Relative Property A for Discrete Metric Space

Yufang LI 1,2, Zhe DONG ${ }^{1}$, Yuanyi WANG ${ }^{3, *}$
1. Department of Mathematics, Zhejiang University, Zhejiang 310058, P. R. China;
2. Department of Mathematics and Statistics, Guizhou University, Guizhou 550025, P. R. China;
3. School of Information Engineering, College of Science and Technology, Ningbo University, Zhejiang 315211, P. R. China

Abstract

Yu introduced Property A on discrete metric spaces. In this paper, a relative Property A for a discrete metric space X with respect to a set Y and a map $\rho_{X, Y}$ is defined. Some characterizations for relative Property A are given. In particular, a discrete metric space with relative Property A can be coarse embedding into a Hilbert space under certain condition.

Keywords relative Property A; coarse embedding; mazur map
MR(2010) Subject Classification 46B85; 46C05

1. Introduction

Coarse embeddings were introduced by Gromov in [1]. A function $f: X \rightarrow Y$ between metric spaces is a coarse embedding if there exist two non-decreasing maps $\theta_{1}, \theta_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $\theta_{1}(t) \rightarrow+\infty$ as $t \rightarrow+\infty$ and $\theta_{1}\left(d_{X}(x, y)\right) \leq d_{Y}(f(x), f(y)) \leq \theta_{2}\left(d_{X}(x, y)\right)$ for all $x, y \in X$. The readers can refer to the book [2] for a self-contained introduction to coarse geometry.

Property A is a weak version of amenability for discrete metric space which was introduced by Yu [3], who claimed that a metric space satisfies this property can be coarse embedding into a Hilbert space. For metric spaces with bounded geometry it implies the coarse Baum Connes conjecture, and for a finitely generated group with word-length metric it implies the strong Novikov conjecture. Kasparov and Yu treated the case when the Hilbert space is replaced with a uniformly convex Banach space [4]. In [5], Nowak constructed some metric spaces which do not satisfy Property A but embed coarsely into a Hilbert space. So coarse embedding into a Hilbert space and Property A are not equivalent. In [6], Higson and Roe gave a useful equivalent definition of Property A. They claimed that a discrete metric space with bounded geometry with Property A if and only if for every $R>0$ and $\varepsilon>0$, there exists a map $\xi: X \rightarrow \ell^{1}(X)^{+}$and an $S \in \mathbb{R}^{+}$such that $\left\|\xi_{x}\right\|_{\ell^{1}}=1$ and $\operatorname{supp} \xi_{x} \subseteq B(x, S)$ for every $x \in X$ and $\left\|\xi_{x}-\xi_{y}\right\|_{\ell^{1}}<\varepsilon$ whenever $d(x, y)<R$. In [7], Ji, Ogle and Ramsey defined relative Property A for a discrete group G relative to a finite family of subgroups \mathscr{H}, and they showed that if G has Property A

[^0]relative to a family of subgroups \mathscr{H} and if each $H \in \mathscr{H}$ has Property A then G has Property A. Readers can refer to [8] for more details.

In this paper, we define a relative Property A for metric space with respect to a set Y and a map $\rho_{X, Y}$, which is a generalization of Yu's Property A. Several examples and equivalent characterizations of relative Property A are given. In particular, we show that relative Property A implies coarse embedding into a Hilbert space if $d\left(x_{1}, x_{2}\right) \leq \rho_{X, Y}\left(x_{1}, y\right)+\rho_{X, Y}\left(x_{2}, y\right)$ for all $x_{1}, x_{2} \in X$ and $y \in Y$.

2. Relative Property A

Recall that a discrete metric space (X, d) has Property A if for all $R, \varepsilon>0$, there exists a family $\left\{A_{x}\right\}_{x \in X}$ of finite non-empty subsets of $X \times \mathbb{N}$ such that (1) for all $x, y \in X$ with $d(x, y) \leq R$, we have $\frac{\left|A_{x} \triangle A_{y}\right|}{\left|A_{x} \cap A_{y}\right|}<\varepsilon$; (2) there exists an S such that for each $x \in X$ if $(y, n) \in A_{x}$, then $d(x, y) \leq S$.

Definition 2.1 Let X be a discrete metric space (X, d) and Y be a set with $\rho_{X, Y}: X \times Y \rightarrow \mathbb{R}^{+}$. We say X has relative Property A with respect to Y and $\rho_{X, Y}$ if the following are satisfied: for any $R>0$ and $\varepsilon>0$, there exists an $S>0$ and a collection $\left\{A_{x}\right\}_{x \in X}$ of finite nonempty subsets of $Y \times \mathbb{N}$ such that:
(1) For each $x \in X$ if $(y, n) \in A_{x}$, then $y \in B_{\rho_{X, Y}}(x, S)$, where $B_{\rho_{X, Y}}(x, S)=\{y \in$ $\left.Y \mid \rho_{X, Y}(x, y) \leq S\right\} ;$
(2) If $d\left(x_{1}, x_{2}\right)<R$, then $\frac{\left|A_{x_{1}} \Delta A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|}<\varepsilon$.

The following proposition gives the relationships between Property A and relative Property A.

Proposition 2.2 Suppose (Z, d) is a discrete metric space, X is a subspace of Z, Y is a subset of Z and the map $\rho_{X, Y}(x, y)=d(x, y)$ for all $x \in X, y \in Y$, then
(1) If $X \subseteq Y$ and X has Property A, then X has relative Property A with respect to Y and $\rho_{X, Y}$;
(2) If $Y \subseteq X$ and X has relative Property A with respect to Y and $\rho_{X, Y}$, then X has Property A;
(3) If $X=Y, X$ has Property A if and only if X has relative property A with respect to Y and $\rho_{X, Y}$.

Proof (1) Suppose X has Property A. Then for any $R>0$ and $\varepsilon>0$, there exists a collection $\left\{A_{x}\right\}_{x \in X}$ and an S satisfying the definition of Property A. Since $X \subseteq Y$, we can see A_{x} as subset of $Y \times \mathbb{N}$. Then if $(y, n) \in A_{x}$, we have $d(x, y) \leq S$. So $y \in B_{\rho_{X, Y}}(x, S)$. For any $x_{1}, x_{2} \in X$ with $d\left(x_{1}, x_{2}\right)<R$, we have

$$
\frac{\left|A_{x_{1}} \triangle A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|}<\varepsilon
$$

So X has relative Property A with respect to Y and $\rho_{X, Y}$.
(2) The proof is similar to that in (1).
(3) It is clear from (1) and (2).

