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Abstract Hadjidimos (1978) proposed a classical accelerated overrelaxation (AOR) iterative

method to solve the system of linear equations, and discussed its convergence under the condi-

tions that the coefficient matrices are irreducible diagonal dominant, L-matrices, and consistently

orders matrices. Several preconditioned AOR methods have been proposed to solve system of

linear equations Ax = b, where A ∈ Rn×n is an L-matrix. In this work, we introduce a new

class preconditioners for solving linear systems and give a comparison result and some conver-

gence result for this class of preconditioners. Numerical results for corresponding preconditioned

GMRES methods are given to illustrate the theoretical results.
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er; iteration matrix
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1. Introduction

Consider the following linear system

Ax = b, (1.1)

where A ∈ Rn×n, b ∈ Rn are given and x ∈ Rn is unknown. System of form (1.1) appears in

many applications such as linear elasticity, fluid dynamics, and constrained quadratic program-

ming [1–4]. When the coefficient matrix of the linear system (1.1) is large and sparse, iterative

methods are recommended against direct methods. In order to solve (1.1) more effectively by

using the iterative methods, usually, efficient splittings of the coefficient matrix A are required.

For example, the classical Jacobi and Gauss-Seidel iterations are obtained by splitting the matrix

A into its diagonal and offdiagonal parts. For the numerical solution of (1.1), the accelerated

overrelaxation (AOR) method was introduced by Hadjidimos in [5] and is a two-parameter gen-

eralization of the successive overrelaxation (SOR) method. In certain cases the AOR method has

better convergence rate than Jacobi, JOR, Gauss-Seidel, or SOR method [5,6]. Sufficient condi-

tions for the convergence of the AOR method have been considered by many authors including

[6–14]. One of the techniques to improve the convergence rate of the AOR method are precon-

ditioning AOR (PAOR). These methods have been popular for years as ’standalone’ solvers, but

nowadays they are most often used as preconditioners for Krylov subspace methods (equivalently,

the convergence of these stationary iterations can be accelerated by Krylov subspace methods.)
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To introduce the PAOR method, firstly, a brief review of the classical AOR method is re-

quired. For any splitting, A = M−N with det(M) ̸= 0, the iterative method for solving Eq. (1.1)

is

x(i+1) = M−1Nx(i) +M−1b, i = 0, 1, 2, . . . . (1.2)

For simplicity, without loss of generality, we assume throughout this paper that A = I − L−U ,

where I is the identity matrix, and L and U are strictly lower and upper triangular matrices

obtained from A, respectively. The AOR iterative method (Hadjidimos, 1978) is defined as

follows

x(i+1) = (I − rL)−1[(1− w)I + (w − r)L+ wU ]x(i) + (I − rL)−1wb (1.3)

where i = 0, 1, 2, . . .. Its iteration matrix is

L(r, w) = (I − rL)−1[(1− w)I + (w − r)L+ wU ] (1.4)

where w and r are real parameters with w ̸= 0. It is well known that, for certain values of the

parameters w and r, we obtain the Jacobi, the Gauss-Seidel and the successive overrelaxation

(SOR) methods.

We now transform the original system in Eq. (1.1) into the preconditioned form PAx = Pb,

Then, we can define the basic iterative scheme

Mpx
(i+1) = Npx

(i) + Pb, i = 0, 1, 2, . . . (1.5)

where PA = Mp −Np and Mp is nonsingular.

In [16–24] some different preconditioners have been proposed by several authors. In this

paper, we propose a new class preconditioned AOR iterative method with a preconditioner

Pαβ = I + Sαβ where

Sαβ = (sij), sij =

{
−αj−1(ai,j−1 + βj−1), i = 1; j = 2, 3, . . . , n,

0, otherwise
(1.6)

and α, β are real parameters. Let SαβA = Eαβ − Fαβ where Eαβ is diagonal matrix and Fαβ is

upper triangular matrix, respectively. Assume that

Aαβ = PαβA = (I + Sαβ)A = (I + Sαβ)(I − L− U)

= I − L− U + SαβA = I − L− U + Eαβ − Fαβ

= (I + Eαβ)− L− (U + Fαβ) = Dαβ − Lαβ − Uαβ , (1.7)

where

Dαβ = I + Eαβ , Lαβ = L, Uαβ = U + Fαβ . (1.8)

