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Abstract Differential characteristic set method is applied to the calculation of pseudo differ-

ential operators and Lax representation of nonlinear evolution equations. Firstly, differential

characteristic set method and differential division with remainder are used for the calculation of

inverse and extraction root of pseudo differential operator, such that the process is simplified s-

ince it is unnecessary to solve ordinary differential equation systems and substitute the solutions.

Secondly, using differential characteristic set method, the nonlinear partial differential equation

systems derived from the generalized Lax equation and Zakharov-Shabat equation, are reduced,

and the corresponding nonlinear evolution equation is obtained. The related programs are com-

piled in Mathematica, a computer-based computer algebra system, and Lax representation of

some nonlinear evolution equations can be calculated with the aid of the computer.
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1. Introduction

In integrable systems, constructing Lax representations of nonlinear evolution equations, i.e.,

finding a pair of differential operators L and B, is a key problem, and L and B are called Lax

Pair. However, there is no general method to construct Lax representations, so it is significant

and interesting to find the Lax representations of nonlinear evolution equations. Using pseudo

differential operators (abbr. PDO), we can get a series of Lax representations in a simple way [1].

Originally, PDOs were only used in integrable systems in 1+1 dimensions, and the nonlinear

evolution equation is obtained from the generalized Lax equation. According to Sato theory,

the approach is extended to higher dimensions, and through the “Dressing operator”, Zakharov-

Shabat equation is introduced. Further, PDOs are widely applied to τ -function [2], Darboux

transformation [3], Hamilton structure [1] and so on, and developed into a standard technique

in the theory of integrable systems.
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To construct Lax representations via PDOs, there are many differential polynomials to be

solved. For a PDO L, such as the calculation of the inverse L−1 or the extraction of the nth

root L
1
n of L, it is necessary to solve the ordinary differential equation systems firstly, and then

L−1 and L
1
n are obtained by substituting the solutions. From L−1 and L

1
n , the differential

operator B is derived. Although the calculation formula of L−1, L
1
n and B are straightforward,

the calculation of all differential polynomials still requires a lot of work. Nonlinear evolution

equation is obtained from the generalized Lax equation or Zakharov-Shabat equation, but it is

not direct. From the generalized Lax equation or Zakharov-Shabat equation, a nonlinear partial

differential equation system is derived. Via observation, we eliminate the auxiliary fields from

the nonlinear partial differential equation system by using compatibility conditions, and obtain

the nonlinear evolution equation. Thereby, it is complicated to calculate the construction of Lax

representations of nonlinear evolution equation with PDOs.

The main aim of this paper is to apply differential characteristic set method [4–7] to the

construction of Lax representations of nonlinear evolution equation with PDOs. For L−1 and

L
1
n , using differential characteristic set method, the triangular form differential characteristic set

of corresponding ordinary differential equation system is obtained, and then, L−1, L
1
n and Bm

are calculated by differential division with remainder directly, and it is unnecessary to solve the

ordinary differential equations and substitute the solutions into the formula of L−1, L
1
n and Bm.

Thereby, the calculations are simplified. On the other hand, the nonlinear partial differential

equation system generated from the generalized Lax equation or Zakharov-Shabat equation is

reduced by differential characteristic set method, and for the given suitable order, the first

equation of the differential characteristic set is just the desired nonlinear evolution equation.

In the process of calculation, the infinite series are implemented in truncated form, and the

truncation order is determined by B or Res.

The programs of differential characteristic set method, PDOs and Lax representations cal-

culation are all provided in MATHEMATICA language. Some Lax representation of nonlinear

evolution equations are calculated using the programs.

2. Differential characteristic set method

The differential characteristic set method is based on the order, so the order of differential

polynomials should be given first.

2.1. The order of differential polynomials

Let F be a field of characteristic zero. Then F is endowed n operators D1, . . . , Dn, and the

following conditions are satisfied:

(1) Di(f + g) = Di(f) +Di(g);

(2) Di(fg) = gDi(f) + fDi(g);

(3) Di(Dj(f)) = Dj(Di(f)),

where f, g ∈ F. Then F is called an n-element differential field, and D1, . . . , Dn are basic
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differential operators. c is a constant in F if Di(c) = 0, i = 1, . . . , n.

An arbitrary differential operator D in F is an element of F of the form

D = Dα1
1 · · ·Dαn

n , (2.1)

where αi, i = 1, . . . , n are nonnegative integers, and Dαi

i means that Di implements αi times.

From (2.1), the mapping

D = Dα1
1 · · ·Dαn

n → (α1, . . . , αn) = α. (2.2)

is 1− 1. α ∈ N
n is called multiple index (abbr. multi-index), meanwhile, Dα1

1 · · ·Dαn
n is denoted

by Dα, and |α| = ∑n

i=1 αi is the order of Dα. Any finite set of multi-indices is a subset of Nn, and

denoted by Nn. In this section, the multi-indices are all n-dimensional. For ∀α = (α1, . . . , αn),

β = (β1, . . . , βn) ∈ N
n, we have α+ β = (α1 + β1, . . . , αn + βn), and

DαDβ = DβDα = Dα+β = Dα1+β1

1 · · ·Dαn+βn
n .

For a given n-element differential field F, u1, . . . , um are independent indeterminate elements,

and can be treated as elements of a certain extended field of F. We take the notation

Du = {Dσu
p|σ ∈ Nn, p = 1, 2, . . . ,m},

where p is called the class of Dσu
p. Dσu

p is called formal derivative, and denoted by u(p,σ)

sometimes. u(p,σ) is a proper derivative as |σ| > 0, and u(p,σ) is u
p as σ is the zero vector.

Definition 2.1 (diff-graded reverse lex order) Dαu
p is larger than Dβu

q, and denoted by

Dαu
p > Dβu

q, if

(1) p > q; or

(2) p = q, and |α| < |β|; or
(3) p = q, and |α| = |β|, there exists i, s.t., αi < βi, αi+1 < βi+1, . . . , αn < βn (1 ≤ i ≤ n).

The differential monomial on F is the finite multiplication of elements in Du,

c
∏

u
k(p,σ)

(p,σ) ,

where c ∈ F, and k(p,σ) is a positive integer. Differential polynomial (abbr. d-pol) is a finite

sum of differential monomials. f is a d-pol, according to the order in Definition 2.1, the largest

derivative occurring in f is called leading derivative, and denoted by ld(f), and f can be written

as

f = fdu
d
(p,σ) + fd−1u

d−1
(p,σ) + · · ·+ f0,

where u(p,σ) is the leading derivative of f , and fd 6= 0. p is called the class of f , and denoted by

cl(f); d is called the degree of f , and denoted by deg(f); fd is called the initial of f , and denoted

by Ini(f).
∂f

∂u(p,σ)
= dfdu

d−1
(p,σ) + (d− 1)fd−1u

d−2
(p,σ) + · · ·

is called the separant of f and denoted by Sep(f). If γ ∈ N
n is a nonzero vector,

Dγ(f) =
∂f

∂u(p,σ)
u(p,γ+σ) + · · · . (2.3)
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Then ld(Dγ(f)) = u(p,γ+σ), and deg(Dγ(f)) = 1. Sep(f) is the initial of Dγ(f) essentially.

u(p,γ+σ) is the proper derivative of ld(f), and is called the principal derivative of f .

(p, σ, d) is called the rank of f . f is called non-trivial if formal derivative occurs in f , or is

trivial when the rank is (0, σ(0), 0), where σ(0) is the zero vector. In addition, if q is not the class

of f , (σ, q) is called the rank of u(σ,d) in f , where σ is the largest multi-index about uq, and d is

the highest power of Dσu
p in f .