Now we give some examples about relative Property A.
Example 2.3 Let X be a finite metric space with a set Y and a map $\rho_{X, Y}: X \times Y \rightarrow \mathbb{R}^{+}$. For any $R>0$ and $\varepsilon>0$, fix $y_{0} \in Y$, let $S=\max _{x \in X} \rho_{X, Y}\left(x, y_{0}\right)$ and $A_{x}=\left(y_{0}, 1\right) \subseteq Y \times \mathbb{N}$ for any $x \in X$. If $(y, n) \in A_{x}$, then $y=y_{0}, n=1$. So $y \in B_{\rho_{X, Y}}(x, S)$. For any $x_{1}, x_{2} \in X$ with $d\left(x_{1}, x_{2}\right)<R$, we have $\frac{\left|A_{x_{1}} \Delta A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|}=0<\varepsilon$. So X has relative Property A with respect to Y and $\rho_{X, Y}$.

Example 2.4 Let X be a discrete metric space with a set Y and a map $\rho_{X, Y}: X \times Y \rightarrow \mathbb{R}^{+}$. If $\rho_{X, Y}$ is uniformly bounded, then there exists an S such that $\rho_{X, Y}(x, y) \leq S$ for all $x \in X$ and $y \in Y$. For any $R>0$ and $\varepsilon>0$, we fix a $y_{0} \in Y$ and let $A_{x}=\left(y_{0}, 1\right) \subseteq Y \times \mathbb{N}$ for all $x \in X$. It is clear that if $(y, n) \in A_{x}$, we have $\rho_{X, Y}(x, y) \leq S$. For any $x_{1}, x_{2} \in X$ with $d\left(x_{1}, x_{2}\right)<R$, we have $\frac{\left|A_{x_{1}} \triangle A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|}=0<\varepsilon$. So X has relative Property A with respect to Y and $\rho_{X, Y}$.

Example 2.5 If $X=\mathbb{Z}$ and Y is a countable set. Let f be a bijection from Y to \mathbb{Z}. We define $\rho_{X, Y}(x, y)=|x-f(y)|$. Fix $R>0$ and $\varepsilon>0$ where $\varepsilon<1$ and choose an $S \in \mathbb{N}$ such that $S>2 R \varepsilon^{-1}$. Define $A_{x}=\left\{(y, 1) \in Y \times \mathbb{N} \mid \rho_{X, Y}(x, y) \leq S\right\}$. It is clear that each A_{x} is a finite subset in $Y \times \mathbb{N}$. By the definition of $A_{x}, \rho_{X, Y}(x, y) \leq S$ if $(y, n) \in A_{x}$. For any $x_{1}, x_{2} \in X$ with $\left|x_{1}-x_{2}\right|<R$, we have $\left|A_{x_{1}} \cup A_{x_{2}}\right|=2 S+\left|x_{1}-x_{2}\right|+1,\left|A_{x_{1}} \triangle A_{x_{2}}\right|=2\left|x_{1}-x_{2}\right|$ and $\left|A_{x_{1}} \cap A_{x_{2}}\right|=2 S-\left|x_{1}-x_{2}\right|+1$. So

$$
\frac{\left|A_{x_{1}} \triangle A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|}=\frac{2\left|x_{1}-x_{2}\right|}{2 S-\left|x_{1}-x_{2}\right|+1}<\frac{2 R}{2 S-R+1}<\frac{2 R}{2 R \varepsilon^{-1}-R}=\frac{2 \varepsilon}{2-\varepsilon}
$$

So \mathbb{Z} has relative Property A with respect to a countable set Y and $\rho_{X, Y}$. Let $Y=\mathbb{Z}$ and $\rho_{X, Y}(x, y)=|x-y|$. From Proposition 2.2, we conclude that \mathbb{Z} has Property A.

Next we give an example of discrete space with Property A but without relative Property A with a map $\rho_{X, Y}$ and some set Y.

Example 2.6 If $X=\mathbb{Z}$ and $Y=\{0\} \in \mathbb{Z}$ is a single point set. We define $\rho_{X, Y}(x, y)=|x-y|$ for all $x \in X$ and $y \in Y$. For any $S>0$, there exists an $x_{0} \in \mathbb{Z}$ such that $\left|x_{0}-0\right|=\left|x_{0}\right|>S$. Since $A_{x_{0}}$ is nonempty, there exists $n \in \mathbb{N}$ such that $(0, n) \in A_{x_{0}}$ and $\rho_{X, Y}\left(x_{0}, 0\right)>S$. So \mathbb{Z} dose not have relative Property A with respect to $Y=\{0\}$ and $\rho_{X, Y}(x, y)=|x-y|$.

Proposition 2.7 If a discrete metric space X has relative Property A with respect to Y and $\rho_{X, Y}$, then any subspace of X also has relative Property A with respect to Y and $\rho_{X, Y}$.

Proof Suppose X has relative Property A with respect to Y and $\rho_{X, Y}$ and X^{\prime} is a subspace of X. Let $\left\{A_{x}\right\}_{x \in X}$ be the sets satisfying the definition of relative Property A with respect to Y and $\rho_{X, Y}$. We can choose the subfamilies $\left\{A_{x}\right\}_{x \in X^{\prime}}$. It is easy to check these sets satisfying the definition of X^{\prime} having relative Property A with respect to Y and $\rho_{X, Y}$.

Proposition 2.8 Let X be a discrete metric space (X, d) and Y_{1}, Y_{2} be subsets of Y. If X has relative Property A with respect to both Y_{1} and Y_{2} and $\rho_{X, Y}$, then X has relative Property A
with respect to $Y_{1} \cup Y_{2}$ and $\rho_{X, Y}$.
Proof Suppose that X has relative Property A with respect to both Y_{1} and Y_{2} and $\rho_{X, Y}$. For any $R>0$ and $\varepsilon>0$, let $\left\{A_{x}^{\prime}\right\}_{x \in X}$ and $\left\{A_{x}^{\prime \prime}\right\}_{x \in X}$ be the sets satisfying the definition of relative Property A with respect to Y_{1} and Y_{2} and $\rho_{X, Y}$, and $S^{\prime}, S^{\prime \prime}$ be the relevant constants. Let $A_{x}=A_{x}^{\prime} \cup A_{x}^{\prime \prime}$. If $(y, n) \in A_{x}$, then $(y, n) \in A_{x}^{\prime}$ or $(y, n) \in A_{x}^{\prime \prime}$. In the first case, $\rho_{X, Y}(x, y) \leq S^{\prime} ;$ in the second case, $\rho_{X, Y}(x, y) \leq S^{\prime \prime}$. So $\rho_{X, Y}(x, y) \leq S$ where $S=\max \left\{S^{\prime}, S^{\prime \prime}\right\}$.

