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Abstract Yu introduced Property A on discrete metric spaces. In this paper, a relative Property

A for a discrete metric space X with respect to a set Y and a map ρX,Y is defined. Some

characterizations for relative Property A are given. In particular, a discrete metric space with

relative Property A can be coarse embedding into a Hilbert space under certain condition.
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1. Introduction

Coarse embeddings were introduced by Gromov in [1]. A function f : X → Y between metric

spaces is a coarse embedding if there exist two non-decreasing maps θ1, θ2 : R+ → R+ such that

θ1(t) → +∞ as t → +∞ and θ1(dX(x, y)) ≤ dY (f(x), f(y)) ≤ θ2(dX(x, y)) for all x, y ∈ X. The

readers can refer to the book [2] for a self-contained introduction to coarse geometry.

Property A is a weak version of amenability for discrete metric space which was introduced

by Yu [3], who claimed that a metric space satisfies this property can be coarse embedding into

a Hilbert space. For metric spaces with bounded geometry it implies the coarse Baum Connes

conjecture, and for a finitely generated group with word-length metric it implies the strong

Novikov conjecture. Kasparov and Yu treated the case when the Hilbert space is replaced with

a uniformly convex Banach space [4]. In [5], Nowak constructed some metric spaces which do

not satisfy Property A but embed coarsely into a Hilbert space. So coarse embedding into a

Hilbert space and Property A are not equivalent. In [6], Higson and Roe gave a useful equivalent

definition of Property A. They claimed that a discrete metric space with bounded geometry with

Property A if and only if for every R > 0 and ε > 0, there exists a map ξ : X → ℓ1(X)+ and

an S ∈ R+ such that ∥ξx∥ℓ1 = 1 and supp ξx ⊆ B(x, S) for every x ∈ X and ∥ξx − ξy∥ℓ1 < ε

whenever d(x, y) < R. In [7], Ji, Ogle and Ramsey defined relative Property A for a discrete

group G relative to a finite family of subgroups H , and they showed that if G has Property A
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relative to a family of subgroups H and if each H ∈ H has Property A then G has Property

A. Readers can refer to [8] for more details.

In this paper, we define a relative Property A for metric space with respect to a set Y and

a map ρX,Y , which is a generalization of Yu’s Property A. Several examples and equivalent

characterizations of relative Property A are given. In particular, we show that relative Property

A implies coarse embedding into a Hilbert space if d(x1, x2) ≤ ρX,Y (x1, y) + ρX,Y (x2, y) for all

x1, x2 ∈ X and y ∈ Y .

2. Relative Property A

Recall that a discrete metric space (X, d) has Property A if for all R, ε > 0, there exists

a family {Ax}x∈X of finite non-empty subsets of X × N such that (1) for all x, y ∈ X with

d(x, y) ≤ R, we have
|Ax△Ay|
|Ax∩Ay| < ε; (2) there exists an S such that for each x ∈ X if (y, n) ∈ Ax,

then d(x, y) ≤ S.

Definition 2.1 Let X be a discrete metric space (X, d) and Y be a set with ρX,Y : X×Y → R+.

We say X has relative Property A with respect to Y and ρX,Y if the following are satisfied: for

any R > 0 and ε > 0, there exists an S > 0 and a collection {Ax}x∈X of finite nonempty subsets

of Y × N such that:

(1) For each x ∈ X if (y, n) ∈ Ax, then y ∈ BρX,Y (x, S), where BρX,Y (x, S) = {y ∈
Y |ρX,Y (x, y) ≤ S};

(2) If d(x1, x2) < R, then
|Ax1△Ax2 |
|Ax1∩Ax2 |

< ε.

The following proposition gives the relationships between Property A and relative Property

A.

Proposition 2.2 Suppose (Z, d) is a discrete metric space, X is a subspace of Z, Y is a subset

of Z and the map ρX,Y (x, y) = d(x, y) for all x ∈ X, y ∈ Y , then

(1) If X ⊆ Y and X has Property A, then X has relative Property A with respect to Y and

ρX,Y ;

(2) If Y ⊆ X and X has relative Property A with respect to Y and ρX,Y , then X has

Property A;

(3) If X = Y , X has Property A if and only if X has relative property A with respect to Y

and ρX,Y .