All d-pols make up a ring that is closed to derivative, which is called the differential polyno-

mial ring, and denoted by F{Du}. The order is introduced in F{Du} as follows.

Definition 2.2 Let us assume that f and g are two non-trivial differential polynomials (abbr.

d-pols), and (p, α, df ), (q, β, dg) are ranks, respectively. Then f is larger than g, denoted by

f > g, if

(1) p > q; or

(2) p = q, and α > β; or

(3) p = q, and α = β, and df > dg.

If (pf , σf , df ) = (pg, σg, dg), then f and g are incomparable, denoted by f ∼ g.

Lemma 2.3 The order > is a well order on F{Du}. This means that any subset of F{Du} has

smallest elements under >.

From the order for F{Du}, a sequence of d-pols is called an ascent (a decreasing) sequence if

it does not decrease (ascend) according to ranks.

Lemma 2.4 Every strictly decreasing sequence of d-pols is finite.

Definition 2.5 Let f and g be d-plos, and g be non-trivial. f is said to be reduced w.r.t. g if

(1) no proper derivative of ld(g) occurs in f ; and

(2) the degree of ld(g) in f is lower than deg(g).

Let dps be a nonempty differential polynomial set (system) (abbr. d-pol-set), and f be a

d-pol. f is said to be reduced w.r.t. dps, if f is reduced w.r.t. every d-pol in dps. d-pol-set dqs

is reduced w.r.t. dps, if every d-pol in dqs is reduced w.r.t. dps.

Definition 2.6 The ascent sequence of d-pols

f1 < · · · < fk

is differential ascent set (abbr. d-asc-set) if either

(1) k = 1, and f1 is trivial, and is then said to be trivial; or

(2) k > 1, f1, . . . , fk are all non-trivial, and for j < i, fi is reduced w.r.t. all fj .

Obviously, the number of any d-asc-set of d-pol-set is finite.

Definition 2.7 Assuming that there are two d-asc-sets

G : g1 < · · · < gk, and H : h1 < · · · < hl,

G is higher than H , and denoted by G > H if
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(1) H is trivial, and G is non-trivial; or

(2) G and H are both non-trivial, and there exists i, s.t., g1 ∼ h1, . . . , gi−1 ∼ hi−1, and

gi > hi; or

(3) l < k, and g1 ∼ h1, . . . , gl ∼ hl.

G and H are two d-asc-sets. G is equivalent H , denoted by G ∼ H , if G and H are both

trivial, or k = l and gi ∼ hi.

Lemma 2.8 Any strictly decreasing sequence of d-asc-set

d-asc-set1 > d-asc-set2 > · · ·

is finite.

Let dps be a set of d-pol-set. All of d-asc-sets contained in dps form a set, and from Lemma

2.8, the set has the lowest elements. The lowest d-asc-sets of dps are called differential basic

ascent set (abbr. d-bas-asc-set) of dps, and any two d-bas-asc-sets of dps are equivalent.

Theorem 2.9 The differential ascent set G is the d-bas-asc-set of d-pol-set dps, iff dps \G does

not contain nonzero d-pol which reduced w.r.t G.

Theorem 2.9 also provides an algorithm to construct the d-bas-asc-set of d-pol-set. Let dps

be a d-pol-set. If dps contains trivial nonzero d-pol f , the f is d-bas-asc-set, or a d-pol is taken

from the lowest polynomials of dps, and denoted by g1. If dps{g1} contains the d-pols reduced

w.r.t. g1, one of the lowest ranks can be taken from dps{g1}, denoted by g2. Obviously, g1 < g2

is a d-asc-set. If dps \ {g1, g2} contains the d-pols reduced w.r.t. g1, g2, one of the lowest rank is

taken from them, denoted by g3. Then, g1 < g2 < g3 is a d-asc-set. Continuing, the d-asc-set

G : g1 < g2 < · · · < gk

is obtained, and dps \G does not contain the d-pol reduced w.r.t. G. So G is a d-bas-asc-set of

dps.

Definition 2.10 Let dps and dqs be two differential polynomial sets. dps is larger than dqs,

denoted by dps > dqs, if the d-bas-asc-set of dps is larger than d-bas-asc-set of dqs.

From Lemma 2.8, it is easy to prove the following lemma.

Lemma 2.11 Any strictly decreasing sequence of d-pol-sets in order

dps1 > dps2 > · · ·

is finite.

Definition 2.7 also provides a way for lowering the order of a d-pol-set:

Theorem 2.12 Let G be a d-bas-asc-set of d-pol-set dps, and d-pol-set dqs be reduced w.r.t.

G. Then dps ∪ dqs < dps.

2.2. Differential division with remainder

Differential division with remainder (also called differential pseudo division with remainder)
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is the foundation of reduction of d-pol-set, including ordinary differential equation system (abbr.

ODEs), and partial differential equation system (abbr. PDEs).

Theorem 2.13 Let f and g be two d-pols, g be non-trivial. Then the following formula can be

obtained in finite steps

Jf =
∑

α

hαDαg + r, (2.4)

where hα and r are all d-pols, and J is the power product of Ini(g) and Sep(g). r is zero

polynomial or reduced w.r.t. g. r is called the differential remainder (abbr. d-remainder) of f

w.r.t. g, denoted by Red(f, g), and (2.4) is called d-remainder formula.

Proof Let ld(g) = Dσu
p, and I = Ini(g), S = Sep(g), and

Mp
σ(f) = {β|Dβu

p occurs in f},

where Dβu
p is the principal derivative of g, i.e., the proper derivative of Dσu

p. It is discussed

in three cases:

(1) If Mp
σ(f) = ∅, and deg(g) is higher than the degree of Dσu

p in f , f is reduced w.r.t. g;

(2) If Mp
σ(f) 6= ∅, we might as well let γ be the largest multi-index, and γ − σ ∈ N

n. Thus

Dγu
p is the leading derivative of Dγ−σ(g), and S is the initial of Dγ−σ(g), i.e., separant of g.

f can be treated as a polynomial in indeterminate Dγu
p, according to Euclidean algorithm, in

finite steps, the following reduction can be reached

Sr · f = h1Dγ−σ(g) + f1. (2.5)

From (2.3), Dγu
p does not occur in f1, and the rank of up in f1 is lower than in f . IfMp

σ(f1) 6= ∅,
repeating the above process to f1. Continuing the process, until Mp

σ(fk) = ∅, and one can get

Sc · f = hkDγ−σ(g) + fk. (2.6)

(3) If deg(g) is lower than the degree ofDσu
p in fk, fk can be likewise treated as a polynomial

in indeterminate Dσu
p. Using Euclidean algorithm again, the following formula

Id · fk = hg + r (2.7)

can be derived, and the degree of Dσu
p in r is lower than deg(g).

From (2.6) and (2.7), formula (2.4) can be derived, meanwhile, the algorithm is given out. �

Let G : g1 < · · · < gk−1 < gk be a d-asc-set. Successively using d-remainder formula, then

rk = Red(f, gk), rk−1 = Red(rk, gk−1), . . . , r1 = Red(r2, g1),

and

J1 · · ·Jkf =
∑

i,α

hiαDα(gi) + r, (2.8)

where Ji are the power product of Ini(gi) and Sep(gi), and r is zero polynomial or reduced w.r.t.