Here we consider the AOR splitting for Aαβ

Aαβ =
1

w
(I + Eαβ − rL)− 1

w
[(1− w)(I + Eαβ) + (w − r)L+ w(U + Fαβ)], (1.9)

Aαβ =
1

w
(I − rL)− 1

w
[(1− w)I + (w − r)L+ w(Uαβ − Eαβ)]. (1.10)
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By considering Eqs. (9) and (10), the AOR iteration matrices associated with Aαβ are

L̃αβ(r, w) = (Dαβ − rLαβ)
−1[(1− w)Dαβ + (w − r)Lαβ + wUαβ ], (1.11)

L̂αβ(r, w) = (I − rLαβ)
−1[(1− w)I + (w − r)Lαβ + w(Uαβ − Eαβ)]. (1.12)

In the following sections, we will use the above results.

The remainder of this paper is organized as follows: in Section 2, we propose some definitions

and lemmas which are essential tools for obtaining our main results. The comparison results are

given in Section 3. In Section 4, we employ numerical example to support the theoretical results

of this paper.

2. Preliminaries

In this section, we give some definitions and lemmas which are essential tools for describing

our main results. A matrix A ∈ Rn×n is said to be nonnegative and denoted by A ≥ 0 if aij ≥ 0

for all i and j and A is said to positive and denoted by A > 0 if aij ≥ 0 for all i and j.

Definition 2.1 ([1]) A matrix A is a Z-matrix if aij ≤ 0 for all i, j = 1, . . . , n such that i ̸= j.

Also if aii > 0, i = 1, 2, . . . , n the matrix is called an L-matrix. Furthermore, a Z-matrix is a

nonsingular M -matrix, if A is nonsingular and A−1 ≥ 0.

Definition 2.2 ([2]) Let A be a real matrix. The representation A = M−N is called a splitting

of A if M is a nonsingular matrix. The splitting is called:

• convergent if ρ(M−1N) < 1;

• regular if M−1 ≥ 0 and N ≥ 0;

• nonnegative if M−1N ≥ 0;

• M -splitting if M is a nonsingular M -matrix and N ≥ 0.

Definition 2.3 ([2]) An n × n matrix A = (aij) is reducible if we may partition i = 1, . . . , n

into two nonempty subsets E,F such that aij = 0 if i ∈ E and j ∈ F . If A is not a reducible

matrix, we call A is an irreducible matrix.

Lemma 2.4 ([2]) Let A ≥ 0 be an irreducible matrix. Then

• A has a positive real eigenvalue equal to its spectral radius.

• To ρ(A) there corresponds an eigenvector x > 0.

• ρ(A) is a simple eigenvalue of A.

• ρ(A) increases when any entry of A increases.

Lemma 2.5 ([2]) Let A be a nonnegative matrix. Then

(1) If αx ≤ Ax for some nonnegative vector x, x ̸= 0, then α ≤ ρ(A).

(2) If Ax ≤ βx for some positive vector x, then ρ(A) ≤ β. Moreover, if A is irreducible and

if 0 ̸= αx ≤ Ax ≤ βx for some nonnegative vector x, then α ≤ ρ(A) ≤ β and x is a positive

vector.
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Lemma 2.6 ([2]) Let A = M −N be an M -spliting of A. Then ρ(M−1N) < 1 if and if A is a

nonsingular M -matrix.

Lemma 2.7 ([24]) Let λ ∈ (0, 1], y ∈ (−∞, 0), and z ∈ (−∞, 0). Then the set Q

Q = (
λ− yz

y
,−z) ∩ (0,−z) (2.1)

is nonempty.

Theorem 2.8 Let L(r, w), L̃αβ(r, w) and L̂αβ(r, w) be the iteration matrices of the AORmethod

given by Eqs. (1.1), (1.11) and (1.12) associated with Pαβ . If A is an irreducible L-matrix with

av+1,1a1,v+1 > 0, βv ∈ (
1−av+1,1a1,v+1

av+1,1
,−a1,v+1) ∩ (0,−a1,v+1), αv ∈ (0, 1] (v = 1, 2, . . . , n − 1),∑n−1

v=1 αv ≤ 1 and 0 ≤ r < w ≤ 1. Then L(r, w), L̃αβ(r, w), L̂αβ(r, w) are nonnegative irreducible

matrices.