For each $x_{1}, x_{2} \in X$ with $d\left(x_{1}, x_{2}\right)<R$, from the condition (2) of relative Property A, we get $\frac{\left|A_{x_{1}}^{\prime} \triangle A_{x_{1}}^{\prime}\right|}{\left|A_{x_{1}}^{\prime} \cap A_{x_{2}}^{\prime}\right|}<\varepsilon$ and $\frac{\left|A_{x_{1}}^{\prime \prime} \triangle A_{x_{2}}^{\prime \prime}\right|}{\left|A_{x_{1}}^{\prime \prime} \cap A_{x_{2}}^{\prime \prime}\right|}<\varepsilon$. Then

$$
\begin{aligned}
\frac{\left|A_{x_{1}} \Delta A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|}= & \frac{\left|\left(A_{x_{1}}^{\prime} \cup A_{x_{1}}^{\prime \prime}\right) \Delta\left(A_{x_{2}}^{\prime} \cup A_{x_{2}}^{\prime \prime}\right)\right|}{\left|\left(A_{x_{1}}^{\prime} \cup A_{x_{1}}^{\prime \prime}\right) \cap\left(A_{x_{2}}^{\prime} \cup A_{x_{2}}^{\prime \prime}\right)\right|} \\
= & \frac{\left|\left(A_{x_{1}}^{\prime} \triangle A_{x_{2}}^{\prime}\right) \cup\left(A_{x_{1}}^{\prime \prime} \triangle A_{x_{2}}^{\prime \prime}\right)\right|}{\left|\left(A_{x_{1}}^{\prime} \cap A_{x_{2}}^{\prime}\right) \cup\left(A_{x_{1}}^{\prime} \cap A_{x_{2}}^{\prime \prime}\right) \cup\left(A_{x_{1}}^{\prime \prime} \cap A_{x_{2}}^{\prime}\right) \cup\left(A_{x_{1}}^{\prime \prime} \cap A_{x_{2}}^{\prime \prime}\right)\right|} \\
\leq & \frac{\left|A_{x_{1}}^{\prime} \triangle A_{x_{2}}^{\prime}\right|}{\left|\left(A_{x_{1}}^{\prime} \cap A_{x_{2}}^{\prime}\right) \cup\left(A_{x_{1}}^{\prime} \cap A_{x_{2}}^{\prime \prime}\right) \cup\left(A_{x_{1}}^{\prime \prime} \cap A_{x_{2}}^{\prime}\right) \cup\left(A_{x_{1}}^{\prime \prime} \cap A_{x_{2}}^{\prime \prime}\right)\right|}+ \\
& \frac{\left|A_{x_{1}}^{\prime \prime} \triangle A_{x_{2}}^{\prime \prime}\right|}{\left|\left(A_{x_{1}}^{\prime} \cap A_{x_{2}}^{\prime}\right) \cup\left(A_{x_{1}}^{\prime} \cap A_{x_{2}}^{\prime \prime}\right) \cup\left(A_{x_{1}}^{\prime \prime} \cap A_{x_{2}}^{\prime}\right) \cup\left(A_{x_{1}}^{\prime \prime} \cap A_{x_{2}}^{\prime \prime}\right)\right|} \\
\leq & \frac{\left|A_{x_{1}}^{\prime} \triangle A_{x_{2}}^{\prime}\right|}{\left|A_{x_{1}}^{\prime} \cap A_{x_{2}}^{\prime}\right|}+\frac{\left|A_{x_{1}}^{\prime \prime} \triangle A_{x_{2}}^{\prime \prime}\right|}{\left|A_{x_{1}}^{\prime \prime} \cap A_{x_{2}}^{\prime \prime}\right|} \\
& <2 \varepsilon .
\end{aligned}
$$

So the proposition is proved.
Proposition 2.9 If X_{1} is a discrete metric space with relative Property A with respect to Y and $\rho_{X_{1}, Y}$ and X_{2} is a discrete metric space with relative Property A with respect to Y and $\rho_{X_{2}, Y}$. Then $X_{1} \times X_{2}$ is a discrete metric space with relative Property A with respect to Y and $\rho_{X_{1} \times X_{2}, Y}$, where $\rho_{X_{1} \times X_{2}, Y}\left(\left(x_{1}, x_{2}\right), y\right)=\min \left\{\rho_{X_{1}, Y}\left(x_{1}, y\right), \rho_{X_{2}, Y}\left(x_{2}, y\right)\right\}$ for all $x_{1} \in X_{1}, x_{2} \in$ X_{2} and $y \in Y$, and $d_{X_{1} \times X_{2}}\left(\left(x_{1}^{\prime}, x_{2}^{\prime}\right),\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)\right)=d_{X_{1}}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right)+d_{X_{2}}\left(x_{2}^{\prime}, x_{2}^{\prime \prime}\right)$ for all $x_{1}^{\prime}, x_{1}^{\prime \prime} \in X_{1}$, $x_{2}^{\prime}, x_{2}^{\prime \prime} \in X_{2}$.

Proof Suppose X_{1} and X_{2} have relative Property A with respect to Y and $\rho_{X_{1}, Y}$ and $\rho_{X_{2}, Y}$. For any $R>0$ and $\varepsilon>0$, let $\left\{A_{x_{1}}\right\}_{x_{1} \in X_{1}},\left\{A_{x_{2}}\right\}_{x_{2} \in X_{2}}$ be the sets satisfying the definition of relative Property A and S_{1}, S_{2} be the relevant constants. Set $A_{\left(x_{1}, x_{2}\right)}=A_{x_{1}} \cup A_{x_{2}}$. Then if $(y, n) \in A_{\left(x_{1}, x_{2}\right)}$, we have $(y, n) \in A_{x_{1}}$ or $(y, n) \in A_{x_{2}}$. In the first case, $\rho_{X_{1}, Y}\left(x_{1}, y\right) \leq S_{1}$; in the second case, $\rho_{X_{2}, Y}\left(x_{2}, y\right) \leq S_{2}$. Since $\rho_{X_{1} \times X_{2}, Y}\left(\left(x_{1}, x_{2}\right), y\right)=\min \left\{\rho_{X_{1}, Y}\left(x_{1}, y\right), \rho_{X_{1}, Y}\left(x_{1}, y\right)\right\}$, so $\rho_{X_{1} \times X_{2}, Y}\left(\left(x_{1}, x_{2}\right), y\right) \leq S$ where $S=\max \left\{S_{1}, S_{2}\right\}$.

