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1. Introduction

Let A denote the class of functions of the form:

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. Further, by S we denote the family

of all functions in A which are univalent in U .

It is well known that every function f ∈ S has an inverse f−1, which is defined by

f−1(f(z)) = z, z ∈ U

and

f(f−1(ω)) = ω, |ω| < r0(f), r0(f) ≥
1

4
.

The inverse functions g = f−1 is given by

f−1(ω) = ω − a2ω
2 + (2a22 − a3)ω

3 − (5a32 − 5a2a3 + a4)ω
4 + · · · . (1.2)
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A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U . Let

Σ denote the class of all bi-univalent functions in U given by (1.1). The class of bi-univalent

functions was first introduced and studied by Lewin [1] and was showed that |a2| < 1.51. Brannan

and Clunie [2] improved Lewin’s results to |a2| ≤
√
2 and later Netanyahu [3] proved that max

|a2| = 4/3 if f(z) ∈ Σ. Recently, many authors investigated bounds for various subclasses of

bi-univalent functions [4–10].

Let φ be an analytic and univalent function with positive real part in U such that φ(0) =

1, φ′(0) > 0 and φ(U) is symmetric with respect to the real axis. The Taylor’s series expansion

of such function is of the form

φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · , (1.3)

where all coefficients are real and B1 > 0.

Recently, Tang and Orhan [11,12] introduced the following subclass of bi-univalent function

class Σ and obtained estimates on the first two coefficients |a2| and |a3| and the Fekete-Szegö

inequality.

Definition 1.1 ([11]) A function f ∈ Σ given by (1.1) is said to be in the class Hµ
Σ(λ, φ) if it

satisfies

(1− λ)(
f(z)

z
)µ + λf ′(z)(

f(z)

z
)µ−1 ≺ φ(z), λ ≥ 1, µ ≥ 0, z ∈ U

and

(1− λ)(
g(ω)

ω
)µ + λg′(ω)(

g(ω)

ω
)µ−1 ≺ φ(ω), λ ≥ 1, µ ≥ 0, ω ∈ U,

where g(ω) = f−1(ω).

Theorem 1.2 ([11]) Let the function f given by (1.1) be in the class Hµ
Σ(λ, φ), λ ≥ 1 and µ ≥ 0.

Then

|a2| ≤ min
{ B1

λ+ µ
,

√
2(B1 + |B2 −B1|)
(1 + µ)(2λ+ µ)

}
and

|a3| ≤

{
min{ B1

2λ+µ +
B2

1

(λ+µ)2 ,
2(B1+|B2−B1|)
(1+µ)(2λ+µ) }, 0 ≤ µ < 1,

B1

2λ+µ + 2|B2−B1|
(1+µ)(2λ+µ) , µ ≥ 1.

Theorem 1.3 ([12]) Let the function f given by (1.1) be in the class Hµ
Σ(λ, φ), λ ≥ 1 and µ ≥ 0.

Then

|a3 − γa22| ≤


B1

2λ+µ , |1− γ| ≤ µ+1
2 |1 + 2(B1−B2)(λ+µ)2

B2
1(2λ+µ)(1+µ)

|,
2B3

1 |1−γ|
|(2λ+µ)(1+µ)B2

1+2(B1−B2)(λ+µ)2| , |1− γ| ≥ µ+1
2 |1 + 2(B1−B2)(λ+µ)2

B2
1(2λ+µ)(1+µ)

|.

For each functions f ∈ S, the function

h(z) = m
√
f(zm), z ∈ U ;m ∈ N

is univalent and maps the unit disk U into a region with m-fold symmetry. A function is said to
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be m-fold symmetric [13,14] if it has the following normalized form:

f(z) = z +
∞∑
k=1

amk+1z
mk+1, z ∈ U ; m ∈ N. (1.4)

Srivastava et al. [15] defined m-fold symmetric univalent functions in U , analogous to the concept

of m-fold symmetric univalent functions. For the normalized form of f given by (1.4), they

obtained the series expansion for f−1 as follows:

g(ω) =f−1(ω) = ω − am+1ω
m+1 + [(m+ 1)a2m+1 − a2m+1]ω

2m+1−

[
1

2
(m+ 1)(3m+ 2)a3m+1 − (3m+ 2)am+1a2m+1 + a3m+1]ω

3m+1 + · · · . (1.5)

We denote by Σm the class of m-fold symmetric bi-univalent function in U . For m = 1, the

formula (1.5) coincides with the formula (1.2) of the class Σ.