Proof Because A is an irreducible L-matrix, L is a nonnegative strictly lower triangular matrix

and U is a nonnegative strictly upper triangular matrix. By Eq. (1.4), we have

L(r, w) = (I − rL)−1[(1− w)I + (w − r)L+ wU ]

= [I + rL+ r2L2 + · · ·+ rn−1Ln−1]× [(1− w)I + (w − r)L+ wU ]

= (1− w)I + (w − r)L+ wU + nonnegative terms. (2.2)

Since 0 ≤ r < w ≤ 1, it follows that L(r, w) is nonnegative. We can also get that (1 − w)I +

(w − r)L + wU is irreducible for irreducible A, and hence L(r, w) is also irreducible. Now, we

show that Dαβ > 0, Lαβ ≥ 0, Uαβ ≥ 0, and Eαβ ≤ 0. We obtain

Dαβ = diag(d11, 1, . . . , 1),

d11 = 1− α1a21(a12 + β1)− α2a31(a13 + β2)− · · · − αn−1an,1(a1,n + βn−1),

Eαβ = diag(e11, 0, . . . , 0),

e11 = −α1a21(a12 + β1)− α2a31(a13 + β2)− · · · − αn−1an,1(a1,n + βn−1),

Lαβ =



0 0 · · · 0

−a21 0 · · · 0

−a31 −a32 · · · 0
...

...
. . .

...

−an1 · · · −an,n−1 0


, Uαβ =



0 u12 u13 · · · u1n

0 0 −a23 · · · −a2n
...

...
... · · ·

...

0 0 0 · · · −an−1,n

0 0 0 · · · 0


,

where

u1j = −a1j + α1a2,j(a12 + β1) + α2a3,j(a13 + β2) + · · ·+ αn−1an,j(a1n + βn−1). (2.3)

For βv ∈ (
1−av+1,1a1,v+1

av+1,1
,−a1,v+1) ∩ (0,−a1,v+1), αv ∈ (0, 1] (v = 1, 2, . . . , n − 1),

∑n−1
v=1 αv ≤ 1,

we can write

1−
n−1∑
v=1

αvav+1,1(a1,v+1 + βv) > 1−
n−1∑
v=1

αvav+1,1(a1,v+1 +
1− av+1,1a1,v+1

a1,v+1
)
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= 1−
n−1∑
v=1

αvav+1,1a1,v+1 + αv(1− av+1,1a1,v+1)

= 1−
n−1∑
v=1

αv ≥ 0. (2.4)

By considering equations (2.4), we get Dαβ > 0 and Eαβ ≤ 0. We can also write

−a1j +
n−1∑
v=1

αvav,j(a1,v+1 + βv) ≥ −a1j +
n−1∑
v=1

αvav,j(a1,v+1 − a1,v+1)

= −a1j ≥ 0. (2.5)

Therefore, Lαβ ≥ 0 and Uαβ ≥ 0. Now from equation (1.11), we have

L̃αβ(r, w) =(Dαβ − rLαβ)
−1[(1− w)Dαβ + (w − r)Lαβ + wUαβ ]

=(I − rD−1
αβLαβ)

−1[(1− w)I + (w − r)D−1
αβLαβ + wD−1

αβUαβ ]

=[I + rD−1
αβLαβ + r2(D−1

αβLαβ)
2 + · · ·+ rn−1(D−1

αβLαβ)
n−1]×

[(1− w)I + (w − r)D−1
αβLαβ + wD−1

αβUαβ ]

=(1− w)I + (w − r)D−1
αβLαβ + wD−1

αβUαβ + nonnegative terms. (2.6)

By the above results, we can see L̃αβ(r, w) are nonnegative irreducible matrix. Similar to the

above arguments, we can show that L̂αβ(r, w) are nonnegative irreducible matrix. The proof is

completed. �
In the next section, applying the above results, we will present the main theorems in this

work.