Suppose $x_{1}^{\prime}, x_{1}^{\prime \prime} \in X_{1}$ and $x_{2}^{\prime}, x_{2}^{\prime \prime} \in X_{2}$ with $d_{X_{1} \times X_{2}}\left(\left(x_{1}^{\prime}, x_{2}^{\prime}\right),\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)\right)<R$. We have $d_{X_{1}}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right)<R$ and $d_{X_{2}}\left(x_{2}^{\prime}, x_{2}^{\prime \prime}\right)<R$, so $\frac{\left|A_{x_{1}^{\prime}} \triangle A_{x_{1}^{\prime \prime}}\right|}{\left|A_{x_{1}^{\prime}} \cap A_{x_{1}^{\prime \prime}}\right|}<\varepsilon$ and $\frac{\left|A_{x_{2}^{\prime}} \triangle A_{x_{2}^{\prime \prime}}\right|}{\left|A_{x_{2}^{\prime}} \cap A_{x_{2}^{\prime \prime}}\right|}<\varepsilon$. As the proof of above proposition, we can see that

$$
\frac{\left|A_{\left(x_{1}^{\prime}, x_{2}^{\prime}\right)} \triangle A_{\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)}\right|}{\left|A_{\left(x_{1}^{\prime}, x_{2}^{\prime}\right)} \cap A_{\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)}\right|}=\frac{\left|\left(A_{x_{1}^{\prime}} \cup A_{x_{2}^{\prime}}\right) \triangle\left(A_{x_{1}^{\prime \prime}} \cup A_{x_{2}^{\prime \prime}}\right)\right|}{\left|\left(A_{x_{1}^{\prime}} \cup A_{x_{2}^{\prime}}\right) \cap\left(A_{x_{1}^{\prime \prime}} \cup A_{x_{2}^{\prime \prime}}\right)\right|}<2 \varepsilon .
$$

So $X_{1} \times X_{2}$ is a metric space with relative Property A with respect to Y and $\rho_{X_{1} \times X_{2}, Y}$.

One of Yu's main motivations for introducing Property A was that it implies coarse embedding into Hilbert space. Now we prove that a discrete metric space with relative Property A with respect to Y and $\rho_{X, Y}$ can be coarse embedding into a Hilbert space under the condition of $d\left(x_{1}, x_{2}\right) \leq \rho_{X, Y}\left(x_{1}, y\right)+\rho_{X, Y}\left(x_{2}, y\right)$ for all $x_{1}, x_{2} \in X$ and $y \in Y$. The main idea of the following theorem comes from [8].

Theorem 2.10 Suppose (X, d) is a discrete metric space with relative Property A with respect to Y and $\rho_{X, Y}$. If $d\left(x_{1}, x_{2}\right) \leq \rho_{X, Y}\left(x_{1}, y\right)+\rho_{X, Y}\left(x_{2}, y\right)$ for all $x_{1}, x_{2} \in X$ and $y \in Y$, then X can be coarse embedding into a Hilbert space.

Proof First we define a Hilbert space

$$
\mathcal{H}=\bigoplus_{k=1}^{\infty} \ell^{2}(Y \times \mathbb{N})
$$

Since X is a discrete metric space with relative Property A with respect to Y and $\rho_{X, Y}$, then for $R=k \in \mathbb{N}$ and $\varepsilon=\frac{1}{2^{2 k+1}}>0$, we can define a sequence of sets $\left\{A_{x}^{k}\right\}_{x \in X} \subseteq Y \times \mathbb{N}$ satisfying:
(1) There exists an $S_{k}>k$, such that if $(y, n) \in A_{x}^{k}$, then $y \in B_{\rho_{X, Y}}\left(x, \frac{1}{2} S_{k}\right)$;
(2) For any $x_{1}, x_{2} \in X$ with $d\left(x_{1}, x_{2}\right)<k$, we have $\frac{\left|A_{x_{1}}^{k} \Delta A_{x_{2}}^{k}\right|}{\left|A_{x_{1}}^{k} \cap A_{x_{2}}^{k}\right|}<\frac{1}{2^{2 k+1}}$.

Let $\chi_{A_{x}}$ be the characteristic function of A_{x}. For any $x_{1}, x_{2} \in X$ with $d\left(x_{1}, x_{2}\right)<k$, we have

$$
\begin{aligned}
& \left\|\frac{\chi_{A_{x_{1}}^{k}}^{k}}{\left|A_{x_{1}}^{k}\right|^{\frac{1}{2}}}-\frac{\chi_{A_{x_{2}}^{k}}^{k}}{\left|A_{x_{2}}^{k}\right|^{\frac{1}{2}}}\right\|_{\ell^{2}(Y \times \mathbb{N})}^{2} \\
& \quad=\frac{\left|A_{x_{1}}^{k} \backslash A_{x_{2}}^{k}\right|}{\left|A_{x_{1}}^{k}\right|}+\frac{\left|A_{x_{2}}^{k} \backslash A_{x_{1}}^{k}\right|}{\left|A_{x_{2}}^{k}\right|}+\left|A_{x_{1}}^{k} \cap A_{x_{2}}^{k}\right|\left(\frac{1}{\left|A_{x_{1}}^{k}\right|^{\frac{1}{2}}}-\frac{1}{\left|A_{x_{2}}^{k}\right|^{\frac{1}{2}}}\right)^{2} \\
& \quad=\frac{\left|A_{x_{1}}^{k} \backslash A_{x_{2}}^{k}\right|}{\left|A_{x_{1}}^{k}\right|}+\frac{\left|A_{x_{2}}^{k} \backslash A_{x_{1}}^{k}\right|}{\left|A_{x_{2}}^{k}\right|}+\left|A_{x_{1}}^{k} \cap A_{x_{2}}^{k}\right|\left(\frac{\left|A_{x_{1}}^{k}\right|+\left|A_{x_{2}}^{k}\right|-2\left|A_{x_{1}}^{k}\right|^{\frac{1}{2}}\left|A_{x_{2}}^{k}\right|^{\frac{1}{2}}}{\left|A_{x_{1}}^{k}\right|\left|A_{x_{2}}^{k}\right|}\right) \\
& \quad \leq \frac{\left|A_{x_{1}}^{k} \triangle A_{x_{2}}^{k}\right|}{\left|A_{x_{1}}^{k} \cap A_{x_{2}}^{k}\right|}+\left|A_{x_{1}}^{k} \cap A_{x_{2}}^{k}\right|\left(\frac{\left|A_{x_{1}}^{k}\right|+\left|A_{x_{2}}^{k}\right|-2\left|A_{x_{1}}^{k}\right|^{\frac{1}{2}}\left|A_{x_{1}}^{k}\right|^{\frac{1}{2}}}{\left|A_{x_{2}}^{k}\right|\left|A_{x_{2}}^{k}\right|}\right) \\
& \quad \leq \frac{\left|A_{x_{1}}^{k} \triangle A_{x_{2}}^{k}\right|}{\left|A_{x_{1}}^{k} \cap A_{x_{2}}^{k}\right|}+\frac{\left|A_{x_{1}}^{k}\right|+\left|A_{x_{2}}^{k}\right|-2\left|A_{x_{1}}^{k} \cap A_{x_{2}}^{k}\right|}{\left|A_{x_{1}}^{k} \cap A_{x_{2}}^{k}\right|} \\
& \quad=\frac{2\left|A_{x_{1}}^{k} \triangle A_{x_{2}}^{k}\right|}{\left|A_{x_{1} \cap A_{x_{2}} \mid}^{k}\right|}<\frac{1}{2^{2 k}} .
\end{aligned}
$$