Proof (1) Suppose X has Property A. Then for any R > 0 and ε > 0, there exists a collection

{Ax}x∈X and an S satisfying the definition of Property A. Since X ⊆ Y , we can see Ax as subset

of Y × N. Then if (y, n) ∈ Ax, we have d(x, y) ≤ S. So y ∈ BρX,Y
(x, S). For any x1, x2 ∈ X

with d(x1, x2) < R, we have
|Ax1△Ax2 |
|Ax1 ∩Ax2 |

< ε.

So X has relative Property A with respect to Y and ρX,Y .

(2) The proof is similar to that in (1).
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(3) It is clear from (1) and (2). �
Now we give some examples about relative Property A.

Example 2.3 Let X be a finite metric space with a set Y and a map ρX,Y : X × Y → R+.

For any R > 0 and ε > 0, fix y0 ∈ Y , let S = max
x∈X

ρX,Y (x, y0) and Ax = (y0, 1) ⊆ Y × N for

any x ∈ X. If (y, n) ∈ Ax, then y = y0, n = 1. So y ∈ BρX,Y
(x, S). For any x1, x2 ∈ X with

d(x1, x2) < R, we have
|Ax1△Ax2 |
|Ax1∩Ax2 |

= 0 < ε. So X has relative Property A with respect to Y and

ρX,Y .

Example 2.4 Let X be a discrete metric space with a set Y and a map ρX,Y : X × Y → R+.

If ρX,Y is uniformly bounded, then there exists an S such that ρX,Y (x, y) ≤ S for all x ∈ X and

y ∈ Y . For any R > 0 and ε > 0, we fix a y0 ∈ Y and let Ax = (y0, 1) ⊆ Y ×N for all x ∈ X. It

is clear that if (y, n) ∈ Ax, we have ρX,Y (x, y) ≤ S. For any x1, x2 ∈ X with d(x1, x2) < R, we

have
|Ax1△Ax2 |
|Ax1∩Ax2 |

= 0 < ε. So X has relative Property A with respect to Y and ρX,Y .

Example 2.5 If X = Z and Y is a countable set. Let f be a bijection from Y to Z. We define

ρX,Y (x, y) = |x − f(y)|. Fix R > 0 and ε > 0 where ε < 1 and choose an S ∈ N such that

S > 2Rε−1. Define Ax = {(y, 1) ∈ Y × N|ρX,Y (x, y) ≤ S}. It is clear that each Ax is a finite

subset in Y × N. By the definition of Ax, ρX,Y (x, y) ≤ S if (y, n) ∈ Ax. For any x1, x2 ∈ X

with |x1 − x2| < R, we have |Ax1 ∪ Ax2 | = 2S + |x1 − x2| + 1, |Ax1△Ax2 | = 2|x1 − x2| and
|Ax1 ∩Ax2 | = 2S − |x1 − x2|+ 1 . So

|Ax1△Ax2 |
|Ax1 ∩Ax2 |

=
2|x1 − x2|

2S − |x1 − x2|+ 1
<

2R

2S −R+ 1
<

2R

2Rε−1 −R
=

2ε

2− ε
.

So Z has relative Property A with respect to a countable set Y and ρX,Y . Let Y = Z and

ρX,Y (x, y) = |x− y|. From Proposition 2.2, we conclude that Z has Property A.

Next we give an example of discrete space with Property A but without relative Property A

with a map ρX,Y and some set Y .

Example 2.6 If X = Z and Y = {0} ∈ Z is a single point set. We define ρX,Y (x, y) = |x− y|
for all x ∈ X and y ∈ Y . For any S > 0, there exists an x0 ∈ Z such that |x0 − 0| = |x0| > S.