G. r is called the d-remainder of f w.r.t. G, denoted by Red(f,G).

Let H = {h1, . . . , hl} be a d-pol-set, and G : g1 < · · · < gk be a d-asc-set. The set

{Red(h1, G), . . . ,Red(hk, G)}\{0} is called the d-remainder ofH w.r.t. G, denoted by Red(H,G).
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Definition 2.14 Let G be the d-bas-asc-set of d-pol-set dps. G is said to be the d-bas-set of

dps if Red(dps,G) = ∅.

2.3. Integrability conditions

Integrability conditions include minimal integrability conditions and supplementary integra-

bility conditions. Minimal integrability conditions are the relations among d-pol-set, and can

be found out directly. Supplementary integrability conditions are the potential relations among

d-pol-set, and can be obtained through the completion of the d-pol-set.

Minimal integrability conditions are the derivation operation must be compatible, i.e., the

property (3) of basic derivation operators: the order of derivation operations can be interchanged.

For example, Fx = f , Fy = g, then

Fxy = Fyx ⇒ fy = gx.

The equation fy = gx is the integrable condition, and also called compatible condition. Let f

and g be two same class d-pols, and the leading derivatives be Dαu
p and Dβu

p, respectively, i.e.,

f = fdDαu
p + f1, g = gdDβu

p + g1.

Then

S(f, g) =
gdDσ−αf − fdDσ−βg

GCD(fd, gd)
(2.9)

is the compatible condition of f and g, where GCD(fd, gd) is the greatest common divisor of fd

and gd, and σ = (σ1, . . . , σn), σi = max{αi, βi}. (2.9) is called S-polynomial of f and g.

LetG be a d-asc-set and all be S-polynomials ofG, denoted by Smin(G). Then Red(Smin(G), G)

is the minimal integrability conditions of G, denoted by Imin(G).

Supplementary integrability conditions come from the completion of d-pol set, which exercises

through the completion of the corresponding multi-indices set of leading derivatives. Let Γ be

a set of multi-indices and α = (α1, . . . , αn) and β = (β1, . . . , βn) be two multi-indices. The

following notations are used:

• γ = (γ1, . . . , γn) is the bounded element of Γ, where γi = max{αi|α ∈ Γ}.
• b is an operator on Γ as b(Γ) = γ, and the i-th component of b(Γ) is bi(Γ) = γi.

• δ(i) is the vector whose i-th component is 1 and the other components are all zeros.

• The Hadamard’s product of α and β is

α ◦ β = (α1β1, . . . , αnβn) (2.10)

• α+ β is called prolongation (multiple) of β. All of prolongations of α are denoted by

M(α) = {α+ β|β ∈ N
n} (2.11)

The prolongation along δ direction is

M(α, δ) = {α+ β ◦ δ|β ∈ N
n}

• M(Γ) =
⋃

α∈ΓM(α) is called the prolongation (multiple) space of Γ.
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In the differential characteristic set method, completion is indispensable, and there are several

completion methods, but it is very difficult to find out the minimal complete set of multi-indices

set. A less complete set can be obtained through the following method.

Definition 2.15 For ∀α ∈ Γ, δ(α) is the multiplicative direction of α defined as

δn(α) =

{

1, αn = bn(Γ)

0, otherwise
δk(α) =

{

1, αk = bk(Γkγk+1···γn
)

0, otherwise
(2.12)

where Γkγk+1···γn
= {β ∈ Γ|βk = k + 1, . . . , βn = n}. δ is the multiplicative direction of Γ.

Lemma 2.16 For ∀α, β ∈ Γ, M(α, δ(α)) ∩M(β, δ(β)) = ∅.

Definition 2.17 Γ is called the completion set if M(Γ) =
⋃

α∈ΓM(α, δ(α)).

Theorem 2.18 Γ is completion set iff

∀α ∈ Γ, δk(α) = 0 ⇒ α+ δ(k) ∈
⋃

α∈Γ

M(α, δ(α)) (2.13)

Definition 2.19 Γ′ is complete, and called the completion set of Γ, if Γ′ ⊇ Γ andM(Γ′) ⊇M(Γ).

For a finite multi-indices set Γ, the completion set of Γ is not unique, and the intersection of

two completion sets may not be completion set. In order to make up for the detective, a special

completion set, closed set will be introduced.

Definition 2.20 Finite multi-indices set Γ is called closed set if

α ∈ Γ, δk(α) = 0 ⇒ α+ δ(k) ∈ Γ,

where δ is the multiplicative direction of Γ.

From Theorem 2.18, closed set must be complete set.

Theorem 2.21 The intersection of any two closed sets is also closed set.

Definition 2.22 The minimal closed set containing Γ is called the closure of Γ, denoted by Γ.

Obviously, the closure of the Γ exists and is unique, and is the intersection of all closed sets

containing Γ. The closure of Γ can be obtained from the following algorithm.

Completion Algorithm:

(1) Let bn = bn(Γ), and step by step, we determine the following sets:

Γ0 = {α ∈ Γ|αn = 0}
Γ1 = {α ∈ Γ|αn = 1} ∪ {α+ δ(n)|α ∈ Γ0}
· · ·
Γn = {α ∈ Γ|αn = bn} ∪ {α+ δ(n)|α ∈ Γbn−1}

(2) Assuming that Γjk+1···jn are all determined, and bkjk+1···jn = bjk+1···jn(Γjk+1···jn), and
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step by step, the following sets are determined

Γ0jk+1···jn = {α ∈ Γjk+1···jn |αk = 0}
Γ1jk+1···jn = {α ∈ Γjk+1···jn |αk = 1} ∪ {α+ δ(k)|α ∈ Γ0jk+1···jn}
· · ·
Γljk+1···jn = {α ∈ Γjk+1···jn |αk = l} ∪ {α+ δ(k)|α ∈ Γl−1,jk+1···jn}

where l = bkjk+1···jn .

(3) Γ =
⋃

j1j2···jn
Γj1j2···jn .

Theorem 2.23 The result Γ of the above algorithm is the closure of Γ.

Proof Notice the following facts:

(Γ)jk···jn = Γjk···jn , k = 1, 2, . . . , n.

Let δ be the multiplicative direction of Γ. For α ∈ Γ, αk < bk(Γαk+1···αn
) if δ(αk) = 0. From

the algorithm, α+ δk ∈ Γαk+1,αk+1···αn
⊆ Γ. So, Γ is closed set.

Assuming that Γ′ is another closed set, and Γ′ ⊇ Γ. Obviously, bn(Γ
′) ≥ bn(Γ), and Γ0 ⊆ Γ′

0,

{α ∈ Γ|γ1 = 1} ⊆ Γ′

1. Since Γ
′ is closed set, it means Γ1 ⊆ Γ′. Similarly, it shows that Γjn ⊆ Γ′

jn

step by step. Further, using mathematical induction, Γjk···jn ⊆ Γ′

jk···jn
can be proved. These

relations indicate Γ ⊆ Γ′. Therefore, Γ is the closure of ⊆ Γ. �

Γ may not be the minimal completion set of Γ, but it is easy to calculate the multiplicative

direction, and so is Γ. In addition, based on Γ, a completion set which is smaller than Γ in size

can be obtained from the following algorithm.

Contraction Algorithm:

For every Γj2···jn , set Γj2···jn \ {α}, if the following conditions are satisfied:

(1) Γj2···jn has two elements at least;

(2) α = (b1j2···jn) /∈ Γ.

Repeating the above steps until at least one condition is not satisfied. Γ∗ =
⋃

j2···jn
Γj2···jn is

also a completion set of Γ, called modified completion set. Generally, the number of elements in

Γ∗ is less than Γ.