Hence
for any $x_{1}, x_{2} \in X$ with $d\left(x_{1}, x_{2}\right)<k$.
Now, choose $x_{0} \in X$ and define $f: X \rightarrow \mathcal{H}$ by

$$
f(x)=\bigoplus_{k=1}^{\infty}\left(\frac{\chi_{A_{x}^{k}}}{\left|A_{x}^{k}\right|^{\frac{1}{2}}}-\frac{\chi_{A_{x_{0}}^{k}}}{\left|A_{x_{0}}^{k}\right|^{\frac{1}{2}}}\right) .
$$

For any $x \in X$, there exists a $k^{\prime} \in \mathbb{N}>0$ such that $d\left(x, x_{0}\right)<k^{\prime}$. We have

$$
\left\|f(x)-f\left(x_{0}\right)\right\|=\sum_{k=1}^{\infty}\left\|\frac{\chi_{A_{x}^{k}}}{\left|A_{x}^{k}\right|^{\frac{1}{2}}}-\frac{\chi_{A_{x_{0}}^{k}}}{\left|A_{x_{0}}^{k}\right|^{\frac{1}{2}}}\right\|_{\ell^{2}(Y \times \mathbb{N})}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{k^{\prime}-1}\left\|\frac{\chi_{A_{x}^{k}}}{\left|A_{x}^{k}\right|^{\frac{1}{2}}}-\frac{\chi_{A_{x_{0}}^{k}}}{\left|A_{x_{0}}^{k}\right|^{\frac{1}{2}}}\right\|_{\ell^{2}(Y \times \mathbb{N})}+\sum_{k=k^{\prime}}^{\infty}\left\|\frac{\chi_{A_{x}^{k}}}{\left|A_{x}^{k}\right|^{\frac{1}{2}}}-\frac{\chi_{A_{x_{0}}^{k}}}{\left|A_{x_{0}}^{k}\right|^{\frac{1}{2}}}\right\|_{\ell^{2}(Y \times \mathbb{N})} \\
& \leq \sum_{k=1}^{k^{\prime}-1} \| \frac{\chi_{A_{x}^{k}}}{\left|A_{x}^{k}\right|^{\frac{1}{2}}}-\frac{\chi_{A_{x_{0}}^{k}}^{\left|A_{x_{0}}^{k}\right|^{\frac{1}{2}}} \|_{\ell^{2}(Y \times \mathbb{N})}+1<\infty .}{} . l \text {. }
\end{aligned}
$$

So f is well-defined.
For any $m \in \mathbb{N}$, if $x_{1}, x_{2} \in X$ with $m \leq d\left(x_{1}, x_{2}\right)<m+1$, we can get the estimate

$$
\begin{aligned}
\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|^{2} & =\sum_{k=1}^{\infty} \| \frac{\chi_{A_{x_{1}}^{k}}^{\left|A_{x_{1}}^{k}\right|^{\frac{1}{2}}}-\frac{\chi_{A_{x_{2}}^{k}}}{\left|A_{x_{2}}^{k}\right|^{\frac{1}{2}}} \|_{\ell^{2}(Y \times \mathbb{N})}^{2}}{} \\
& \leq \sum_{k=1}^{m}\left\|\frac{\chi_{A_{x_{1}}^{k}}^{k}}{\left|A_{x_{1}}^{k}\right|^{\frac{1}{2}}}-\frac{\chi_{A_{x_{2}}^{k}}}{\left|A_{x_{2}}^{k}\right|^{\frac{1}{2}}}\right\|_{\ell^{2}(Y \times \mathbb{N})}^{2}+1 \\
& \leq \sum_{k=1}^{m}\left(\left\|\frac{\chi_{A_{x_{1}}^{k}}}{\left|A_{x_{1}}^{k}\right|^{\frac{1}{2}}}\right\|_{\ell^{2}(Y \times \mathbb{N})}+\left\|\frac{\chi_{A_{x_{2}}^{k}}}{\left|A_{x_{2}}^{k}\right|^{\frac{1}{2}}}\right\|_{\ell^{2}(Y \times \mathbb{N})}\right)^{2}+1 \\
& =4 m+1 .
\end{aligned}
$$

Hence $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \leq \sqrt{4 m+1}$.
On the other hand, we define a map $Q: \mathbb{R}^{+} \rightarrow \mathbb{N}$ by $Q(t)=\left|\left\{S_{k} \mid S_{k}<t\right\}\right|$ for $t \in \mathbb{R}^{+}$. From the choice of the families $\left\{A_{x}^{k}\right\}_{x \in X}, Q(t)$ exists for all $t \in \mathbb{R}^{+}$since $S_{k} \geq k$, and $Q(t) \rightarrow \infty$ as $t \rightarrow \infty$. Now we claim that for any $x_{1}, x_{2} \in X$ if $d\left(x_{1}, x_{2}\right)>S_{k}$, then $A_{x_{1}}^{k} \cap A_{x_{2}}^{k}=\emptyset$. Indeed, if there exists $(y, n) \in A_{x_{1}}^{k} \cap A_{x_{2}}^{k}$, then $\rho_{X, Y}\left(x_{1}, y\right) \leq \frac{1}{2} S_{k}$ and $\rho_{X, Y}\left(x_{2}, y\right) \leq \frac{1}{2} S_{k}$. Since for any $x_{1}, x_{2} \in X$, we have $d\left(x_{1}, x_{2}\right) \leq \rho_{X, Y}\left(x_{1}, y\right)+\rho_{X, Y}\left(x_{2}, y\right) \leq S_{k}$, this is a contradiction. For any $m \in \mathbb{N}$, if $m \leq d\left(x_{1}, x_{2}\right)<m+1$, we write $Q\left(d\left(x_{1}, x_{2}\right)\right)=r$. So the number of S_{k} satisfies $S_{k}<d\left(x_{1}, x_{2}\right)$ is r. Then we can write the set $\left\{S_{k} \mid S_{k}<d\left(x_{1}, x_{2}\right)\right\}$ as $\left\{S_{k_{1}}, S_{k_{2}}, \ldots, S_{k_{r}}\right\}$. Since $d\left(x_{1}, x_{2}\right)>S_{k_{j}}$, we have $A_{x_{1}}^{k_{j}} \cap A_{x_{2}}^{k_{j}}=\emptyset$ for $j=1, \ldots, r$. We have