Since Ax0 is nonempty, there exists n ∈ N such that (0, n) ∈ Ax0 and ρX,Y (x0, 0) > S. So Z dose

not have relative Property A with respect to Y = {0} and ρX,Y (x, y) = |x− y|.

Proposition 2.7 If a discrete metric space X has relative Property A with respect to Y and

ρX,Y , then any subspace of X also has relative Property A with respect to Y and ρX,Y .

Proof Suppose X has relative Property A with respect to Y and ρX,Y and X ′ is a subspace of

X. Let {Ax}x∈X be the sets satisfying the definition of relative Property A with respect to Y

and ρX,Y . We can choose the subfamilies {Ax}x∈X′ . It is easy to check these sets satisfying the

definition of X ′ having relative Property A with respect to Y and ρX,Y . �

Proposition 2.8 Let X be a discrete metric space (X, d) and Y1, Y2 be subsets of Y . If X has

relative Property A with respect to both Y1 and Y2 and ρX,Y , then X has relative Property A
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with respect to Y1 ∪ Y2 and ρX,Y .

Proof Suppose that X has relative Property A with respect to both Y1 and Y2 and ρX,Y . For

any R > 0 and ε > 0, let {A′
x}x∈X and {A′′

x}x∈X be the sets satisfying the definition of relative

Property A with respect to Y1 and Y2 and ρX,Y , and S′, S′′ be the relevant constants. Let

Ax = A′
x ∪A′′

x. If (y, n) ∈ Ax, then (y, n) ∈ A′
x or (y, n) ∈ A′′

x. In the first case, ρX,Y (x, y) ≤ S′;

in the second case, ρX,Y (x, y) ≤ S′′. So ρX,Y (x, y) ≤ S where S = max{S′, S′′}.
For each x1, x2 ∈ X with d(x1, x2) < R, from the condition (2) of relative Property A, we

get
|A′

x1
△A′

x2
|

|A′
x1

∩A′
x2

| < ε and
|A′′

x1
△A′′

x2
|

|A′′
x1

∩A′′
x2

| < ε. Then

|Ax1△Ax2 |
|Ax1 ∩Ax2 |

=
|(A′

x1
∪A′′

x1
)△(A′

x2
∪A′′

x2
)|

|(A′
x1

∪A′′
x1
) ∩ (A′

x2
∪A′′

x2
)|

=
|(A′

x1
△A′

x2
) ∪ (A′′

x1
△A′′

x2
)|

|(A′
x1

∩A′
x2
) ∪ (A′

x1
∩A′′

x2
) ∪ (A′′

x1
∩A′

x2
) ∪ (A′′

x1
∩A′′

x2
)|

≤
|A′

x1
△A′

x2
|

|(A′
x1

∩A′
x2
) ∪ (A′

x1
∩A′′

x2
) ∪ (A′′

x1
∩A′

x2
) ∪ (A′′

x1
∩A′′

x2
)|
+

|A′′
x1
△A′′

x2
|

|(A′
x1

∩A′
x2
) ∪ (A′

x1
∩A′′

x2
) ∪ (A′′

x1
∩A′

x2
) ∪ (A′′

x1
∩A′′

x2
)|

≤
|A′

x1
△A′

x2
|

|A′
x1

∩A′
x2
|
+

|A′′
x1
△A′′

x2
|

|A′′
x1

∩A′′
x2
|

<2ε.

So the proposition is proved. �

Proposition 2.9 If X1 is a discrete metric space with relative Property A with respect to Y

and ρX1,Y and X2 is a discrete metric space with relative Property A with respect to Y and

ρX2,Y . Then X1 ×X2 is a discrete metric space with relative Property A with respect to Y and

ρX1×X2,Y , where ρX1×X2,Y ((x1, x2), y) = min{ρX1,Y (x1, y), ρX2,Y (x2, y)} for all x1 ∈ X1, x2 ∈
X2 and y ∈ Y , and dX1×X2((x

′
1, x

′
2), (x

′′
1 , x

′′
2)) = dX1(x

′
1, x

′′
1) + dX2(x

′
2, x

′′
2) for all x′

1, x
′′
1 ∈ X1,

x′
2, x

′′
2 ∈ X2.