The main aim of completion of multi-indices is to complete the corresponding d-pol set, and

supplementary integrability conditions can be offered. In the following algorithm, supplementary

integrability conditions of d-pol-set set G are determined.

Supplementary integrability conditions Algorithm:

(1) G is separated into a disjoint union of G1, . . . , Gm, where Gp = {g ∈ G|cl(g) = p}, then
G =

⋃m

p=1Gp is a classification of G.

(2) Let Gp = {g1, . . . , gk}, and the corresponding multi-indices set be Γp = {α1, . . . , αk}.
Γp is completed through the above Completion Algorithm and Contraction Algorithm, while αi

is the all prolongations of αi, then Γ
∗

p =
⋃k

i=1 α
i is the completion set of Γp, and α

i ∩ αj = ∅ if

i 6= j, meanwhile it forms the d-pol-set gi = {Dβ−αi |β ∈ αi}, and Gp =
⋃k

i=1 gi.
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(3) {S(f, g)|∀f ∈ gi, g ∈ gj , i 6= j} is the collection of S-polynomials of Gp, and S(G) is the

collection of S-polynomials of G.

(4) Isupp = Red(S(G), G) is the supplementary conditions of G.

Definition 2.24 A non-trivial d-asc-set G is said to be passive, if Imin(G) and Isupp(G) are

both empty.

2.4. Differential characteristic set

Based on the above preparing, the main result is given.

Theorem 2.25 Let dps be a finite d-pol system. Then there exists a passive d-bas-set dcs of

dps, called differential characteristic set (abbr. d-char-set) of dps, s.t.,

d-Zero(dcs/J) ⊂ d-Zero(dps) ⊂ d-Zero(dcs), (2.14)

d-Zero(dps) = d-Zero(dcs/J) +
∑

i

d-Zero(dps′i) +
∑

i

d-Zero(dps′′i ), (2.15)

where d-Zero(dps) are all Zero points of dps in field F. J is the product of initials and separants

of dcs. d-Zero(dcs/J) are all Zero points of dps which are not Zero points of J . dps′i and dps
′′

i

are the enlarged d-pol-set obtained from the initials and separants of dcs.

Proof Let dps0 = dps. A d-bas-asc-set dbs0 of dps0 is selected, and let rs0 = Red((dps0 \
dbs0), dbs0). If rs0 = ∅, dbs0 is the d-bas-set of dps, otherwise, let dps0 = dps0 ∪ rs0. Selecting

dbs0 of dps0, and calculating rs0 = Red((dps0\dbs0), dbs0) again. Repeating the above procedure
until rs0 = ∅.

Let I0min = Imin(dbs0) be the minimal integrability conditions of dbs0. If I0min 6= ∅, let

dps0 = dps0 ∪ I0min, and selecting dbs0 of dps0 and calculating Imin(dbs0) of dbs0 again, and

repeating the above procedure until I0min = ∅, otherwise, calculating supplementary integrability

conditions I0supp = Isupp(dbs0) of dbs0.

If I0supp = ∅, dbs0 = dcs is the d-char-set of dps, otherwise, let dps1 = dps0 ∪ I0supp. S-

electing the d-bas-asc-set dbs1 of dps1, and calculating minimal integrability conditions I1min

and supplementary integrability conditions I1supp of dbs1. If I1supp = ∅, dbs1 = dcs, otherwise,

let dps2 = dps1 ∪ I1supp. The series d-pol-sets: dpsi, dbsi, and rsi, I
i
min, I

i
supp are gained. Let

RISi = rsi ∪ Iimin ∪ Iisupp. Then, there exist following relations:

dpsi = dpsi−1 ∪RISi−1 (2.16)

dbs0 > dbs1 > · · · > dbsi−1 > dbsi > · · · (2.17)

From Lemma 2.8, the series in (2.17) should be ended at a certain stage k, that is in finite steps

dbsk = dcs is a passive d-bas-set, and RISk = ∅.
According to the above-mentioned construction process of d-char-set, we see that

d-Zero(dps) = d-Zero(dps0) = · · · = d-Zero(dpsk) (2.18)
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From the d-remainder formula, and the emptiness of RISk, we have

d-Zero(dps) = d-Zero(dbsk/J) +
∑

i

d-Zero(dps′ki) +
∑

i

d-Zero(dps′′ki), (2.19)

where each dps′ki and dps
′′

ki is the enlarged d-plo-set derived from dpsk by adjoining to its initials

and separants of dcs. For each i, it is clear from (2.18) that we have

d-Zero(dps′ki) = d-Zero(dps′k), d-Zero(dps′′ki) = d-Zero(dps′′k). � (2.20)

The formula (2.15) can be obtained from (2.18)–(2.20). The formula (2.14) is also obtained

from the construction immediately.

In the above deducing procedure, d-char-set dcs can be formed in the following scheme:

dps = dps0 ⊂ dps1 ⊂ · · · ⊂ dpsk

↓ ↓ · · · ↓
dbs0 > dbs1 > · · · > dbsk = dcs

↓ ↓ · · · ↓
RIS0 ↑ RIS1 ↑ · · · RISk = ∅

(W)

(W) is called Wu-Ritt process. The d-pol-sets dps′i and dps
′′

i in (2.15) can be further split into

the sum of d-char-set as in (2.15). The procedure needs to be terminated in finite steps since all

dps′i and dps
′′

i are lower than dps. So the following theorem can be obtained finally.

Theorem 2.26 (zero decomposition theorem) There exists an algorithmic procedure which

permits us to give for any finite d-plo-set dps a decomposition of the form:

d-Zero(dps) =
∑

i

d-Zero(dcsi/Ji),

where dcsi is passive d-char-set, and Ji is the multiplication of initials and separants of dcsi.

The d-char-set is in triangular or trapezoid form. It is important for many problems which

contain d-pols. For ODEs, there are no integrability conditions, then d-bas-set is d-char-set.

3. Pseudo differential operators

In the subsequent sections, D denotes
∂

∂x
, and prime denotes the differential in x. For any

function f(x), Df is regarded as an operator as follows:

Df = f ′ + fD, (3.1)

and for function g(x),

Df(g) = (f ′ + fD)g = f ′g + fg′. (3.2)

So,

Dnf =

n∑

i=0

n(n− 1) · · · (n− i+ 1)

i!
f (i)Dn−i. (3.3)

D−1 is the inverse of D and defined as

DD−1 = D−1D = 1. (3.4)
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D−1 can be understood as a formal integration symbol, and for a function f(x),

D−1f = fD−1 − f ′D−2 + f ′′D−3 + · · · , (3.5)

and

D−nf =

∞∑

i=0

(−n)(−n− 1) · · · (−n− i+ 1)

i!
f (i)D−n−i, n > 0. (3.6)

From (3.3) and (3.6), the Leibniz rule is employed as

Dnf =

∞∑

i=0

n(n− 1) · · · (n− i+ 1)

i!
f (i)Dn−i, n ∈ Z. (3.7)

A PDO of order n is defined as an infinite series

U =
n∑

i=−∞

uiD
i, (3.8)

where coefficients ui are differential polynomials. According to the operations of series and (3.7),

one can define the operations between PDO and PDO, between differential operators and PDO,

and between PDO and functions. The multiplication of PDOs U and V can be treated as a

composition of operators, i.e., for any function f ,

(UV )f = U(V f) = (U ◦ V )f. (3.9)

The multiplication is non-commutative, but for arbitrary integers m and n,

Dn ◦Dm = DnDm = Dn+m = Dm ◦Dn. (3.10)

Let V =
∑m

j=−∞
vjD

j . Then the multiplication is

UV =
∞∑

k=0

[ k∑

i=0

k−i∑

j=0

Ck−i−j
n−j ujv

(k−i−j)
i

]

Dm+n−k. (3.11)

Based on multiplication, the power, the inverse, and the extraction of a root of PDOs can

be defined, and composed of non-commutative algebra [1], and play a very important role in

integrable systems. The concrete calculation of the inverse and the extraction of a root of PDOs

is presented utilizing differential characteristic set method in Section 4.