Recently, many researchers [15–20] introduced and investigated a lot of interesting subclass

of m-fold symmetric bi-univalent functions. Motivated by them, we investigate the estimates

|am+1| and |a2m+1| for functions belonging to the new general subclass Nµ
Σm

(λ, φ) of Σm. A new

subclass Nµ
Σm

(λ, φ) is defined as follows:

Definition 1.4 A function f ∈ Σm given by (1.4) is said to be in the class Nµ
Σm

(λ, φ) if it

satisfies

(1− λ)(
f(z)

z
)µ + λf ′(z)(

f(z)

z
)µ−1 ≺ φ(z), λ ≥ 1, µ ≥ 0, z ∈ U

and

(1− λ)(
g(ω)

ω
)µ + λg′(ω)(

g(ω)

ω
)µ−1 ≺ φ(ω), λ ≥ 1, µ ≥ 0, ω ∈ U,

where the function g is given by (1.5).

Remark 1.5 There are many choices of φ, λ, µ, and m which would provide interesting

subclasses of class Nµ
Σm

(λ, φ). For example

(1) For λ = 1, µ = 0 and m = 1, N0
Σ1

(1, φ) = S0
Σ1

(φ) introduced by Ma and Minda [4].

(2) For µ = 0, λ = 1, m = 1 and φ(z) = ( 1+z
1−z )

α (0 < α ≤ 1), N0
Σ1

(1, ( 1+z
1−z )

α) = S∗
Σ[α]

studied by Brannan and Taha [7].

(3) For µ = 0, λ = 1, m = 1 and φ(z) = 1+(1−2β)z
1−z (0 ≤ β < 1), N0

Σ1
(1, 1+(1−2β)z

1−z ) = S∗
Σ(β)

studied by Brannan and Taha [7].

(4) For m = 1 and φ(z) = ( 1+z
1−z )

α (0 < α ≤ 1), Nµ
Σ1

(λ, ( 1+z
1−z )

α) = Nµ
Σ(α, λ) introduced by

Çaǧlar et al. [8].

(5) For m = 1 and φ(z) = 1+(1−2β)z
1−z (0 ≤ β < 1), Nµ

Σ1
(λ, 1+(1−2β)z

1−z ) = Nµ
Σ(β, λ) introduced

by Çaǧlar et al. [8].

(6) For µ = 1, m = 1 and φ(z) = ( 1+z
1−z )

α (0 < α ≤ 1), N1
Σ1

(λ, ( 1+z
1−z )

α) = BΣ(α, λ) studied

by Frasin and Aouf [9].

(7) For µ = 1, m = 1 and φ(z) = 1+(1−2β)z
1−z (0 ≤ β < 1), N1

Σ1
(λ, 1+(1−2β)z

1−z ) = BΣ(β, λ)

studied by Frasin and Aouf [9].

(8) For µ = 1, λ = 1, m = 1 and φ(z) = ( 1+z
1−z )

α (0 < α ≤ 1), N1
Σ1

(1, ( 1+z
1−z )

α) = Hα
Σ studied

by Srivastava et al. [10].
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(9) For µ = 1, λ = 1, m = 1 and φ(z) = 1+(1−2β)z
1−z (0 ≤ β < 1), N1

Σ1
(1, 1+(1−2β)z

1−z ) = HΣ(β)

studied by Srivastava et al. [10].

(10) For m = 1, Nµ
Σ1

(λ, φ) = Hµ
σ (λ, φ) studied by Tang et al. [11].

(11) For µ = 1, λ = 1 and φ(z) = ( 1+z
1−z )

α (0 < α ≤ 1), N1
Σm

(1, ( 1+z
1−z )

α) = Hα
Σ,m studied by

Srivastava et al. [15].