Proof Suppose X1 and X2 have relative Property A with respect to Y and ρX1,Y and ρX2,Y .

For any R > 0 and ε > 0, let {Ax1}x1∈X1 , {Ax2}x2∈X2 be the sets satisfying the definition of

relative Property A and S1, S2 be the relevant constants. Set A(x1,x2) = Ax1 ∪ Ax2 . Then if

(y, n) ∈ A(x1,x2), we have (y, n) ∈ Ax1 or (y, n) ∈ Ax2 . In the first case, ρX1,Y (x1, y) ≤ S1; in the

second case, ρX2,Y (x2, y) ≤ S2. Since ρX1×X2,Y ((x1, x2), y) = min{ρX1,Y (x1, y), ρX1,Y (x1, y)},
so ρX1×X2,Y ((x1, x2), y) ≤ S where S = max{S1, S2}.

Suppose x′
1, x

′′
1 ∈ X1 and x′

2, x
′′
2 ∈ X2 with dX1×X2((x

′
1, x

′
2), (x

′′
1 , x

′′
2)) < R. We have

dX1(x
′
1, x

′′
1) < R and dX2(x

′
2, x

′′
2) < R, so

|Ax′
1
△Ax′′

1
|

|Ax′
1
∩Ax′′

1
| < ε and

|Ax′
2
△Ax′′

2
|

|Ax′
2
∩Ax′′

2
| < ε. As the proof

of above proposition, we can see that

|A(x′
1,x

′
2)
△A(x′′

1 ,x
′′
2 )
|

|A(x′
1,x

′
2)
∩A(x′′

1 ,x
′′
2 )
|
=

|(Ax′
1
∪Ax′

2
)△(Ax′′

1
∪Ax′′

2
)|

|(Ax′
1
∪Ax′

2
) ∩ (Ax′′

1
∪Ax′′

2
)|

< 2ε.

So X1 ×X2 is a metric space with relative Property A with respect to Y and ρX1×X2,Y . �
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One of Yu’s main motivations for introducing Property A was that it implies coarse embedding

into Hilbert space. Now we prove that a discrete metric space with relative Property A with

respect to Y and ρX,Y can be coarse embedding into a Hilbert space under the condition of

d(x1, x2) ≤ ρX,Y (x1, y) + ρX,Y (x2, y) for all x1, x2 ∈ X and y ∈ Y . The main idea of the

following theorem comes from [8].

Theorem 2.10 Suppose (X, d) is a discrete metric space with relative Property A with respect

to Y and ρX,Y . If d(x1, x2) ≤ ρX,Y (x1, y) + ρX,Y (x2, y) for all x1, x2 ∈ X and y ∈ Y , then X

can be coarse embedding into a Hilbert space.

Proof First we define a Hilbert space

H =

∞⊕
k=1

ℓ2(Y × N).

Since X is a discrete metric space with relative Property A with respect to Y and ρX,Y , then

for R = k ∈ N and ε = 1
22k+1 > 0, we can define a sequence of sets {Ak

x}x∈X ⊆ Y ×N satisfying:

(1) There exists an Sk > k, such that if (y, n) ∈ Ak
x, then y ∈ BρX,Y

(x, 1
2Sk);

(2) For any x1, x2 ∈ X with d(x1, x2) < k, we have
|Ak

x1
△Ak

x2
|

|Ak
x1

∩Ak
x2

| < 1
22k+1 .