$$
\begin{aligned}
\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|^{2} & =\sum_{k=1}^{\infty}\left\|\frac{\chi_{A_{x_{1}}^{k}}^{k}}{\left|A_{x_{1}}^{k}\right|^{\frac{1}{2}}}-\frac{\chi_{A_{x_{2}}^{k}}^{k}}{\left|A_{x_{2}}^{k}\right|^{\frac{1}{2}}}\right\|_{\ell^{2}(Y \times \mathbb{N})}^{2} \\
& \geq \sum_{j=1}^{r}\left\|\frac{\chi_{A_{x_{1}}^{k_{j}}}}{\left|A_{x_{1}}^{k_{j}}\right|^{\frac{1}{2}}}-\frac{\chi_{A_{x_{2}}^{k_{j}}}}{\left|A_{x_{2}}^{k_{j}}\right|^{\frac{1}{2}}}\right\|_{\ell^{2}(Y \times \mathbb{N})}^{2}=2 r .
\end{aligned}
$$

Hence $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \geq \sqrt{2 r}$.
Define the maps $\theta_{1}, \theta_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$by $\theta_{1}(t)=\sqrt{2 Q(t)}$ and $\theta_{2}(t)=\sqrt{4 t+1}$ for $t \in \mathbb{R}^{+}$. It is clear that both $\theta_{1}(t)$ and $\theta_{2}(t)$ are non-decreasing and $\theta_{1}(t) \rightarrow+\infty$ as $t \rightarrow+\infty$. We have

$$
\theta_{1}\left(d\left(x_{1}, x_{2}\right)\right) \leq d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq \theta_{2}\left(d\left(x_{1}, x_{2}\right)\right)
$$

for any $x_{1}, x_{2} \in X$.
So X can be coarse embedding into a Hilbert space.
In [8], the author collected many equivalent formulations of Property A under the condition of bounded geometry. Recall that a metric space X is bounded geometry if for every $C>0$, there is an absolute bound on the number of elements in any ball within X of radius C. In this paper, we need to restrict the discrete metric space with relative bounded geometry in order to
prove the similar results.
Definition 2.11 A discrete metric space (X, d) with respect Y and $\rho_{X, Y}$ is relative bounded geometry if for all $L>0$, there exists an $N_{L} \in \mathbb{N}$ such that $\left|\left\{y \in Y \mid y \in B_{\rho_{X, Y}}(x, L)\right\}\right|<N_{L}$ for all $x \in X$.

If we let $X=Y$ and $\rho_{X, Y}=d$, then it is exactly the definition of bounded geometry. In the following, we will give some equivalent formulations of relative Property A under this condition.

Theorem 2.12 Let X be a discrete metric space with relative bounded geometry with respect to Y and $\rho_{X, Y}$. Then X has relative Property A with respect to Y and $\rho_{X, Y}$ if and only if for every $R>0$ and $\varepsilon>0$ there exists an $S>0$ and $\xi: X \rightarrow \ell^{1}(Y)^{+}$satisfying:
(1) $\left\|\xi_{x}\right\|_{\ell^{1}}=1$, for any $x \in X$;
(2) If $\xi_{x}(y) \neq 0$, then $y \in B_{\rho_{X, Y}}(x, S)$;
(3) If $d\left(x_{1}, x_{2}\right)<R$, then $\left\|\xi_{x_{1}}-\xi_{x_{2}}\right\|_{\ell^{1}}<\varepsilon$.

Proof Suppose that X has relative Property A with respect to Y and $\rho_{X, Y}$. For any $R>0$ and $\varepsilon>0$, let $\left\{A_{x}\right\}_{x \in X}$ and S satisfy the definition of relative Property A with respect to Y and $\rho_{X, Y}$.

For any $x \in X$, define

$$
\xi_{x}: Y \rightarrow \mathbb{R}^{+}, \xi_{x}(y)=\frac{\left|A_{x} \cap(y \times \mathbb{N})\right|}{\left|A_{x}\right|}
$$

Then

$$
\left\|\xi_{x}\right\|_{\ell^{1}}=\sum_{y \in Y}\left|\xi_{x}(y)\right|=\sum_{y \in Y} \frac{\left|A_{x} \cap(y \times \mathbb{N})\right|}{\left|A_{x}\right|}=1
$$

For any $x_{1}, x_{2} \in X$,

$$
\begin{aligned}
\left\|\xi_{x_{1}}\left|A_{x_{1}}\right|-\xi_{x_{2}}\left|A_{x_{2}}\right|\right\|_{\ell^{1}} & =\sum_{y \in Y}| |(y \times \mathbb{N}) \cap A_{x_{1}}\left|-\left|(y \times \mathbb{N}) \cap A_{x_{2}}\right|\right| \\
& =\left|A_{x_{1}} \triangle A_{x_{2}}\right| .
\end{aligned}
$$

Since for any $x_{1}, x_{2} \in X$ with $d\left(x_{1}, x_{2}\right)<R$, we have

$$
\varepsilon>\frac{\left|A_{x_{1}} \triangle A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|}=\frac{\left|A_{x_{1}}\right|+\left|A_{x_{2}}\right|-2\left|A_{x_{1}} \cap A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|} .
$$

Whence

$$
2+\varepsilon>\frac{\left|A_{x_{1}}\right|+\left|A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|} \geq \frac{\left|A_{x_{1}}\right|+\left|A_{x_{2}}\right|}{\left|A_{x_{1}}\right|}=1+\frac{\left|A_{x_{2}}\right|}{\left|A_{x_{1}}\right|}
$$

So by symmetry

$$
1+\varepsilon>\frac{\left|A_{x_{2}}\right|}{\left|A_{x_{1}}\right|}>\frac{1}{1+\varepsilon}
$$

