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Abstract In this paper, an existence and uniqueness common best proximity point theorem

for a pair of non-self mappings was proved. Moreover, an example is given to support our

main result, which generalized some well-known results of Sadiq Basha, A.Amini-Harandi and

Geraghty and so on.
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1. Introduction and preliminaries

Fixed point theory is an important tool for solving equations Tx = x for self-mappings T

defined on subsets of metric spaces. Because T is not a self-mapping, the equation Tx = x is

unlikely to have a solution. Therefore, it is of primary importance to seek an element x which

is in some sense closest to Tx. Best approximation theorems and best proximity point theorems

are relevant in this perspective. A noteworthy best approximation theorem, due to [1], contends

that if A is a non-void compact convex subset of a Hausdorff locally convex topological vector

space X, and T : A → X is a continuous single-valued function, then there exists an element x

in A such that d(x, Tx) = d(Tx,A). There have been many subsequent extensions and variants

of Fan’s Theorem, see [2–4] and references therein.

A best proximity point theorem for non-self proximal contractions has been investigated

in [5]. Analysis of several variants of contractions for the existence of a best proximity point can

be found in [6–8], and research of mutually nearest and mutually furthest points problems in

Banach spaces can be found in [9–13]. Best proximity point theorems for set-valued mappings

have been elicited in [14–20].

Given nonempty subsets A and B of a metric space, we recall the following notations and

notions, which will be used in the sequel.

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B},

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},

B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.
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The main objective of this paper is to discuss a common best proximity point theorem. The

common best proximity point theorem presented in this paper assures a common optimal solution

at which both the real valued multiobjective functions x → d(x, Sx) and x → d(x, Tx) attains

the global minimal value d(A,B), thereby giving rise to a common optimal approximate solution

to the fixed point equations Sx = x and Tx = x where the mappings S : A → B are generally

proximally dominated by T : A → B. Our best proximity point theorem generalizes a result due

to [20, 21]. Moreover, a common fixed point theorem, due to [22], for commuting self-mappings

is a special case of our common best proximity point theorem.

Now, we recall some definitions which we will use throughout the paper.

Definition 1.1 A mapping T : A → B is said to be a proximal contraction if there exists a

non-negative number α < 1 such that, for all u1, u2, x1, x2 in A,

d(u1, Tx1) = d(A,B) = d(u2, Tx2) ⇒ d(u1, u2) ≤ αd(x1, x2).

Definition 1.2 Given non-self mappings T : A → B and S : A → B are said to be commute

proximally if they satisfy the condition that d(u, Sx) = d(v, Tx) = d(A,B) ⇒ Sv = Tu.

Definition 1.3 ([20]) A mapping T : A → B is said to dominate a mapping S : A → B

proximally if there exists a non-negative number α < 1 such that, for all u1, u2, v1, v2, x1, x2 in

A,

d(u1, Sx1) = d(u2, Sx2) = d(A,B) = d(v1, Tx1) = d(v2, Tx2) ⇒ d(u1, u2) ≤ αd(v1, v2).

Inspired by the above definition, we give the following definition.

Definition 1.4 A mapping T : A → B is said to generally dominate a mapping S : A → B

proximally if for all u1, u2, v1, v2, x1, x2 in A,

d(u1, Sx1) = d(u2, Sx2) = d(A,B) = d(v1, Tx1) = d(v2, Tx2)

⇒ Ψ(d(u1, u2)) ≤ α(d(v1, v2))Ψ(d(v1, v2)),

where α is a nondecreasing function from [0,∞) to [0, 1) such that α(tn) → 1 ⇒ tn → 0, and

Ψ : [0,∞) → [0,∞) is an increasing continuous function such that t ≤ Ψ(t) and Ψ(0) = 0.

Definition 1.5 ([20]) Given non-self mappings T : A → B and S : A → B, an element x ∈ A is

called a common best proximity point of the mappings if they satisfy the condition that

d(x, Sx) = d(x, Tx) = d(A,B).

2. Main results

The following result is a best proximity point theorem for a pair of non-self mappings.