(12) For µ = 1, λ = 1 and φ(z) = 1+(1−2β)z
1−z (0 ≤ β < 1), N1

Σm
(1, 1+(1−2β)z

1−z ) = HΣ,m(β)

studied by Srivastava et al. [15].

(13) For µ = 1 and λ = 1, N1
Σm

(1, φ) = Hσ,m(φ) studied by Çaǧlar and Gurusamy [17].

(14) For φ(z) = ( 1+z
1−z )

α (0 < α ≤ 1), Nµ
Σm

(λ, ( 1+z
1−z )

α) = Nµ
Σ,m(α, λ) studied by Bulut [18].

(15) For φ(z) = 1+(1−2β)z
1−z (0 ≤ β < 1), Nµ

Σm
(λ, 1+(1−2β)z

1−z ) = Nµ
Σ,m(β, λ) studied by

Bulut [18].

(16) For µ = 1 and φ(z) = ( 1+z
1−z )

α (0 < α ≤ 1) N1
Σm

(λ, ( 1+z
1−z )

α) = Aα,λ
Σ,m studied by

Sümer [19].

(17) For µ = 1 and φ(z) = 1+(1−2β)z
1−z (0 ≤ β < 1), N1

Σm
(λ, 1+(1−2β)z

1−z ) = Aλ
Σ,m(β) studied by

Sümer [19].

(18) For µ = 0, λ = 1 and φ(z) = 1+(1−2β)z
1−z (0 ≤ β < 1), N0

Σm
(1, 1+(1−2β)z

1−z ) introduced by

Hamidi and Jahangiri [20].

(19) For µ = 0, λ = 1 and φ(z) = ( 1+z
1−z )

α (0 < α ≤ 1), N0
Σm

(1, ( 1+z
1−z )

α) = Sα
Σ,m.

(20) For λ = 1 and φ(z) = ( 1+z
1−z )

α (0 < α ≤ 1), a new class Nµ
Σm

(1, ( 1+z
1−z )

α) is obtained,

which consists of m-fold symmetric bi-Bazilevič functions.

(21) For λ = 1 and φ(z) = 1+(1−2β)z
1−z (0 ≤ β < 1), a new class Nµ

Σm
(1, 1+(1−2β)z

1−z ) is obtained,

which consists of m-fold symmetric bi-Bazilevič functions.

In order to derive our main results, we shall need the following lemma.

Lemma 1.6 ([21]) If p(z) ∈ P , then |cn| ≤ 2 for each n, where P is the family of all functions

p, analytic in U for which R{p(z)} > 0, where

p(z) = 1 + c1z + c2z
2 + · · · , z ∈ U.

2. Coefficient estimates

Using Lemma 1.6, our first main results is given by Theorem 2.1 below:

Theorem 2.1 Let f(z) given by (1.4) be in the class Nµ
Σm

(λ, φ). Then

|am+1| ≤ min
{ B1

µ+mλ
,

√
2(B1 + |B2 −B1|)
(m+ µ)(µ+ 2mλ)

,Ω1

}
, (2.1)
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|a2m+1| ≤



B1

µ+2mλ ,
B1−B2

B2
1

∈ (−∞,− (1+2m+µ)(µ+2mλ)
2(µ+mλ)2 ]∪

[ (1−µ)(µ+2mλ)
2(µ+mλ)2 ,+∞),

min
{ (1+m)B2

1

2(µ+mλ)2 + B1

µ+2mλ ,Ω2,Ω3

}
, B1−B2

B2
1

∈ [− (1+2m+µ)(µ+2mλ)
2(µ+mλ)2 ,− (m+µ)(µ+2mλ)

2(µ+mλ)2 )∪
(− (m+µ)(µ+2mλ)

2(µ+mλ)2 ), (1−µ)(µ+2mλ)
2(µ+mλ)2 ],

(2.2)

where

Ω1 =
B1

√
2B1√

|(m+ µ)(µ+ 2mλ)B2
1 + 2(B1 −B2)(µ+mλ)2|

,

Ω2 =
(1 +m)(B1 + |B2 −B1|)

(m+ µ)(µ+ 2λm)
+

B1

µ+ 2λm
,

Ω3 =
(1 +m)B3

1

|(m+ µ)(µ+ 2λm)B2
1 + 2(B1 −B2)(µ+ λm)2|

.