Combining these two comments, we conclude that

$$
\begin{aligned}
\left\|\xi_{x_{1}}-\xi_{x_{2}}\right\|_{\ell^{1}} & \leq\left\|\xi_{x_{1}}-\xi_{x_{2}} \frac{\left|A_{x_{2}}\right|}{\left|A_{x_{1} \mid}\right|}\right\|_{\ell^{1}}+\left\|\xi_{x_{2}}-\xi_{x_{2}} \frac{\left|A_{x_{2}}\right|}{\left|A_{x_{1}}\right|}\right\|_{\ell^{1}} \\
& \leq \frac{\left|A_{x_{1}} \triangle A_{x_{2}}\right|}{\left|A_{x_{1}}\right|}+\left|1-\frac{\left|A_{x_{2}}\right|}{\left|A_{x_{1}}\right|}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\left|A_{x_{1}} \triangle A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|}+\left|1-\frac{\left|A_{x_{2}}\right|}{\left|A_{x_{1}}\right|}\right| \\
& \leq 2 \varepsilon
\end{aligned}
$$

Finally, note that if $\xi_{x}(y) \neq 0$, then $A_{x} \cap\{y \times \mathbb{N}\} \neq \emptyset$. So there exists an $n \in \mathbb{N}$ such that $(y, n) \in A_{x}$. By the definition of A_{x}, we have $y \in B_{\rho_{X, Y}}(x, S)$.

Conversely, suppose that for any $\varepsilon>0$ and $R>0$, there exists an S and ξ satisfying the conditions (1), (2) and (3). By relative bounded geometry, for all $x \in X$ the number of elements of y within the support of ξ_{x} is uniformly bounded. So we can use the same approximation method as proving [6, Lemma 3.5]. We may assume that there is a natural number M such that for all $x \in X$, the function $\xi_{x} \in \ell^{1}(Y)$ assumes only values in the range

$$
\frac{0}{M}, \frac{1}{M}, \frac{2}{M}, \ldots, \frac{M}{M} .
$$

Define

$$
A_{x}=\left\{(y, j) \in Y \times \mathbb{N} \left\lvert\, \xi_{x}(y) \geq \frac{j}{M}\right., \quad j>0, j \in \mathbb{N}\right\}
$$

Set

$$
A_{x}^{j}=\left\{y \in Y \left\lvert\, \xi_{x}(y) \geq \frac{j}{M}\right.\right\}, \quad j=0, \ldots, M
$$

It is clear that $A_{x}^{j} \subseteq A_{x}^{j-1}$ for $j=1, \ldots, M$. Let $Z=\bigcup_{j=1}^{M}\left(A_{x}^{j-1} \backslash A_{x}^{j}\right) \cup A_{x}^{M}$. We can see that the sets $\left\{A_{x}^{j-1} \backslash A_{x}^{j}\right\}(j=1, \ldots, M)$ and A_{x}^{M} are all disjoint. Since $\left\|\xi_{x}\right\|=1$ for all $x \in X$, we have

$$
\begin{aligned}
1 & =\sum_{y \in Y} \xi_{x}(y)=\sum_{j=1}^{M}\left(| | A_{x}^{j-1}|\backslash| A_{x}^{j}| | \frac{j-1}{M}+\left|A_{x}^{M}\right| \frac{M}{M}\right) \\
& =\frac{1}{M}\left[\sum_{j=1}^{M}\left(\left|A_{x}^{j-1}\right|-\left|A_{x}^{j}\right|\right)(j-1)+M\left|A_{x}^{M}\right|\right] \\
& =\frac{1}{M}\left(\left|A_{x}^{1}\right|+\left|A_{x}^{2}\right|+\cdots+\left|A_{x}^{M}\right|\right)
\end{aligned}
$$

So $\sum_{j=1}^{M}\left|A_{x}^{j}\right|=M$. Set

$$
\tilde{A}_{x}^{j}=\left\{(y, j) \in Y \times \mathbb{N} \mid y \in A_{x}^{j}\right\}
$$

We have $\left|\tilde{A}_{x}^{j}\right|=\left|A_{x}^{j}\right|$ and $A_{x}=\bigcup_{j=1}^{M} \tilde{A}_{x}^{j}$. Since \tilde{A}_{x}^{j} are all disjoint for $j=1, \ldots, M$. So $\left|A_{x}\right|=\sum_{j=1}^{M}\left|\tilde{A}_{x}^{j}\right|=\sum_{j=1}^{M}\left|A_{x}^{j}\right|=M$. If $(y, n) \in A_{x}$, then $\xi_{x}(y) \geq \frac{n}{M}>0$. So $y \in B_{\rho_{X, Y}}(x, S)$. In addition, for any $x_{1}, x_{2} \in X$, we have

$$
\left|A_{x_{1}} \triangle A_{x_{2}}\right|=M\left\|\xi_{x_{1}}-\xi_{x_{2}}\right\|_{\ell^{1}}=\left|A_{x_{1}}\right|\left\|\xi_{x_{1}}-\xi_{x_{2}}\right\|_{\ell^{1}}
$$

So we obtain

$$
\frac{\left|A_{x_{1}} \triangle A_{x_{2}}\right|}{\left|A_{x_{1}}\right|}<\varepsilon
$$

when $d\left(x_{1}, x_{2}\right)<R$. Since

$$
\frac{\left|A_{x_{1}} \triangle A_{x_{2}}\right|}{\left|A_{x_{1}}\right|}=\frac{\left|A_{x_{1}}\right|+\left|A_{x_{2}}\right|-2\left|A_{x_{1}} \cap A_{x_{2}}\right|}{\left|A_{x_{1}}\right|}
$$

we have

$$
\left|A_{x_{1}} \cap A_{x_{2}}\right|>\frac{(2-\varepsilon) M}{2}
$$

Then

$$
\frac{\left|A_{x_{1}} \triangle A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|}=\frac{2 M-2\left|A_{x_{1}} \cap A_{x_{2}}\right|}{\left|A_{x_{1}} \cap A_{x_{2}}\right|}<\frac{2 M-(2-\varepsilon) M}{\frac{(2-\varepsilon) M}{2}}=\frac{2 \varepsilon}{2-\varepsilon}
$$

So X has relative Property A with respect to Y and $\rho_{X, Y}$.
The result above can be generalized to the $\ell^{p}(Y)$, where $1 \leq p<\infty$ and Y is a countable set. In order to obtain the next corollary, we introduce the Mazur map [9] first. The Mazur map $M_{p, q}: S\left(\ell^{p}\right) \rightarrow S\left(\ell^{q}\right)$ is defined by the formula

$$
M_{p, q}(x)=\operatorname{sign}(x)|x|^{\frac{p}{q}}
$$

where $S\left(\ell^{p}\right)$ is the unit sphere of ℓ^{p} and $x \in S\left(\ell^{p}\right)$. It is a uniform homeomorphism between unit spheres of ℓ^{p} and ℓ^{q}. More precisely, it satisfies the following inequalities:

$$
\frac{p}{q}\|x-y\|_{p} \leq\left\|M_{p, q}(x)-M_{p, q}(y)\right\|_{q} \leq C\|x-y\|_{p}^{\frac{p}{q}}
$$

for all $x, y \in S\left(\ell^{p}\right)$ and $p<q$, where the constant C depends only on $\frac{p}{q}$. We have the opposite inequalities if $p>q$.