3. Comparison theorems

The spectral radius of the iterative matrix is conclusive for the convergence and stability of

the method, and the smaller it is, the faster the method converges when the spectral radius is

smaller than 1. In this section, some results for the AOR iterative method with preconditioner

Pαβ is given.

Theorem 3.1 Let L(r, w), L̃αβ(r, w) be the iteration matrices of the AOR method giv-

en by equations (1.4) and (1.11) associated with Pαβ . If A is an irreducible L-matrix with

av+1,1a1,v+1 > 0, βv ∈ (
1−av+1,1a1,v+1

av+1,1
,−a1,v+1) ∩ (0,−a1,v+1), αv ∈ (0, 1] (v = 1, 2, . . . , n − 1),∑n−1

v=1 αv ≤ 1 and 0 ≤ r < w ≤ 1, then we have

(1) ρ(L̃αβ(r, w)) < ρ(L(r, w)), if ρ(L(r, w)) < 1,

(2) ρ(L̃αβ(r, w)) = ρ(L(r, w)), if ρ(L(r, w)) = 1,

(3) ρ(L̃αβ(r, w)) > ρ(L(r, w)), if ρ(L(r, w)) > 1.

Proof Theorem 2.8 implies that L(r, w) is a nonnegative irreducible matrix. Hence there exists

a positive vector x, such that

L(r, w)x = λx (3.1)
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where ρ(L(r, w)) = λ or equivalently

[(1− w)I + (w − r)L+ wU ]x = λ(I − rL)x. (3.2)

By Eq. (3.2) we can obtain

L̃αβ(r, w)x− λx

= (Dαβ − rLαβ)
−1[(1− w)Dαβ + (w − r)Lαβ + wUαβ ]x− λx

= (Dαβ − rLαβ)
−1[(1− w)Dαβ + (w − r)Lαβ + wUαβ − λ(Dαβ − rLαβ)]x

= (Dαβ − rLαβ)
−1[(1− w)(I + Eαβ) + (w − r)L+ w(U + Fαβ)− λ(I + Eαβ − rL)]x

= (Dαβ − rLαβ)
−1[(1− w)(I + Eαβ) + (w − r)L+ w(U + Fαβ)− λ(I − rL)− λEαβ ]x

= (Dαβ − rLαβ)
−1[(1− w)(I + Eαβ) + (w − r)L+ w(U + Fαβ)−

(1− w)I − (w − r)L− wU − λEαβ ]x

= (Dαβ − rLαβ)
−1[(1− w)Eαβ + wFαβ − λEαβ ]x

= (Dαβ − rLαβ)
−1[(1− λ)Eαβ + w(Fαβ − Eαβ)]x

= (Dαβ − rLαβ)
−1[(1− λ)Eαβ − wSαβA]x

= (Dαβ − rLαβ)
−1[(1− λ)Eαβ + Sαβ(−wA)]x

= (Dαβ − rLαβ)
−1[(1− λ)Eαβ + Sαβ((λ− 1)(I − rL))]x

= (
λ− 1

λ
)(Dαβ − rLαβ)

−1[−λEαβ + Sαβ(λ(I − rL))]x

= (
λ− 1

λ
)(Dαβ − rLαβ)

−1[−λEαβ + (1− w)Sαβ + (w − r)SαβL+ wSαβU ]x. (3.3)

Now let

Q = (Dαβ − rLαβ)
−1[−λEαβ + (1− w)Sαβ + (w − r)SαβL+ wSαβU ]. (3.4)

From Sαβ ≥ 0, SαβL ≥ 0, Eαβ ≤ 0, SαβU ≥ 0 we have

[−λEαβ + (1− w)Sαβ + (w − r)SαβL+ wSαβU ] ≥ 0.

From Definition 2.2, we have the splitting R = Dαβ − rLαβ as an M -splitting of R. Since

rD−1
αβLαβ is a strictly lower triangular matrix so that ρ(rD−1

αβLαβ) = 0 < 1. By considering

Lemma 2.6, we have R is a nonsingular M -matrix. Therefore, (Dαβ − rLαβ)
−1 ≥ 0, and so

Q ≥ 0.