Proof Let f ∈ Nµ
Σm

(λ, φ) and g = f−1. Then there are analytic functions u, v : U → U, with

u(0) = v(0) = 0 satisfying

(1− λ)(
f(z)

z
)µ + λf ′(z)(

f(z)

z
)µ−1 = φ(u(z)), (2.3)

(1− λ)(
g(ω)

ω
)µ + λg′(ω)(

g(ω)

ω
)µ−1 = φ(v(ω)). (2.4)

Define the functions p1(z) and p2(z) by

p1(z) =
1 + u(z)

1− u(z)
= 1 + cmzm + c2mz2m + c3mz3m + · · ·

and

p2(z) =
1 + v(z)

1− v(z)
= 1 + bmzm + b2mz2m + b3mz3m + · · ·

or equivalently,

u(z) =
p1(z)− 1

p1(z) + 1
=

1

2
cmzm + (

1

2
c2m − c2m

4
)z2m + · · · (2.5)

and

v(z) =
p2(z)− 1

p2(z) + 1
=

1

2
bmzm + (

1

2
b2m − b2m

4
)z2m + · · · . (2.6)

From (2.3)–(2.6), we have

(1− λ)(
f(z)

z
)µ + λf ′(z)(

f(z)

z
)µ−1 = φ(

p1(z)− 1

p1(z) + 1
) (2.7)

and

(1− λ)(
g(ω)

ω
)µ + λg′(ω)(

g(ω)

ω
)µ−1 = φ(

p2(ω)− 1

p2(ω) + 1
). (2.8)

Using (2.5) and (2.6), together with (1.3) we get

φ(
p1(z)− 1

p1(z) + 1
) = 1 +

1

2
B1cmzm + [

1

2
B1c2m +

(B2 −B1)c
2
m

4
]z2m + · · · , (2.9)

φ(
p2(ω)− 1

pω(z) + 1
) = 1 +

1

2
B1bmωm + [

1

2
B1b2m +

(B2 −B1)b
2
m

4
]ω2m + · · · . (2.10)
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Since

(1− λ)(
f(z)

z
)µ + λf ′(z)(

f(z)

z
)µ−1 = 1 + (µ+mλ)am+1z

m

(µ+ 2mλ)[
µ− 1

2
a2m+1 + a2m+1]z

2m + · · ·

and

(1− λ)(
g(ω)

ω
)µ + λg′(ω)(

g(ω)

ω
)µ−1 = 1− (µ+mλ)am+1ω

m+

(µ+ 2mλ)[(m+
µ+ 1

2
)a2m+1 − a2m+1]ω

2m + · · ·

it follows frrom (2.7)–(2.10) that

(µ+mλ)am+1 =
1

2
B1cm, (2.11)

(µ+ 2mλ)[
µ− 1

2
a2m+1 + a2m+1] =

1

2
B1c2m +

(B2 −B1)c
2
m

4
, (2.12)

−(µ+mλ)am+1 =
1

2
B1bm, (2.13)

(µ+ 2mλ)[(m+
µ+ 1

2
)a2m+1 − a2m+1] =

1

2
B1b2m +

(B2 −B1)b
2
m

4
. (2.14)

From (2.11) and (2.13), we get

cm = −bm, (2.15)

a2m+1 =
B2

1(c
2
m + b2m)

8(µ+mλ)2
. (2.16)

Applying Lemma 1.6 for the coefficients cm and bm, we have

|am| ≤ B1

µ+mλ
. (2.17)

Adding (2.12) and (2.14), we have

(m+ µ)(µ+ 2mλ)a2m+1 =
B1(c2m + b2m)

2
+

B2 −B1

4
(c2m + b2m). (2.18)

Applying Lemma 1.6 for the coefficients cm, c2m, bm and b2m, we have

|am+1| ≤

√
2(B1 + |B2 −B1|)
(m+ µ)(2λm+ µ)

. (2.19)

Substituting (2.15) and (2.16) into (2.18), we get

c2m =
2B1(µ+mλ)2(c2m + b2m)