Given a PDO, its positive part and negative part are shown as follows

(U)+ =

n∑

i=0

uiD
i, (3.12)

(U)− =

−1∑

i=−∞

uiD
i, (3.13)

and its residue is defined as the coefficient of D−1,

Res(U) = u−1. (3.14)

(U)+ is a normal linear differential operator. From residue, the properties of first integrals,

conservation laws, etc., of a nonlinear evolution equation can be deduced.
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4. Lax representation

In integrable systems, according to Lax scheme [1, 8], if evolution equation

∂u

∂t
= K(u), (4.1)

can be represented as the compatibility conditions of equations

Lψ = λψ, (4.2a)

∂ψ

∂t
= Bψ, (4.2b)

∂λ

∂t
= 0, (4.2c)

then the equation (4.1) is integrable, where L and B are the differential operators with coefficients

being differential polynomials about u. Differentiating (4.2a) w.r.t. t, and substituting into

(4.2b), the famous Lax equation
∂L

∂t
= [B,L], (4.3)

is yielded. (4.3) is called the Lax representation and L and B are called Lax pair of the evolution

equation (4.1). Using the inverse scattering method, the explicit solution can be derived.

For a given equation, however, unfortunately, there exists no general method to construct

its Lax pair. Starting with a linear differential operator L, PDOs provides a simple way to

construct a whole hierarchy of integrable evolution equations. Firstly, 1+1 dimensional systems

are presented.

Let L be a PDO of order n

L = Dn +
n−2∑

i=0

ui(x, t)D
i, (4.4)

where t = (t1, t2, . . .). Then, the unique n-th root and the inverse of L exist in following forms

L
1
n = D +

∞∑

i

vi(x, t)D
−i, (4.5)

L−1 = D−n +
∞∑

i

vi(x, t)D
−n−i. (4.6)

L
1
n and L−1 commute with L. Linear differential operators Bm = (L

m
n )+, m = 1, 2, . . . are the

partners of L in Lax pair. From Lax equations

∂L

∂tm
= [Bm, L], (4.7)

a hierarchy is defined, and called Gelfand-Dickey hierarchy. (4.7) is called the generalized Lax

equation. Furthermore,

∂L
k
n

∂tm
= [Bm, L

k
n ], k = 1, 2, . . . (4.8)

can be derived from (4.7). Then,

Jk =

∫

ResL
k
ndx, k = 1, 2, . . . (4.9)
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are all first integrals of the n-th hierarchy, and

∂Jk
∂tm

=

∫

Res[Bm, L
k
n ]dx = 0, k = 1, 2, . . . . (4.10)

Using Sato theory [2, 9, 10], this method can be extended to more than 1 + 1 dimensional

systems. Let

W = 1 + w1D
−1 + w2D

−2 + w3D
−3 + · · · (4.11)

where the coefficients wi, i = 1, 2, . . . are the function of x, t = (t1, t2, . . .), which are the fields of

the theory satisfying nonlinear evolution equations. W is called “dressing” operator [1, 11, 12].

From the multiplication of PDOs, the inverse of W exists and is also a PDO, denoted by W−1,

i.e.,

WW−1 =W−1W = 1. (4.12)

Based on Cramer Rule and the theory of ordinary differential equation, one can yield the famous

Sato equation

∂W

∂tn
= BnW −WBn, (4.13a)

Bn = (WDnW−1)+. (4.13b)

The operator L is defined by

L =WDW−1, (4.14)

and
∂L

∂tn
=
∂W

∂tn
DW−1 +WD

∂W−1

∂tn
. (4.15)

Since WW−1 = 1,

0 =
∂1

∂tn
=
∂(WW−1)

∂tn
=
∂W

∂tn
W−1 +W

∂W−1

∂tn
, (4.16)

we have
∂W−1

∂tn
= −W−1 ∂W

∂tn
W−1. (4.17)

Substituting (4.17) into (4.13a), the generalized Lax equation can be derived

∂L

∂tn
= [Bn, L]. (4.18)

For an arbitrary positive integer m,

Lm = (WDW−1)(WDW−1) · · · (WDW−1) =WDmW−1, (4.19)

therefore, a general form of the generalized Lax equation can be obtained by repeating the above

analysis with Lm instead of L
∂Lm

∂tn
= [Bn, L

m], (4.20)

and the following equation holds too

∂Ln

∂tm
= [Bm, L

n]. (4.21)
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The Zakharov-Shabat equation can be derived from (4.20) and (4.21) directly

∂Bm

∂tn
− ∂Bn

∂tm
= [Bn, Bm]. (4.22)

PDO L and linear differential operator B have more general forms

L = unD
n + un−1D

n−1 + u1D + u0 + u−1D
−1 + · · · , B = (L

m
n )>k, (4.23)

and are called “nonstandard cases” [9].

5. Differential characteristic set method for Lax representation

In the construction of Lax representations, differential characteristic set method is mainly

applied in two aspects: calculating the inverse or the extraction of a root of PDOs, and reducing

the nonlinear PDEs which are yielded from the generalized Lax equation or Zakharov-Shabat

equation.

For simplicity, we start with the detailed calculation procedure of the inverse of dress operator

W . Let

W = 1 + w1D
−1 + w2D

−2 + w3D
−3 + · · · , (5.1)

and the inverse of W be

W−1 = 1 + v1D
−1 + v2D

−2 + v3D
−3 + · · · . (5.2)

WW−1 ≡ 1 gives

1 ≡ (1 + w1D
−1 + w2D

−2 + w3D
−3 + · · · ) ◦ (1 + v1D

−1 + v2D
−2 + v3D

−3 + · · · )
= 1 + (w1 + v1)D

−1 + (w3 + w2v1 + w1v2 + v3 − w1v
′

1)D
−2 + · · · . (5.3)

From (5.3), the ODEs on vi, i = 1, 2, . . . , denoted by dos, is given

w1 + v1 = 0,

w2 + w1v1 + v2 = 0,

w3 + w2v1 + w1v2 + v3 − w1v
′

1 = 0,

w4 + w3v1 + w2v2 + w1v3 + v4 − 2w2v
′

1 − w1v
′

2 = 0,

· · · ,

(5.4)

where wi, i = 1, 2, . . . can be treated as known variables. Solving dos and substituting vi into

(5.2), W−1 can be obtained. However, the number of equations in dos is infinite, so W−1 is not

obtained completely. From the last section, W and W−1 are used to construct the differential

operator Bm = (WDmW−1)+. For a given m, Bm is confirmed, and has finite terms. So after

a certain term, (WDmW−1)+ is not changed. Therefore, this term can be treated as the order

of truncation of W and W−1, thus dos has finite equations. Actually, in the calculation process,

the minimum order of W and W−1 decrease step by step from m, until

(WDmW−1)+ = [(1 + w1D
−1 + w2D

−2 + · · · ) ◦Dm ◦ (1 + v1D
−1 + v2D

−2 + · · · )]+ (5.5)

does not change, i.e., and truncation order is the maximum order such that (WDW−1)+ does

not change.
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The process to solve dos is quite tedious and complicated, though dos is composed of linear

ordinary differential equations. Since the equations in dos are all d-pols, differential characteristic

set method is used to solve dos. Let v1 < v2 < · · · . According to (W), the d-char-set dcs of

dos can be obtained. Since dos is a system of linear ordinary differential equations, integrability

conditions do not exist, and the d-bas-set dbs of dos is dcs. We see that dcs is a system of linear

ordinary differential equations. In fact, since dos0 = dos is a linear system, the d-bas-asc-set

dbs0 of dos0 is also a linear system, then vi and its derivatives do not occur in the initials and

separants of dbs0. From formula (2.4), the degree of rs0 = Red(dos0 \ dbs0, dbs0) is not higher

than 1. Therefore dos1 = dos0 ∪ rs0 is also a linear system, and throughout the process, the

dosi, i = 1, . . . , k are always linear systems. So the d-char-set dcs of dos is linear system of linear

ordinary differential equations and in triangle form, and then the solution of vi, i = 1, 2, . . . can

be solved directly. W−1 is calculated through substituting vi into (5.2).