Theorem 2.1 Let A and B be nonempty subsets of a complete metric space X. Moreover,

assume that A0 and B0 are nonempty and A0 is closed. Let the non-self mappings T : A → B

and S : A → B satisfy the following conditions:



Common best proximity points theorems 291

(a) T generally dominates S proximally;

(b) S and T commute proximally;

(c) S and T are continuous;

(d) S(A0) ⊆ B0;

(e) S(A0) ⊆ T (A0).

Then, there exists a unique element x ∈ A such that d(x, Sx) = d(x, Tx) = d(A,B).

Proof For convenience, use N to represent natural numbers. Let x0 be a fixed element in A0.

Since S(A0) ⊆ T (A0), there exists an element x1 ∈ A0 such that Sx0 = Tx1. This process can

be carried on. Having chosen xn ∈ A0, we can find an element xn+1 ∈ A0 satisfying

Sxn = Txn+1, ∀n ∈ N, (2.1)

because of the fact S(A0) ⊆ T (A0). Since S(A0) ⊆ B0, there exists an element un ∈ A0 such

that

d(Sxn, un) = d(A,B), ∀n ∈ N. (2.2)

Further, it follows from the choice xn and un that

d(Sxn+1, un+1) = d(A,B), d(Txn+1, un) = d(A,B). (2.3)

Since T generally dominates a mapping S proximally, from (2.1)–(2.3), we have

Ψ(d(un+1, un)) ≤ α(d(un, un−1))Ψ(d(un, un−1)) ≤ Ψ(d(un, un−1)). (2.4)

Since Ψ is increasing, {d(un, un−1)} is a non-increasing and bounded. So limn→∞ d(un, un−1)

exists. Let limn→∞ d(un, un−1) = η ≥ 0. Assume that η > 0. Then from (2.4) we obtain

Ψ(d(un+1, un))

Ψ(d(un, un−1))
≤ α(d(un, un−1)). (2.5)

Since Ψ is continuous, the above inequality yields

lim
n→∞

α(d(un, un−1)) = 1, (2.6)

and from condition (a), we have η = 0. Thus

lim
n→∞

d(un, un−1) = 0. (2.7)

At the same time, from condition (a), we have

α(d(u0, u1)) ≥ α(d(u1, u2)) ≥ · · · ≥ α(d(un, un−1)). (2.8)

Now we show that {un} is a Cauchy sequence. In fact, by (2.4) and (2.8) we have

Ψ(d(un+1, un)) ≤ δnΨ(d(u1, u0)),

where δ = α((d(u0, u1))) ∈ [0, 1). Then, we get

0 ≤ Ψ(d(u0, u1)) + Ψ(d(u1, u2)) + · · ·+Ψ(d(un−1, un))

≤ Ψ(d(u0, u1)) + δΨ(d(u0, u1)) + · · ·+ δn−1Ψ(d(u0, u1))
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≤ 1

1− δ
Ψ(d(u0, u1)),

which means that
∞∑

n=1

Ψ(d(un−1, un)) < ∞. (2.9)

From condition (a), we have t ≤ Ψ(t) and then

∞∑
n=1

d(un−1, un) < ∞. (2.10)

Therefore, for all ϵ > 0,

d(un, um) ≤
m∑

i=n+1

d(ui−1, ui) < ϵ (2.11)

for sufficiently large m > n ∈ N . Then {un} is a Cauchy sequence. Since (X, d) is a complete

metric space and A0 is closed, there exists u ∈ A0 such that limn→∞ un = u. Because of the fact

the mappings S and T are commuting proximally and from (2.3), we get

Tun = Sun−1, ∀n ∈ N.

Therefore, the continuity of the mappings S and T ensures that

Tu = lim
n→∞

Tun = lim
n→∞

Sun−1 = Su.