(1) If λ < 1, then L̃αβ(r, w)x− λx ≤ 0. Therefore, L̃αβ(r, w)x ≤ λx. By using Lemma 2.5,

we get ρ(L̃αβ(r, w)) < λ = ρ(L(r, w));

(2) If λ = 1, then L̃αβ(r, w)x− λx = 0. Therefore, L̃αβ(r, w)x = λx. By using Lemma 2.5,

we get ρ(L̃αβ(r, w)) = λ = ρ(L(r, w));

(3) If λ > 1, then L̃αβ(r, w)x− λx ≥ 0. Therefore, L̃αβ(r, w)x ≥ λx. By using Lemma 2.5,

we get ρ(L̃αβ(r, w)) ≥ λ = ρ(L(r, w)). �

Theorem 3.2 Let L(r, w), L̂αβ(r, w) be the iteration matrices of the AOR method giv-

en by equations (1.4) and (1.12) associated with Pαβ . If A is an irreducible L-matrix with
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av+1,1a1,v+1 > 0, βv ∈ (
1−av+1,1a1,v+1

av+1,1
,−a1,v+1) ∩ (0,−a1,v+1), αv ∈ (0, 1] (v = 1, 2, . . . , n − 1),∑n−1

v=1 αv ≤ 1, and 0 ≤ r < w ≤ 1, then we have

(1) ρ(L̂αβ(r, w)) < ρ(L(r, w)), if ρ(L(r, w)) < 1;

(2) ρ(L̂αβ(r, w)) = ρ(L(r, w)), if ρ(L(r, w)) = 1;

(3) ρ(L̂αβ(r, w)) > ρ(L(r, w)), if ρ(L(r, w)) > 1.

Proof By Eq. (3.2) we can obtain

L̂αβ(r, w)x− λx = (I − rL)−1[(1− w)I + (w − r)L+ w(Uαβ − Eαβ)]x− λx

= (I − rL)−1[(1− w)I + (w − r)L+ w(Uαβ − Eαβ)− λ(I − rL)]x

= (I − rL)−1[(1− w)I + (w − r)L+ w(Uαβ − Eαβ)− (1− w)I − (w − r)L− wU ]x

= (I − rL)−1[w(Fαβ − Eαβ)]x = (I − rL)−1[w(−SαβA)]x

= (I − rL)−1[Sαβ(−wA)]x = (I − rL)−1[Sαβ((λ− 1)(I − rL))]x

= (
λ− 1

λ
)(I − rL)−1[(1− w)Sαβ + (w − r)SαβL+ wSαβU ]. (3.5)

Now let

Q = (I − rL)−1[(1− w)Sαβ + (w − r)SαβL+ wSαβU ]. (3.6)

Similarly we have Q ≥ 0.

(1) If λ < 1, then L̂αβ(r, w)x− λx ≤ 0. Therefore, L̂αβ(r, w)x ≤ λx. By using Lemma 2.5,

we get ρ(L̂αβ(r, w)) < λ = ρ(L(r, w));

(2) If λ = 1, then L̂αβ(r, w)x− λx = 0. Therefore, L̂αβ(r, w)x = λx. By using Lemma 2.5,

we get ρ(L̂αβ(r, w)) = λ = ρ(L(r, w));

(3) If λ > 1, then L̂αβ(r, w)x− λx ≥ 0. Therefore, L̂αβ(r, w)x ≥ λx. By using Lemma 2.5,

we get ρ(L̂αβ(r, w)) ≥ λ = ρ(L(r, w)).

We know, when w = r the AOR method reduces to the SOR method. For w = r, L(r, w),

L̃αβ(r, w) and L̂αβ(r, w), T (w), T̃αβ(w) and T̂αβ(w) are presented as follows

T (w) = (I − wL)−1[(1− w)I + wU ], (3.7)

T̃αβ(w) = (Dαβ − wLαβ)
−1[(1− w)Dαβ + wUαβ ], (3.8)

T̂αβ(w) = (I − wLαβ)
−1[(1− w)I + w(Uαβ − Eαβ)]. (3.9)

Using the similar arguments of Theorems 3.1 and 3.2, we can obtain the following results.

