢i,;; A, B) and Ky (¢;,1;; A, B) are closed under convex

combinations.

Remark 2.11 If A =1-28, B = —1, then Theorems 2.1, 2.3, 2.5 and 2.8, respectively, coincide
with [14, Theorems 2.1, 2.5, 2.9 and 2.11].

3. Convolution properties
Firstly, we give the convolution properties for functions of these classes.

Theorem 3.1 Let the functions f(z), F(z) € Ty with |Ax| <1 and |By| < 1.
(i) If f(2) € Su(¢i ¥5; A, B), then (f x F)(2) € Su(¢i,v: A, B);

Proof In view of Theorems 2.3 and 2.4, it suffices to show that the coefficients of f x F' satisfy
the conditions (2.1) and (2.5). Since

oo o0 oo oo
D Awlarl[Axl + Y pelbil| Bl < Y Awlawl + D palbr] < 1
k=2 k=1 k=2 k=1
and
oo (oo}
D EAklarl[ Akl + D kpklbe]|Be| < 1,
k=2 k=1
the results follow immediately. [
Recently, El-Ashwah and Frasin [20] have studied the Hadamard product (or convolution)
of harmonic univalent meromorphic functions. In this section, we establish certain results con-
cerning the convolution properties of functions belonging to the classes Sg(¢i,1;; A, B) and

K (¢i 13 A, B). In order to obtain that, we now introduce a new class of analytic functions.

Definition 3.2 Let 6 > 0,1 < B < A < 1. The function f = h + g, where h and g are given
by (1.5), belongs to the class f € ?i{(qbi,z/}j;A, B) if and only if

> R Aklak| + > K pklbi] < A- B, (3.1)

k=2 k=1
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where A\, and py are defined by (2.2).

Obviously, for any positive integer ¢, we have the following inclusion relation:

S0 (60, A, B) € Ky (¢, 153 A, B) C Si(dis1)s; A, B).

Let the harmonic functions f; (¢ =1,2,...,p) and Fj (j =1,2,...,q) have the form
fi = hi(2) + gi(2) —z+Z|ak,|z +( Z|b;“|z lbra| < 1 (3.2)
and
Fj = Hi(2) + G,(2) 7z+Z|Ak]\z +( Z\Bk]|zk |Bja| < 1. (3.3)
k=2 k=1

We define the Hadamard product (or convolution) of f; and F; by

(fix Fy)(2)

SIS Byt = (B £)(), (34)

k=2 k=1
where i =1,2,...,pand j =1,2,...,q

Using Theorems 2.3 and 2.4, we obtain the following theorem.

Theorem 3.3 Let the functions f; defined by (3.2) be in the class K i (¢i,1; A, B) for every
i=1,2,...,p; and let the functions F; defined by (3.3) be in the class Su(¢s, ;3 A, B) for every
j=1,2,...,q. Then the Hadamard product (fi * fo - % f, % F1 % Fy % --- % F,)(z) belongs to
the class S;Jrq 1(@‘71/1]'; A, B).

Proof Putting
§(2) = (fux far - x fpx Frx Foe- o5 F)(2), (3.5)

from (3.5) we have

-5 (M [ ) = 3 (T T s

k=2 i=1 k=1 i=1 j=1

)zk. (3.6)
To prove the theorem, we need to show that
[e'g) p q o0 p q
Z k2p+q_1)\k ( H |ak,i‘ H |Ak:z|> + Z k2p+q_lﬂk ( H |bk,z
k=2 i=1 j=1 k=1 i=1 j=1

where A, and py, are defined by (2.2).
Since f; € K g (¢i,1;; A, B), we obtain

A<t 6D

> kXlar] + Y kpklbe] < 1, (3.8)
k=2 k=1
for every i = 1,2,...,p. Therefore
helars] <1 or Jags| < ﬁ (3.9)
and
kug|bei) <1 or |bg| < L (3.10)

Kk
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Further, since A\ > k and ug > k, we get
laki| < k™2 and |byi| < k72, (3.11)

for every i = 1,2,...,p. Also, since F; € Sy(¢;,vj; A, B), we have

Z k| A 5] + ZMk|Bk,j| <1, (3.12)
k=2 k=1

for every j =1,2,...,q. Hence we obtain
[Agl < k71 and [By;| < k71 (3.13)

for every j=1,2,...,q.
Using (3.11) for i = 1,2,...,p; (3.13) for j = 1,2,...,9 — 1 and (3.12) for j = ¢, we obtain