(m+ µ)(µ+ 2mλ)B2
1 + 2(B1 −B2)(µ+mλ)2

. (2.20)

From (2.15), (2.20) and (2.16), we get

a2m+1 =
B3

1(c2m + b2m)

2(m+ µ)(µ+ 2mλ)B2
1 + 4(B1 −B2)(µ+mλ)2

. (2.21)

Then, in view of Lemma 1.6, we have

|am+1| ≤
B1

√
2B1√

|(m+ µ)(µ+ 2λm)B2
1 + 2(B1 −B2)(µ+ λm)2|

. (2.22)
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Now, from (2.17), (2.19) and (2.22), we get

|am+1| ≤ min
{ B1

λm+ µ
,

√
2(B1 + |B2 −B1|)
(m+ µ)(2λm+ µ)

,
B1

√
2B1√

|(m+ µ)(µ+ 2λm)B2
1 + 2(B1 −B2)(µ+ λm)2|

}
.

By subtracting (2.14) from (2.12), we obtain

a2m+1 =
1 +m

2
a2m+1 +

B1

4(µ+ 2mλ)
(c2m − b2m). (2.23)

Substituting (2.11) into (2.23) and using Lemma 1.6, we get

|a2m+1| ≤
(1 +m)B2

1

2(µ+ λm)2
+

B1

µ+ 2λm
. (2.24)

Substituting (2.18) into (2.23) and using Lemma 1.6, we get

|a2m+1| ≤
(1 +m)(B1 + |B2 −B1|) + (m+ µ)B1

(m+ µ)(µ+ 2λm)
. (2.25)

From (2.11) and (2.23) it follows that

a2m+1 = B1

{
[h(

B1 −B2

B2
1

) +
1

4(µ+ 2mλ)
]c2m + [h(

B1 −B2

B2
1

)− 1

4(µ+ 2mλ)
]b2m

}
,

where

h(
B1 −B2

B2
1

) =
(1 +m)

4(m+ µ)(µ+ 2mλ) + 8B1−B2

B2
1

(µ+mλ)2
.

Since all Bi are real and B1 > 0, we conclude that

|a3| ≤

{
4B1|h(B1−B2

B2
1

)|, |h(B1−B2

B2
1

) ≥ 1
4(µ+2mλ) ,

B1

µ+2mλ , 0 ≤ |h(B1−B2

B2
1

)| ≤ 1
4(µ+2mλ) .

This completes the proof of Theorem 2.1. �

Theorem 2.2 Let f(z) given by (1.4) be in the class Nµ
Σm

(λ, φ). Then

|a3 − γa22| ≤

{
B1

µ+2mλ , 0 ≤ |h(γ)| < 1
4(µ+2mλ) ,

|1+m−2γ|B3
1

|(m+µ)(µ+2mλ)B2
1+2(B1−B2)(µ+mλ)2| , |h(γ)| ≥ 1

4(µ+2mλ) .
(2.26)

Proof By using the equalities (2.21) and (2.23), we have

a2m+1 − γa2m+1 = B1[(h(γ) +
1

4(µ+ 2mλ)
)c2m + (h(γ)− 1

4(µ+ 2mλ)
)b2m],

where

h(γ) =
(1 +m− 2γ)B2

1

4(m+ µ)(µ+ 2mλ)B2
1 + 8(B1 −B2)(µ+mλ)2

.

Since all Bi are real and B1 > 0, we conclude that

|a3 − γa22| ≤

{
B1

µ+2mλ , 0 ≤ |h(γ)| < 1
4(µ+2mλ) ,

|1+m−2γ|B3
1

|(m+µ)(µ+2mλ)B2
1+2(B1−B2)(µ+mλ)2| , |h(γ)| ≥ 1

4(µ+2mλ) ,

which completes the proof. �

3. Corollaries and consequences
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Setting m = 1 in Theorem 2.1, we have the following corollary.