Let χAx be the characteristic function of Ax. For any x1, x2 ∈ X with d(x1, x2) < k, we have

∥
χAk

x1

|Ak
x1
| 12

−
χAk

x2

|Ak
x2
| 12

∥2ℓ2(Y×N)

=
|Ak

x1
\Ak

x2
|

|Ak
x1
|

+
|Ak

x2
\Ak

x1
|

|Ak
x2
|

+ |Ak
x1

∩Ak
x2
|( 1

|Ak
x1
| 12

− 1

|Ak
x2
| 12

)2

=
|Ak

x1
\Ak

x2
|

|Ak
x1
|

+
|Ak

x2
\Ak

x1
|

|Ak
x2
|

+ |Ak
x1

∩Ak
x2
|(
|Ak

x1
|+ |Ak

x2
| − 2|Ak

x1
| 12 |Ak

x2
| 12

|Ak
x1
||Ak

x2
|

)

≤
|Ak

x1
△Ak

x2
|

|Ak
x1

∩Ak
x2
|
+ |Ak

x1
∩Ak

x2
|(
|Ak

x1
|+ |Ak

x2
| − 2|Ak

x1
| 12 |Ak

x1
| 12

|Ak
x2
||Ak

x2
|

)

≤
|Ak

x1
△Ak

x2
|

|Ak
x1

∩Ak
x2
|
+

|Ak
x1
|+ |Ak

x2
| − 2|Ak

x1
∩Ak

x2
|

|Ak
x1

∩Ak
x2
|

=
2|Ak

x1
△Ak

x2
|

|Ax1 ∩Ax2 |
<

1

22k
.

Hence

∥
χAk

x1

|Ak
x1
| 12

−
χAk

x2

|Ak
x2
| 12

∥ℓ2(Y×N) <
1

2k

for any x1, x2 ∈ X with d(x1, x2) < k.

Now, choose x0 ∈ X and define f : X → H by

f(x) =
∞⊕
k=1

(
χAk

x

|Ak
x|

1
2

−
χAk

x0

|Ak
x0
| 12

).

For any x ∈ X, there exists a k′ ∈ N > 0 such that d(x, x0) < k′. We have

∥f(x)− f(x0)∥ =
∞∑
k=1

∥
χAk

x

|Ak
x|

1
2

−
χAk

x0

|Ak
x0
| 12

∥ℓ2(Y×N)
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=

k′−1∑
k=1

∥
χAk

x

|Ak
x|

1
2

−
χAk

x0

|Ak
x0
| 12

∥ℓ2(Y×N) +

∞∑
k=k′

∥
χAk

x

|Ak
x|

1
2

−
χAk

x0

|Ak
x0
| 12

∥ℓ2(Y×N)

≤
k′−1∑
k=1

∥
χAk

x

|Ak
x|

1
2

−
χAk

x0

|Ak
x0
| 12

∥ℓ2(Y×N) + 1 < ∞.

So f is well-defined.

For any m ∈ N, if x1, x2 ∈ X with m ≤ d(x1, x2) < m+ 1, we can get the estimate

∥f(x1)− f(x2)∥2 =

∞∑
k=1

∥
χAk

x1

|Ak
x1
| 12

−
χAk

x2

|Ak
x2
| 12

∥2ℓ2(Y×N)

≤
m∑

k=1

∥
χAk

x1

|Ak
x1
| 12

−
χAk

x2

|Ak
x2
| 12

∥2ℓ2(Y×N) + 1

≤
m∑

k=1

(∥
χAk

x1

|Ak
x1
| 12

∥ℓ2(Y×N) + ∥
χAk

x2

|Ak
x2
| 12

∥ℓ2(Y×N))
2 + 1

= 4m+ 1.

Hence ∥f(x1)− f(x2)∥ ≤
√
4m+ 1.

On the other hand, we define a map Q : R+ → N by Q(t) = |{Sk|Sk < t}| for t ∈ R+. From

the choice of the families {Ak
x}x∈X , Q(t) exists for all t ∈ R+ since Sk ≥ k, and Q(t) → ∞ as

t → ∞. Now we claim that for any x1, x2 ∈ X if d(x1, x2) > Sk, then Ak
x1

∩ Ak
x2

= ∅. Indeed,

if there exists (y, n) ∈ Ak
x1

∩ Ak
x2
, then ρX,Y (x1, y) ≤ 1

2Sk and ρX,Y (x2, y) ≤ 1
2Sk. Since for any

x1, x2 ∈ X, we have d(x1, x2) ≤ ρX,Y (x1, y) + ρX,Y (x2, y) ≤ Sk, this is a contradiction. For any

m ∈ N, if m ≤ d(x1, x2) < m + 1, we write Q(d(x1, x2)) = r. So the number of Sk satisfies