00 P q—1 00 P q—1
>k (TT el TT 1Akl 1Akl + S0 6259 e TT 1ol TT 1Bl ) 1Bl
k=2 i=1 j=1 k=1 i=1 j=1

< Z k2p+q’1(Akk’gpk*(q*”)mhﬂ + Z k2p+q71(Nkk72pk7(qfl))|3k7q|

k=2 =1
o0 o0

= Ml Akl + >l Bryl <1,
k=2 k=1

and therefore £(z) € g?ﬂ_l((bhzbj;fl, B). We note that the required estimate can also be

obtained by using (3.11) for i = 1,2,...,p—1; (3.13) for j =1,2,...,q and (3.8) for i = p. O
Taking into account the Hadamard product of functions f; * fs % - - - * f,, only, in the proof of

Theorem 3.3, and using (3.11) for i = 1,2,...,p — 1; and relation (3.8) for i = p, we are led to

Corollary 3.4 Let the functions f; defined by (3.2) be in the class K y(¢;,vj; A, B) for ev-
ery i = 1,2,...,p. Then the Hadamard product (f1 * fo * --- = f,)(2) belongs to the class
Si (i3 A, B).

Also, taking into account the Hadamard product of functions Fj * Fy * --- % Fj, only, in the
proof of Theorem 3.3, and using (3.13) for j = 1,2,...,¢ — 1; and relation (3.12) for j = ¢, we

are led to

Corollary 3.5 Let the functions F; defined by (3.3) be in the class Sy(¢i,vj; A, B) for ev-
ery j = 1,2,...,q. Then the Hadamard product (Fy = Fy % --- % F,)(z) belongs to the class
Sir (6453 A, B).

4. Radii of starlikeness and convexity

Let @ C H. We define the radius of starlikeness and the radius of convexity of the class @,
respectively

R3(Q) = (sup{r € (0,1] : f is starlike of order 8 in D(r)})

inf
feQ
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and
R3(Q) = }n(f?(sup{r € (0,1] : f is convex of order 5 in D(r)}),
€
where D(r) ={z € C: |z| <r <1} (see [21]).
Using [4, Theorem 2], we have
The function f = h + g is starlike of order £ in D(r) if and only if

GG =) = 0+ A + 36y oy )
(2l (2) = 29'(2)) + (1 = B)(h(2) + 9(2))
Theorem 4.1 Let 0 < 8 < 1, |by] < min{i, %}, Ar (k> 2) and py, (k > 1) be given by
(2.2). Then
(i) R5(Su(di vy A, B)) = infyz[ SRR min{ Ay )
(i) RG(Ku(dity; A, B)) = infk22[(1_€):;3;ﬁ)lbl‘ min{ 72k, k(ll:iﬂ)}]ﬁ-

Proof (i) Let f € Su(¢i,;; A, B), |z| =7 < 1. Then using (1.1) we have

|
(1+B)(h(2) +9(2))‘
(

(2h'(2) — 29'(2))

(2h'(2) — 29'(2)) + (1 = B)(h(2) + 9(2))
—| —B2+ 3, ((k — 1 — Barz* — (k+ 1+ B)bz") |
(2—=0)z+ X2 ,((k+1—B)arzk — (k — 1+ B)bypzF)
B+ 332 5((k — 1~ B)lax| — (k+1+ B)|b)r*
T (2-8) = E,((k 4+ 1= B)lag] + (k= L+ B)bk)rr—1
From (4.1), we get f € S5,(8) if and only if

kZ:2 [(1 B ) T L gy (1+5)|b1||bkl] <1 (4.2)

Also, by Theorem 2.3, we have

Z)\k|ak| + Zﬂk|bk| <1
k=2 k=1

The condition (4.2) is true if

kiﬂ Tk71< /\k
(1-=58)—(1+p8)b] = 1= b
and -
+ k—1 ik
Pkl Mk _o3
(1=58)—(1+8)bi] T 1= b
or if

L=B) - Al M e e
1mn ’ '_7 k:2,3,
1 — pur[by] {k—ﬂ k+5}}
It follows that the function f is starlike of order § in the disk U(r*) where
1-5)-(1 b 1
U R I P
k-B"k+8

TS[

" 1122[ 1—M1|b1|

Using a similar argument as above we can obtain (ii). O

Acknowledgements We thank the referees for their helpful suggestions.
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