Since S(A0) ⊆ B0, there exists an x ∈ A such that

d(x, Su) = d(A,B) = d(x, Tu). (2.12)

As S and T commute proximally, Sx = Tx. Then, since S(A0) ⊆ B0, there exists a z ∈ A such

that

d(z, Sx) = d(A,B) = d(z, Tx). (2.13)

By condition (a), (2.12) and (2.13), we have Ψ(d(x, z)) ≤ α(d(x, z))Ψ(d(x, z)), which implies

that x = z. Thus, it follows that

d(x, Sx) = d(z, Sx) = d(A,B) = d(x, Tx) = d(z, Tx). (2.14)

Therefore, x is a common best proximity point of the mappings S and T . Suppose that x̂ is

another common best proximity point of the mappings S and T , so that

d(x̂, Sx̂) = d(A,B) = d(x̂, T x̂). (2.15)

Then from condition (a), (2.14) and (2.15), we get Ψ(d(x, x̂)) ≤ α(d(x, x̂))Ψ(d(x, x̂)), which

implies that x = x̂. Therefore, we obtain the desired result. �
As a corollary, we get the following main result of [20].

Corollary 2.2 Let A and B be nonempty subsets of a complete metric space X. Moreover,

assume that A0 and B0 are nonempty and A0 is closed. Let the non-self mappings T : A → B

and S : A → B satisfy the following conditions:

(a) T dominates S proximally;
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(b) S and T commute proximally;

(c) S and T are continuous;

(d) S(A0) ⊆ B0;

(e) S(A0) ⊆ T (A0).

Then, there exists a unique element x ∈ A such that d(x, Sx) = d(x, Tx) = d(A,B).

The following results in [23] and [24] are immediate consequences of Theorem 2.1, respectively.

Corollary 2.3 Let A and B be nonempty subsets of a complete metric space X such that

B is compact. Moreover, assume that A0 and B0 are nonempty. Let the non-self mapping

T : A0 → B0 be a proximal contraction. Then, there exists a unique element x ∈ A0 such that

d(x, Tx) = d(A,B).

Corollary 2.4 Let X be a complete metric space and let T : X → X satisfy

Ψ(d(Tx, Ty)) ≤ β(d(x, y))Ψ(d(x, y)), ∀x, y ∈ X,

where β is an increasing function from [0,∞) to [0, 1) such that β(tn) → 1 ⇒ tn → 0, and

Ψ : [0,∞) → [0,∞) is an increasing continuous function such that t ≤ Ψ(t) for each t ≥ 0 and

Ψ(0) = 0.

3. Illustration

Now we illustrate our common best proximity point theorem by the following example.

Example 3.1 Consider the complete metric space X = [0, 1]× [0, 1] with Euclidean metric. Let

A = {(0, x) : 0 ≤ x ≤ 1} and B = {(1, y) : 0 ≤ y ≤ 1}. Then d(A,B) = 1, A0 = A and B0 = B.

Let T, S : A → B be defined as T (0, x) = (1, x), and S(0, x) = (1, ln(1 + x)). Now we show that

T generally dominates S proximally, where α(t) = 1− ln2(1+t)
2t and Ψ(t) = t for each t > 0. Let

u1 = (0, u1), u2 = (0, u2), v1 = (0, v1), v2 = (0, v2), x1 = (0, x1), x2 = (0, x2) be elements in A

satisfying

d(u1, Sx1) = d(u2, Sx2) = d(v1, Tx1) = d(v2, Tx2) = 1.

Then we have xi = vi and ui = ln(1 + xi) for i = 1, 2. Hence

d(u1,u2) = |u1 − u2| = | ln(1 + v1)− ln(1 + v2)|

≤ ln(1 + |v1 − v2|) ≤ [1− ln2(1 + |v1 − v2|)
2|v1 − v2|

]|v1 − v2|

= α(d(v1,v2))d(v1,v2).

Next we show that T does not dominate S proximally. On the contrary, assume that there exists

0 ≤ β < 1 such that

d(u1,u2) = |u1 − u2| = | ln(1 + v1)− ln(1 + v2)| < βd(v1,v2) = β|v1 − v2|, ∀v1, v2 ∈ [0, 1].

Let v2 = 0. We get
ln(1 + v1)

v1
≤ β < 1, ∀v1 ∈ (0, 1)
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a contradiction (note that limv1→0+
ln(1+v1)

v1
= 1).
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