Sk < d(x1, x2) is r. Then we can write the set {Sk|Sk < d(x1, x2)} as {Sk1 , Sk2 , ..., Skr}. Since

d(x1, x2) > Skj , we have A
kj
x1 ∩A

kj
x2 = ∅ for j = 1, . . . , r. We have

∥f(x1)− f(x2)∥2 =
∞∑
k=1

∥
χAk

x1

|Ak
x1
| 12

−
χAk

x2

|Ak
x2
| 12

∥2ℓ2(Y×N)

≥
r∑

j=1

∥
χ
A

kj
x1

|Akj
x1 |

1
2

−
χ
A

kj
x2

|Akj
x2 |

1
2

∥2ℓ2(Y×N) = 2r.

Hence ∥f(x1)− f(x2)∥ ≥
√
2r.

Define the maps θ1, θ2 : R+ → R+ by θ1(t) =
√
2Q(t) and θ2(t) =

√
4t+ 1 for t ∈ R+. It is

clear that both θ1(t) and θ2(t) are non-decreasing and θ1(t) → +∞ as t → +∞. We have

θ1(d(x1, x2)) ≤ d(f(x1), f(x2)) ≤ θ2(d(x1, x2))

for any x1, x2 ∈ X.

So X can be coarse embedding into a Hilbert space. �
In [8], the author collected many equivalent formulations of Property A under the condition

of bounded geometry. Recall that a metric space X is bounded geometry if for every C > 0,

there is an absolute bound on the number of elements in any ball within X of radius C. In this

paper, we need to restrict the discrete metric space with relative bounded geometry in order to



Relative Property A for discrete metric space 57

prove the similar results.

Definition 2.11 A discrete metric space (X, d) with respect Y and ρX,Y is relative bounded

geometry if for all L > 0, there exists an NL ∈ N such that |{y ∈ Y |y ∈ BρX,Y
(x, L)}| < NL for

all x ∈ X.

If we let X = Y and ρX,Y = d, then it is exactly the definition of bounded geometry. In the

following, we will give some equivalent formulations of relative Property A under this condition.

Theorem 2.12 Let X be a discrete metric space with relative bounded geometry with respect

to Y and ρX,Y . Then X has relative Property A with respect to Y and ρX,Y if and only if for

every R > 0 and ε > 0 there exists an S > 0 and ξ : X → ℓ1(Y )+ satisfying:

(1) ∥ξx∥ℓ1 = 1, for any x ∈ X;

(2) If ξx(y) ̸= 0, then y ∈ BρX,Y
(x, S);

(3) If d(x1, x2) < R, then ∥ξx1 − ξx2∥ℓ1 < ε.

Proof Suppose that X has relative Property A with respect to Y and ρX,Y . For any R > 0 and

ε > 0, let {Ax}x∈X and S satisfy the definition of relative Property A with respect to Y and

ρX,Y .

For any x ∈ X, define

ξx : Y → R+, ξx(y) =
|Ax ∩ (y × N)|

|Ax|
.

Then

∥ξx∥ℓ1 =
∑
y∈Y

|ξx(y)| =
∑
y∈Y

|Ax ∩ (y × N)|
|Ax|

= 1.

For any x1, x2 ∈ X,

∥ξx1 |Ax1 | − ξx2 |Ax2 |∥ℓ1 =
∑
y∈Y

∣∣|(y × N) ∩Ax1 | − |(y × N) ∩Ax2 |
∣∣

= |Ax1△Ax2 |.