From (5.2), even though W−1 can be obtained directly, the process of calculation is fairly

tedious. Here, differential division with remainder is utilized to calculate W−1, since it is a kind

of substitution. In (5.2), W−1 can be seen as d-plo, and v1 < v2 < · · · as order. From Theorem

2.13, the d-remainder Red(W−1, dcs) is reduced w.r.t. dcs, and dcs is in triangle form, and the

degree of vi is 1 in dcs, then vi does not occur in Red(W−1, dcs). Therefore, Red(W−1, dcs) is

the desired result, denoted by W−1, i.e.,

W−1 = Red(W−1, dcs).

In the process of W−1 calculation, D does not participate as a parameter variable.

With the same argument, Bm can be calculated through

Bm = Red((WDmW−1)+, dcs),

where dcs is also the d-char-set of (5.4).

Analogously, differential characteristic set method can be applied to the calculations of ex-

traction root of PDOs. Let

L
1
n = D + v1D

−1 + v2D
−2 + · · · (5.6)

be the n-th root of L in (4.4). For a givenm, the differential operatorBm = (L
m
n )+ is determined,

so the truncation order of L
1
n is the maximum order s.t.,

(L
m
n )+ = [(D + v1D

−1 + v2D
−2 + · · · )m]+ (5.7)

does not change. From

L = (L
1
n )n, (5.8)

an ODEs dos on vi, i = 1, 2, . . . can be given. Utilizing differential characteristic set method, the

d-char-set dcs of dos is obtained, then Red(L
1
n , dcs) is the nth root of L, denoted by L

1
n , i.e.,

L
1
n = Red(L

1
n , dcs) and Bm = Red((L

m
n )+, dcs)

is the desired differential operator.
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In the above calculations, using characteristic set method and differential division with re-

mainder, it is not necessary to solve the ODEs and substitute the solutions into W−1, L
1
n and

Bm, so the computational procedure is simplified, and the desired result can be obtained rapidly

with the help of computer.

The nonlinear evolution equation is yielded from the generalized Lax equation or Zakharov-

Shabat equation. However, in general, it is embarrassed that the desired result cannot be ob-

tained directly. From generalized Lax equation or Zakharov-Shabat equation, nonlinear PDEs

are derived. The PDEs are composed of d-pols and contain some auxiliary fields, even overde-

termined for some cases. To get the evolution equation, one needs to eliminate the auxiliary

fields and superfluous equations from the PDEs. The usual way is to make use of compatible

conditions via observing, so the process not only is complicated, but also requires certain skills,

and the workload of calculation is heavy as the number of equations is large.

Since it is a powerful technique to deal with PDEs, differential characteristic set method

aims for reducing the nonlinear PDEs derived from the generalized Lax equation or Zakharov-

Shabat equation. Based on the given order, constructing the d-char-set of the PDEs, superfluous

equations are eliminated. Since the d-char-set is in triangular form, choosing a suitable order,

including dependent variables order and independent variables order, the first d-pol of the results

is the desired nonlinear evolution equation. Differential characteristic set method provides a

general algorithm to handle the PDEs derived from the generalized Lax equation or Zakharov-

Shabat equation, and the whole procedure can be performed in computer.

In the computer algebra system MATHEMATICA, programs of differential characteristic

set method, PDOs and Lax representation have been compiled. Considering differential char-

acteristic set method based on order, in the program designing, the order is given by macro

definition and called by parameter mode, which makes it convenient to choose order according

to the requirements.

6. Examples

In this section, some illustrative examples are presented to show that differential characteristic

set method is used for Lax representation of nonlinear evolution equations.

Example 6.1 Boussinesq Equation.

Given differential operator

L = D3 + uD + v, (6.1)

where u = u(x, t), v = v(x, t) and linear differential operator B2 = (L
2
3 )+. The maximum order

D−1 is obtained when B2 does not change, so assuming the 3-rd root of L is

L
1
3 = D + w1D

−1, (6.2)

and

B2 = (L
2
3 )+ = D2 + 2w1. (6.3)
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From

L = (L
1
3 )3, (6.4)

we have

3w1 − u = 0. (6.5)

The solution of (6.5) is

w1 =
1

3
u.

Then

L
1
3 = D +

1

3
uD−1, (6.6)

and

B2 = (L
2
3 )+ = D2 +

2

3
u. (6.7)

Substituting L and B2 into the generalized Lax equations (4.3), we have

ut − 2vx + uxx = 0,

vt +
2

3
uux − vxx +

2

3
uxxx = 0. (6.8)

Under the order of dependent variables u < v, and the order of independents variables x < t,

the d-char-set of (6.8) is

4(ux)
2 + 3utt + 4uuxx + uxxxx = 0, (6.9a)

ut − 2vt + uxx = 0, (6.9b)

6vt + 4uux − 3uxt + uxxx = 0, (6.9c)

(6.9a) is Boussinesq Equation, and can be written as

utt = −1

3
u(4) − 4

3
(uu′)′. (6.10)

Example 6.2 Kaup-Kupershmidt Equation.

Given differential operator

L = D3 + 2uD + u′, (6.11)

where u = u(x, t1, t2, t3, t4, t5) and linear differential operator B5 = (L
5
3 )+. The maximum order

D−4 is obtained when B5 does not change, so let the 3-rd root of L be

L
1
3 = D + w1D

−1 + w2D
−2 + w3D

−3 + w4D
−4, (6.12)

and

(L
5
3 )+ = D5 + 5w1D

3 + (5w2 + 10w′

1)D
2 + (10w2

1 + 5w3 + 10w′

2 + 10w′′

1 )D

+ 20w1w2 + 5w4 + 20w1w
′

1 + 10w′

3 + 10w′′

2 + 5w′′′

1 . (6.13)

From

L = (L
1
5 )5, (6.14)
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the following ODEs is derived

3w1 − 2u = 0,

3w2 − u′ + 3w′

1 = 0,

3w2
1 + 3w3 + 3w′

2 + w′′

1 = 0, (6.15)

6w1w2 + 3w4 + 3w′

3 + w′′

2 = 0.

Under the order u < w1 < w2 < w3 < w4, the d-char-set dcs of (6.15) is

3w1 − 2u = 0,

3w2 + u′ = 0,

4u2 + 9w3 − u′′ = 0, (6.16)

3w4 − 4uu′ = 0.