Corollary 2.13 Let Y be a countable set and X be a discrete metric space with relative bounded geometry with respect to Y and $\rho_{X, Y}$. Then X has relative Property A with respect to Y and $\rho_{X, Y}$ if and only if the following hold for any $1 \leq p<\infty$: for every $R>0$ and $\varepsilon>0$ there exists an $S>0$ and $\eta: X \rightarrow \ell^{p}(Y)^{+}$satisfying:
(1) $\left\|\eta_{x}\right\|_{\ell^{p}}=1$ for any $x \in X$;
(2) If $\eta_{x}(y) \neq 0$, then $y \in B_{\rho_{X, Y}}(x, S)$;
(3) If $d\left(x_{1}, x_{2}\right)<R$, then $\left\|\eta_{x_{1}}-\eta_{x_{2}}\right\|_{\ell^{p}} \leq \varepsilon$.

Proof We prove the sufficiency first. Suppose X has relative Property A with respect to Y and $\rho_{X, Y}$. For any $R>0$ and $\varepsilon>0$, there exists $\xi: X \rightarrow \ell^{1}(Y)^{+}$and an S satisfying (1), (2) and (3) of the Theorem 2.12. Take any $1 \leq p<\infty$ and define a function $\eta: X \rightarrow \ell^{p}(Y)^{+}$satisfying

$$
\eta_{x}(y)=\xi_{x}(y)^{\frac{1}{p}} .
$$

Then

$$
\left\|\eta_{x}\right\|_{\ell^{p}}^{p}=\sum_{y \in Y}\left|\eta_{x}(y)\right|^{p}=\sum_{y \in Y} \eta_{x}(y)^{p}=\sum_{y \in Y} \xi_{x}(y)=\sum_{y \in Y}\left|\xi_{x}(y)\right|=\left\|\xi_{x}\right\|_{\ell^{1}}=1
$$

So $\left\|\eta_{x}\right\|_{\ell^{p}}=1$. If $\eta_{x}(y) \neq 0$, then $\xi_{x}(y) \neq 0$. So $y \in B_{\rho_{X, Y}}(x, S)$.
For any $x_{1}, x_{2} \in X$ with $d\left(x_{1}, x_{2}\right)<R$, we have

$$
\begin{aligned}
\left\|\eta_{x_{1}}-\eta_{x_{2}}\right\|_{\ell^{p}}^{p} & =\sum_{y \in Y}\left|\eta_{x_{1}}(y)-\eta_{x_{2}}(y)\right|^{p} \leq \sum_{y \in Y}\left|\eta_{x_{1}}(y)^{p}-\eta_{x_{2}}(y)^{p}\right| \\
& =\sum_{y \in Y}\left|\xi_{x_{1}}(y)-\xi_{x_{2}}(y)\right|=\left\|\xi_{x_{1}}-\xi_{x_{2}}\right\|_{\ell^{1}}<\varepsilon .
\end{aligned}
$$

So $\left\|\eta_{x_{1}}-\eta_{x_{2}}\right\|_{\ell_{p}}<\varepsilon^{\frac{1}{p}}$.

Conversely, for any $R>0$ and $\varepsilon>0$ give a map $\eta: X \rightarrow \ell^{p}(Y)^{+}$and an S which satisfy (1), (2), (3) of the corollary. Define $\xi: X \rightarrow \ell^{1}(Y)^{+}$by the formula

$$
\xi_{x}=M_{p, 1}\left(\eta_{x}\right)
$$

where $M_{p, 1}$ is the Mazur map. Then for any $x \in X,\left\|\xi_{x}\right\|_{\ell^{1}}=1$ and $\eta_{x}(y)=0$ if and only if $\xi_{x}(y)=0$ for all $y \in Y$. So if $\xi_{x}(y) \neq 0$, we have $y \in B_{\rho_{X, Y}}(x, S)$.

For any $x_{1}, x_{2} \in X$ with $d\left(x_{1}, x_{2}\right)<R$, we have

$$
\left\|\xi_{x_{1}}-\xi_{x_{2}}\right\|_{\ell^{1}}=\left\|M_{p, 1}\left(\eta_{x_{1}}\right)-M_{p, 1}\left(\eta_{x_{2}}\right)\right\|_{\ell^{p}} \leq p\left\|\eta_{x_{1}}-\eta_{x_{2}}\right\|_{\ell^{p}}<p \varepsilon
$$

So X has relative Property A with respect to Y and $\rho_{X, Y}$.
Acknowledgements We thank the referees for their time and comments.

References

[1] M. GROMOV. Asymptotic Invariants of Infinite Groups. Cambridge Univ. Press, Cambridge, 1993.
[2] J. ROE. Lectures on Coarse Geometry. American Mathematical Society, Providence, RI, 2003.
[3] Guoliang YU. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 2000, 139(1): 201-240.
[4] G. KASPAROV, Guoliang YU. The coarse geometric Novikov conjecture and uniform convexity. Adv. Math., 2006, 206(1): 1-56.
[5] P. NOWAK. Coarsely embeddable metric spaces without Property A. J. Funct. Anal., 2007, 252(1): 126-136.
[6] N. HIGSON, J. ROE. Amenable group actions and the Novikov conjecture. J. Reine. Agnew. Math., 2000, 519: 143-153.
[7] Rongji LI, C. OGLE, B. RAMSEY. Relative Property A and relative amenability for countable groups. Adv. Math., 2012, 231(5): 2734-2754.
[8] R. WILLETT. Some Notes on Property A. EPFL Press, Lausanne, 2009.
[9] Y. BENYAMINI, J. LINDENSTRAUSS. Geometric Nonlinear Functional Analysis. American Mathematical Society, Providence, RI, 2000.

[^0]: Received May 1, 2018; Accepted August 12, 2018
 Supported by the National Natural Science Foundation of China (Grant No. 11701301).

 * Corresponding author

 E-mail address: Liyufangmail@163.com (Yufang LI); dongzhe@zju.edu.cn (Zhe DONG); wangyuanyi@nbu.edu.cn (Yuanyi WANG)