Corollary 3.3 ([2]) Let T (w), T̃αβ(w) be defined by Eqs. (3.7) and (3.9) associated with Pαβ . If

A is an irreducible L-matrix with av+1,1a1,v+1 > 0, βv ∈ (
1−av+1,1a1,v+1

av+1,1
,−a1,v+1)∩ (0,−a1,v+1),

αv ∈ (0, 1] (v = 1, 2, . . . , n− 1),
∑n−1

v=1 αv ≤ 1, and 0 < w < 1, then we have

(1) ρ(T̃αβ(w)) < ρ(T (w)), if ρ(T (w)) < 1;

(2) ρ(T̃αβ(w)) = ρ(T (w)), if ρ(T (w)) = 1;

(3) ρ(T̃αβ(w)) > ρ(T (w)), if ρ(T (w)) > 1.

Corollary 3.4 ([2]) Let T (w), T̂αβ(w) be defined by Eqs. (3.7) and (3.9) associated with Pαβ . If
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A is an irreducible L-matrix with av+1,1a1,v+1 > 0, βv ∈ (
1−av+1,1a1,v+1

av+1,1
,−a1,v+1)∩ (0,−a1,v+1),

αv ∈ (0, 1] (v = 1, 2, . . . , n− 1),
∑n−1

v=1 αv ≤ 1, and 0 < w < 1, then we have

(1) ρ(T̂αβ(w)) < ρ(T (w)), if ρ(T (w)) < 1;

(2) ρ(T̂αβ(w)) = ρ(T (w)), if ρ(T (w)) = 1;

(3) ρ(T̂αβ(w)) > ρ(T (w)), if ρ(T (w)) > 1.

4. Numerical experiments

The numerical experiments presented in this section were computed in double precision with

some MATLAB 8.3 (R2014a) codes on a Corei5 PC, with a 2.53 2.53 GHz CPU and 4.00GB of

RAM.

N (r, w) P0 P1 P2 P3

5 (0.6,0.8) 0.8423 0.7964 0.7674 0.7121

10 (0.6,1) 0.7739 0.7697 0.6541 0.6002

20 (0.6,0.8) 0.9474 0.8854 0.8657 0.7458

30 (0.6,1) 0.9289 0.9000 0.8745 0.8223

Table 1 The comparison of the spectral radius for Example 4.1

Example 4.1 We consider the two dimensional convection-diffusion equation [26]

−(uxx + uyy) + ux + 2uy = f(x, y), in Ω = (0, 1)× (0, 1) (4.1)

with the homogeneous Dirichlet boundary conditions. Discretization of this equation on a uni-

form grid with N × N interior nodes (n = N2), by using the second order centered differences

for the second and first order differentials gives a linear system of equations of order n with n

unknowns. The coefficient matrix of the obtained system is of the form

A = I ⊗ P +Q⊗ I, (4.2)

where ⊗ denotes the Kronecker product,

P = tridiag(−2 + h

8
, 1,−2− 8

8
), Q = tridiag(−1 + h

4
, 1,−1− h

4
) (4.3)

are N ×N tridiagonal matrices, and the step size is h = 1
N . We consider three preconditioners

of the form P0 = I, P1, P2 and P3. where for the preconditioner Pk, k = 1, 2, 3, αi’s and βi’s are

random numbers uniformly distributed in the corresponding interval. We mention that P0 = I

means that no preconditioner is used. In Table 1, the spectral radius of the AOR iterative

method applied to the preconditioned systems PiAx = Pib, i = 0, . . . , 3 for different values of r,

w and n are given.

For more investigation, we apply the GMRES(m) method [27] with m = 10 to solve PiAx =

Pib, i = 0, . . . , 3. In all the experiments, vector b = A(1, 1, . . . , 1)T was taken to be the right-

hand side of the linear system and a null vector as an initial guess. The stopping criterion used
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was always
||b−Axk||2

||b||2
< 10−10. (4.4)

In Table 2, we report the number of iterations and the CPU time (in parenthesis) for the con-

vergence.

N (r, w) P0 P1 P2 P3

50 (0.8,1) 90(0.43) 81 (0.31) 50(0.51) 31(0.16)

100 (0.6,1) 340(5.33) 120(3.83) 122(3.31) 70 (1.43)

150 (0.8,0.8) 750(31.08) 374(18.73) 234(16.56) 185(11.08)

Table 2 Number of iterations and the CPU time for the convergence of

the GMRES(10) for Example 4.1
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