According to formula (2.8),

B5 = Red((L
5
3 )+, dcs) = D5 +

10

3
uD3 + 5u′D2 + (

20

9
u2 +

35

9
u′′)D +

20

9
uu′ +

10

9
u′′′. (6.17)

From the generalized Lax equations (4.3), the following overdetermined PDEs is derived,

40uxu
2 + 20uxxxu+ 2ut5 + 50uxuxx + 2uxxxxx = 0,

20uxxu
2 + 40u2xu+ 10uxxxxu+ 25u2xx + uxt5 + 35uxuxxx + uxxxxxx = 0.

(6.18)

There are no integrability conditions and dependent order for (6.18) that contains only one

dependent variable u. Under the order of independent variables x < t5, the d-char-set of (6.18)

is

ut5 + 20u2ux + 10uuxxx + 25uxuxx + uxxxxx = 0. (6.19)

(6.19) is Kaup-Kupershmidt Equation. The 3-rd root of L can be obtained via d-remainder of

(6.12) w.r.t. (6.16), if it is used in subsequent calculations.

The above examples are both 1+1 dimensional systems, as a 2+1 dimensional example, KP

equation can be considered firstly.

Example 6.3 KP Equation.

KP equation is a 2 + 1 dimensional system, and is the simplest non-trivial equation of KP

hierarchy. The KP hierarchy is generated by the generalized Lax equation (4.18) or Zakharov-

Shabat equation (4.22). Now, utilizing differential characteristic set method, the way to get KP

is shown concretely. Let PDO

W = 1 + w1D
−1 + w2D

−2 + w3D
−3 + · · · , (6.20)

and

W−1 = 1 + v1D
−1 + v2D

−2 + v3D
−3 + · · · . (6.21)

According to the Sato theory, L =WDW−1, and Bm = (Lm)+ = (WDmW−1)+. As evaluating
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m = 2 and m = 3

(WD2W−1)+ =D2 + (v1 + w1)D + v2 + v1w1 + w2 + 2v′1,

(WD3W−1)+ =D3 + (v1 + w1)D
2 + (v2 + v1w1 + w2 + 3v′1)D+ (6.22)

v3 + v2w1 + v1w2 + w3 + 2w1v
′

1 + 3v′2 + 3v′′1 ,

where the maximum order D−3 is obtained when B3 does not change, then the truncation order

of W and W−1 are both D−3, meanwhile B2 does not change too, and

L =D + v1 + w1 + (v2 + v1w1 + w2 + v′1)D
−1 + (v3 + v2w1 + v1w2 + w3 + v′2)D

−2+

(v3w1 − v′′1w1 + v2w2 + v1w3 − w2v
′

1 + v′3)D
−3. (6.23)

From (5.3), i.e., WW−1 = 1, the following ODEs is yielded

w1 + v1 = 0,

w2 + w1v1 + v2 = 0, (6.24)

w3 + w2v1 + w1v2 + v3 − v′1w1 = 0.

Under the order w1 < w2 < w3 < v1 < v2 < v3, the d-char-set dcs1 of (6.24) is

v1 + w1 = 0,

v2 − w2
1 + w2 = 0, (6.25)

v3 + w3
1 − 2w2w1 + w′

1w1 + w3 = 0.

Then from (2.8)

B2 =Red((WD2W−1)+, dcs1) = D2 − 2w′, (6.26a)

B3 =Red((WD3W−1)+, dcs1) = D3 − 3w′

1D + 3w1w
′

1 − 3w′

2 − 3w′′

1 , (6.26b)

L =Red(L, dcs1) = D − w′

1D
−1 + [w1w

′

1 − w′

2]D
−2−

[w′

1w
2
1 − (w1w2)

′ + (w′

1)
2 + w′

3]D
−3. (6.27)

Let the L in (6.27) have the form

L = D + u1D
−1 + u2D

−2 + u3D
−3. (6.28)

The KP equation is derived in terms of u’s instead of w’s. Comparing (6.27) with (6.28), the

relation between u’s and w’s is

u1 = −w′

1,

u2 = w1w
′

1 − w′

2, (6.29)

u3 = −w′

1w
2
1 + w′

2w1 − (w′

1)
2 + w2w

′

1 − w′

3.

Under the order u1 < u2 < u3 < w1 < w2 < w3, d-char-set dcs2 of (6.29) is

u1 + w′

1 = 0,

u2 + u1w1 + w′

2 = 0, (6.30)

u21 + w2u1 + u3 + u2w1 + w′

3 = 0.
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Using differential division with remainder, the d-remainder of (6.26a) and (6.26b) w.r.t. dcs2 are

B2 and B3, respectively, then B2 and B3 are written in terms of u’s, i.e.,

B2 = Red(B2, dcs2) = D2 + 2u′1,

B3 = Red(B3, dcs2) = D3 + 3u′1D + 3u2 + 3u′1.
(6.31)

Let u1 =
u
2 , u2 = v, t1 = y, t2 = t. Zakharov-Shabat equation (4.22) leads to

− 3
2uy − 6vx − 3

2uxx = 0,

ut − 3vy +
3
2uux − 3

2uxy − 3vxx − 1
2uxxx = 0.

(6.32)

Under the order u < v, x < y < t, the d-char-set of (6.32) is

6u2x + 3uyy + 4uxt + 6uuxx + uxxxx = 0,

− 3

2
uy − 6vx − 3

2
uxx = 0, (6.33)

4ut − 12vy + 6uux − 3uxy + uxxx = 0.

The first equation in (6.33) is KP equation, and it can be written as

3uyy = (4ut − 6uux − uxxx)x.

or

ut =
1

4
uxxx + 3uux +

3

4
D−1uyy. (6.34)

KP equation can also be yielded by the generalized Lax equation with L and B2, B3, but it

requires more complicated calculations.

In the generalized Lax equation (4.7), if L is an infinite series, L also adopts a truncation

form. The coefficient of D−1, i.e., Res plays an important part in integrable systems and PDOs,

and has the property (4.10). Thus, the truncation order of L in (4.7) reaches the maximum when

the coefficient of D−1 of Possion bracket [Bm, L] does not change. The next two examples are

the cases.

Example 6.4 mKP Equation.

Let

L = D + u0 + u1D
−1 + u2D

−2 + u3D
−3 + · · · , (6.35)

and

Bm = (Lm)>1, m = 1, 2, 3, . . . . (6.36)

L and Bm are nonstandard cases. mKP hierarchy can be derived from the generalized Lax

equation (4.7) or Zakharov-Shabat equation (4.22).

In (4.7), the truncation order of L is obtained when the D−1 entry of [Bm, L] does not change.