Since for any x1, x2 ∈ X with d(x1, x2) < R, we have

ε >
|Ax1△Ax2 |
|Ax1 ∩Ax2 |

=
|Ax1 |+ |Ax2 | − 2|Ax1 ∩Ax2 |

|Ax1 ∩Ax2 |
.

Whence

2 + ε >
|Ax1 |+ |Ax2 |
|Ax1 ∩Ax2 |

≥ |Ax1 |+ |Ax2 |
|Ax1 |

= 1 +
|Ax2 |
|Ax1 |

.

So by symmetry

1 + ε >
|Ax2 |
|Ax1 |

>
1

1 + ε
.

Combining these two comments, we conclude that

∥ξx1
− ξx2

∥ℓ1 ≤ ∥ξx1
− ξx2

|Ax2
|

|Ax1 |
∥ℓ1 + ∥ξx2

− ξx2

|Ax2
|

|Ax1 |
∥ℓ1

≤ |Ax1△Ax2 |
|Ax1 |

+ |1− |Ax2 |
|Ax1 |

|
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≤ |Ax1△Ax2 |
|Ax1 ∩Ax2 |

+ |1− |Ax2 |
|Ax1 |

|

≤ 2ε.

Finally, note that if ξx(y) ̸= 0, then Ax ∩ {y × N} ̸= ∅. So there exists an n ∈ N such that

(y, n) ∈ Ax. By the definition of Ax, we have y ∈ BρX,Y
(x, S).

Conversely, suppose that for any ε > 0 and R > 0, there exists an S and ξ satisfying the

conditions (1), (2) and (3). By relative bounded geometry, for all x ∈ X the number of elements

of y within the support of ξx is uniformly bounded. So we can use the same approximation

method as proving [6, Lemma 3.5]. We may assume that there is a natural number M such that

for all x ∈ X, the function ξx ∈ ℓ1(Y ) assumes only values in the range

0

M
,
1

M
,
2

M
, . . . ,

M

M
.

Define

Ax = {(y, j) ∈ Y × N|ξx(y) ≥
j

M
, j > 0, j ∈ N}.

Set

Aj
x = {y ∈ Y |ξx(y) ≥

j

M
}, j = 0, . . . ,M.

It is clear that Aj
x ⊆ Aj−1

x for j = 1, . . . ,M . Let Z =
∪M

j=1(A
j−1
x \Aj

x) ∪ AM
x . We can see that

the sets {Aj−1
x \Aj

x} (j = 1, . . . ,M) and AM
x are all disjoint. Since ∥ξx∥ = 1 for all x ∈ X, we

have

1 =
∑
y∈Y

ξx(y) =

M∑
j=1

(
∣∣|Aj−1

x |\|Aj
x|
∣∣j − 1

M
+ |AM

x |M
M

)

=
1

M
[

M∑
j=1

(|Aj−1
x | − |Aj

x|)(j − 1) +M |AM
x |]

=
1

M
(|A1

x|+ |A2
x|+ · · ·+ |AM

x |).

So
∑M

j=1 |Aj
x| = M . Set

Ãj
x = {(y, j) ∈ Y × N|y ∈ Aj

x}.

We have |Ãj
x| = |Aj

x| and Ax =
∪M

j=1 Ã
j
x. Since Ãj

x are all disjoint for j = 1, . . . ,M . So

|Ax| =
∑M

j=1 |Ãj
x| =

∑M
j=1 |Aj

x| = M . If (y, n) ∈ Ax, then ξx(y) ≥ n
M > 0. So y ∈ BρX,Y (x, S).

In addition, for any x1, x2 ∈ X, we have

|Ax1△Ax2 | = M∥ξx1 − ξx2∥ℓ1 = |Ax1 |∥ξx1 − ξx2∥ℓ1 .

So we obtain
|Ax1△Ax2 |

|Ax1
|

< ε

when d(x1, x2) < R. Since

|Ax1△Ax2 |
|Ax1 |

=
|Ax1 |+ |Ax2 | − 2|Ax1 ∩Ax2 |

|Ax1 |
,
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we have

|Ax1 ∩Ax2 | >
(2− ε)M

2
.

Then
|Ax1△Ax2 |
|Ax1 ∩Ax2 |

=
2M − 2|Ax1 ∩Ax2 |

|Ax1 ∩Ax2 |
<

2M − (2− ε)M
(2−ε)M

2

=
2ε

2− ε
.

So X has relative Property A with respect to Y and ρX,Y . �
The result above can be generalized to the ℓp(Y ), where 1 ≤ p < ∞ and Y is a countable

set. In order to obtain the next corollary, we introduce the Mazur map [9] first. The Mazur map

Mp,q : S(ℓp) → S(ℓq) is defined by the formula

Mp,q(x) = sign(x)|x|
p
q

where S(ℓp) is the unit sphere of ℓp and x ∈ S(ℓp). It is a uniform homeomorphism between unit

spheres of ℓp and ℓq. More precisely, it satisfies the following inequalities:

p

q
∥x− y∥p ≤ ∥Mp,q(x)−Mp,q(y)∥q ≤ C∥x− y∥

p
q
p

for all x, y ∈ S(ℓp) and p < q, where the constant C depends only on p
q . We have the opposite

inequalities if p > q.

Corollary 2.13 Let Y be a countable set and X be a discrete metric space with relative

bounded geometry with respect to Y and ρX,Y . Then X has relative Property A with respect

to Y and ρX,Y if and only if the following hold for any 1 ≤ p < ∞: for every R > 0 and ε > 0

there exists an S > 0 and η : X → ℓp(Y )+ satisfying:

(1) ∥ηx∥ℓp = 1 for any x ∈ X;

(2) If ηx(y) ̸= 0, then y ∈ BρX,Y (x, S);

(3) If d(x1, x2) < R, then ∥ηx1 − ηx2∥ℓp ≤ ε.

Proof We prove the sufficiency first. Suppose X has relative Property A with respect to Y and

ρX,Y . For any R > 0 and ε > 0, there exists ξ : X → ℓ1(Y )+ and an S satisfying (1), (2) and

(3) of the Theorem 2.12. Take any 1 ≤ p < ∞ and define a function η : X → ℓp(Y )+ satisfying

ηx(y) = ξx(y)
1
p .

Then

∥ηx∥pℓp =
∑
y∈Y

|ηx(y)|p =
∑
y∈Y

ηx(y)
p =

∑
y∈Y

ξx(y) =
∑
y∈Y

|ξx(y)| = ∥ξx∥ℓ1 = 1.

So ∥ηx∥ℓp = 1. If ηx(y) ̸= 0, then ξx(y) ̸= 0. So y ∈ BρX,Y
(x, S).

For any x1, x2 ∈ X with d(x1, x2) < R, we have

∥ηx1 − ηx2∥
p
ℓp =

∑
y∈Y

|ηx1(y)− ηx2(y)|p ≤
∑
y∈Y

|ηx1(y)
p − ηx2(y)

p|

=
∑
y∈Y

|ξx1(y)− ξx2(y)| = ∥ξx1 − ξx2∥ℓ1 < ε.

So ∥ηx1 − ηx2∥ℓp < ε
1
p .
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Conversely, for any R > 0 and ε > 0 give a map η : X → ℓp(Y )+ and an S which satisfy (1),

(2), (3) of the corollary. Define ξ : X → ℓ1(Y )+ by the formula

ξx = Mp,1(ηx),

where Mp,1 is the Mazur map. Then for any x ∈ X, ∥ξx∥ℓ1 = 1 and ηx(y) = 0 if and only if

ξx(y) = 0 for all y ∈ Y . So if ξx(y) ̸= 0, we have y ∈ BρX,Y (x, S).

For any x1, x2 ∈ X with d(x1, x2) < R, we have

∥ξx1 − ξx2∥ℓ1 = ∥Mp,1(ηx1)−Mp,1(ηx2)∥ℓp ≤ p∥ηx1 − ηx2∥ℓp < pε.

So X has relative Property A with respect to Y and ρX,Y . �
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