As m = 2, 3, let u0 = u, u1 = v, u2 = w, u3 = r and t1 = y, t2 = t

B2 = D2 + 2uD,

B3 = D3 + 3uD2 + (3u2 + 3v + 3u′)D. (6.37)
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L and B2, and L and B3 are substituted into the generalized Lax equation (4.7), respectively,

we have

uy − 2uux − 2vx − uxx = 0, (6.38a)

vy − 2vux − 2uvx − 2wx − vxx = 0, (6.38b)

wy − 4wux − 2uwx − wxx = 0, (6.38c)

and

ut − 3uxu
2 − 6vxu− 3uxxu− 3u2x − 6vux − 3wx − 3vxx − uxxx = 0, (6.39a)

vt − 6(vuxu+ wxu+ wux + vvx)− 3(vxxu+ vxu
2 + uxvx+

rx + vuxx + wxx)− vxxx = 0, (6.39b)

wt − 12wuxu− 9rux − 6(rxu+ wvx + wuxx)− 3(wxu
2 + wxxu+ vwx+

uxwx + rxx)− wxxx = 0, (6.39c)

rt − 3rxu
2 − 18ruxu− 3rxxu− 9rvx − 3vrx − 3uxrx − 9ruxx − rxxx = 0. (6.39d)

(6.38a), (6.38b), (6.39a), (6.39b) compose new PDEs dps. Under the order u < v < w < r and

x < y < t, the d-char-set of dps is

12(uxxu
3
x − uuxxxu

2
x) + 6(6uu2xx − uxyuxx + uyuxxx)ux − 12uyu

2
xx − 3uxyyuxx+

4uxxuxxt + (3uyy − 4uxt)uxxx + uxxxuxxxx − uxxuxxxxx = 0,

24uuxxu
3
x − 12uuxxyu

2
x − (12uyyuxx + 8uxtuxx + 24uuxyuxx + 6uyuxxy−

2uxxuxxxx)ux + (12uuy + 8ut)u
2
xx − (3uyyy − 6uyuxy + 4uxyt)uxx+

(3uyy + 4uxt)uxxy + 2u2xxuxxx + uxxyuxxxx − uxxuxxxxy = 0,

6uyux − 12uu2x + 6uxxux + 3uyy − 4uxt + 12vuxx + uxxxx = 0,

6(uy + uxx)u
2
x − 12uu3x + (3uyy − 4uxt + 6u2uxx + uxxxx)ux + 6uu2xx+

(2ut − 6uuy − 6wx − 3uxy + uxxx)uxx = 0,

36uxu
2
xxu

3 − 18(8u3xuxx + 3u3xx − 3uyu
2
xx)u

2 − (54uxy + 72u2x + 24ut)u
2
xxu+

36(3uyu
2
x + uyyux − 2uxuxt)uxxu+ 6(2u2xuxxt + 3u2xxuxxx + 2uxuxxuxxxx)u+

54uxu
3
xx + 6(3uyy + 12wux − 6uyux + 6rx − uxt)u

2
xx − (12utu

2
x + 9uyuyy−

3uyytux − 6uytux − 18uyuxt + 4uxtt)uxx + 18u2y − (3uyy − 6uyux + 4uxt)uxxt−
12u2xxuxxy + (6u2xx − 3uyuxx − uxxt)uxxxx + uxxuxxxxt = 0. (6.40)

The first equation in (6.40) is mKP equation. In [9, 13], the form of mKP is

ut =
1

4
uxxx −

3

2
u2ux +

3

2
uxD

−1uy +
3

4
D−1uyy = 0. (6.41)

Using DD−1 = 1, (6.41) can be transformed into the first equation (6.40). mKP equation can

also be yielded from Zakharov-Shabatequation (4.22) with m = 2, n = 3.

The applications of PDO to KP hierarchy [14] and mKP hierarchy [15] have been discussed.

In [14] and [15], graded Lie algebra is exhibited for KP hierarchy and mKP hierarchy. The results
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are the same as (6.34) and (6.41), respectively in form, except for slightly different coefficients.

Furthermore, in [14], if

Am = P (0, . . . , 0
︸ ︷︷ ︸

m

,
1

3
(−

√
3)m−1),

as m = 3, the result is exactly (6.34).

Example 6.5 2 + 1 dimensional Dym equation.

2 + 1 dimensional Dym hierarchy is also a nonstandard case, and is associated with the

following PDO

L = uD + u0 + u1D
−1 + u2D

−2 + u3D
−3 + u4D

−4 + · · · . (6.42)

The differential operators Bm are taken as

Bm = (Lm)>2. (6.43)

As m = 2, 3, let u0 = v, u1 = w, u2 = r and t1 = y, t2 = t. To calculate 2 + 1 dimensional Dym

equation, the truncation order of L is obtained when B3 does not change, and

B2 = (L2)>2 = u2D2,

B3 = (L3)>2 = u3D3 + 3u2(v + ux)D
2. (6.44)

The following equation system is obtained from Zakharov-Shabat equation

(6rx + 3wxx)u
4 + [12rux + 6(wv)x + 3uxwx − 3wuxx]u

3 − (3wu2x + 3wy − 6vwux+

3vxy + uxxy)u
2 + [2vt − 6wuy − 6vvy − 3(vux)y − 6uyvx + uxt − 2(uxuy)x]u−

uyu
2
x + 2vut − 3v2uy + (ut − 3vuy)ux = 0,

(3rxx + wxxx)u
4 − 6(w − vx)wxu

3 + (6v + 15ux)rxu
3 + (6r − 2wx)uxxu

3+

![3wvxx + (6v + 3ux)wxx − 2wuxxx]u
3 + [12ru2x − 3ry − 6w2ux + 12vrux+

(6v + 9ux)wvx + (6v2 − 2u2x + 12vux)wx − 3wxy − 8wuxuxx − vxxy]u
2

(−2wu3x + 2wt − 6ruy − 6wvy − 6vwy + 6v2wux − 3vyvx − 6uywx + vxt−
vxuxy − 3vvxy − uxvxy − 2uyvxx)u + 2wut + 2vvt − 6vwuy − 3v2vy+

utvx − 3vuyvx − uyuxvx = 0. (6.45)

Under the order u < v < w < r and x < y < t, one can calculate d-char-set of (6.45). The

d-char-set of (6.45) is so complicated that it is not presented wholly, and only the first equation,

i.e., 2 + 1 dimensional Dym equation, is presented

(uxyuxxxxx − uxxyuxxxx)u
7 + (2uxyuxxuxxx − 2uxuxxyuxxx + 6uxuxyuxxxx + uyuxxuxxxx−

uyuxuxxxxx)u
6 + 6u2x(uxyuxxx − uyuxxxx)u

5 + (−6uyuxxxu
3
x − 4uxyuxxt + 4uxtuxxy)u

4+

(3uxyuxyy − 4uyuxtuxx + 4utuxyuxx + 4uyuxuxxt − 3uxyyuxxy − 4utuxuxxy)u
3+

(6uyu
2
xy − 3uyuxuxyy + 3uyuxyyuxx)u

2 − 12u2yuxuxyu+ 6u3yu
2
x = 0. (6.46)

Equation (6.46) can also be derived from the generalized Lax equation. Dym equation has been
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discussed in [9, 16]. The results of B2 and B3 are all the same as (6.44), and it can be verified

that (6.46) is identical with 2 + 1 dimensional Dym equation

4ut = u3uxxx − 3
1

u
(u2D−1(

1

u
)y)y, (6.47)

which is presented in [9].

In (6.41) and (6.47), D−1 =
∫
f(x)dx is the integration, and can be transformed into deriva-

tive form through DD−1 = 1. So using differential characteristic set method, the Lax repre-

sentation of nonlinear evolution equations with integration can be obtained too. Although the

form of the final result is more complicated, differential characteristic set method is a general

and effective way for PDEs, especially for nonlinear PDEs.

7. Conclusion and discussion

Differential characteristic set method can be applied to Lax representation of nonlinear evo-

lution equations. It not only decreases the steps and the burden of calculation, then simplifies

the calculations, but also provides a complete procedure for PDOs and the construction of the

Lax representation of nonlinear evolution on computer algebra system. Further, based on the

procedure, differential characteristic set method can be applied to the research of bi-Hamilton

structure, tan-functions, Darboux transformations, and other sides of the integrable systems.

Utilizing differential characteristic set method reduces the nonlinear partial equation systems

derived from the generalized Lax equation or Zakharov-Shabat equation. There is a shortage

that the results are complicated sometimes. How to simplify the results should be revisited.
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