Corollary 3.1 Let f(z) given by (1.4) be in the class Nµ
Σ1

(λ, φ). Then

|a2| ≤ min
{ B1

λ+ µ
,

√
2(B1 + |B2 −B1|)
(1 + µ)(2λ+ µ)

,Ω1

}
,

|a2m+1| ≤



B1

µ+2λ ,
B1−B2

B2
1

∈ (−∞,− (3+µ)(µ+2λ)
2(µ+λ)2 ]∪

[ (1−µ)(µ+2λ)
2(µ+λ)2 ,+∞),

min
{ B2

1

(µ+λ)2 + B1

µ+2λ ,Ω2,Ω3

}
, B1−B2

B2
1

∈ [− (3+µ)(µ+2λ)
2(µ+λ)2 ,− (1+µ)(µ+2λ)

2(µ+λ)2 )∪
(− (1+µ)(µ+2λ)

2(µ+λ)2 ), (1−µ)(µ+2λ)
2(µ+λ)2 ].

where

Ω1 =
B1

√
2B1√

|(1 + µ)(µ+ 2λ)B2
1 + 2(B1 −B2)(µ+ λ)2|

,

Ω2 =
2(B1 + |B2 −B1|)
(1 + µ)(µ+ 2λ)

+
B1

µ+ 2λ
,

Ω3 =
2B3

1

|(1 + µ)(µ+ 2λ)B2
1 + 2(B1 −B2)(µ+ λ)2|

.

Remark 3.2 The estimates of the coefficients |a2| and |a3| of Corollary 3.1 are the improvements

of the estimates obtained in [11, Theorem 2.1].

Setting φ(z) = ( 1+z
1−z )

α (0 < α ≤ 1) in Theorem 2.1, we have the following corollary.

Corollary 3.3 Let f(z) given by (1.4) be in the class Nµ
Σm

(λ, ( 1+z
1−z )

α) = Nµ
Σ,m(α, λ). Then

|am+1| ≤ min
{ 2α

λm+ µ
,

√
8α− 4α2

(m+ µ)(2λm+ µ)
,

2α√
(µ+mλ)2 +mα(µ+ 2mλ−mλ2)

}
,

|a2m+1| ≤

{
2α

µ+2λ , 0 < α ≤ (µ+mλ)2

µ+2mλ+m2λ2 ,

min
{ 2(1+m)α2

(µ+λm)2 + 2α
µ+2λm ,Ω1,Ω2

}
, (µ+mλ)2

µ+2mλ+m2λ2 < α ≤ 1,

where Ω1 = (1+m)(4α−2α2)
(m+µ)(µ+2λm) +

2α
µ+2λm , Ω2 = 2(1+m)α2

(µ+λm)2+mα(µ+2mλ−mλ2) .

Remark 3.4 The estimates of the coefficients |am+1| and a2m+1 of Corollary 3.2 are the im-

provement of the estimates obtained in [18, Theorem 4].

Setting φ(z) = 1+(1−2β)z
1−z (o ≤ β < 1) in Theorem 2.1, we have the following corollary.

Corollary 3.5 Let f(z) given by (1.4) be in the class Nµ
Σm

(λ, 1+(1−2β)z
1−z ) = Nµ

Σ,m(β, λ). Then

|am+1| ≤


√

4(1−β)
(m+µ)(2λm+µ) , 0 ≤ β < m(1+2mλ−mλ2)

(1+2mλ)(1+m) ,
2(1−β)
λm+µ , m(1+2mλ−mλ2)

(1+2mλ)(1+m) ≤ β < 1.

|a2m+1| ≤

{
2(1−β)
µ+2mλ , µ ≥ 1,

min{ 2(1+m)(1−β)2

(µ+mλ)2 + 2(1−β)
µ+2mλ ,

2(1+m)(1−β)
(m+µ)(µ+2λm)}, 0 ≤ µ < 1.

Remark 3.6 The estimate of the coefficients |a2m+1| of Corollary 3.3 is the improvement of

the estimate obtained in [18, Theorem 15]. Setting m = 1 in Theorem 2.2, we have the following
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corollary.

Corollary 3.7 ([12, Theorem 2.1]) Let f(z) given by (1.4) be in the class Nµ
Σ1

(λ, φ). Then

|a3 − γa22| ≤

{
B1

µ+2λ , 0 ≤ |h(γ)| < 1
4(µ+2λ) ,

2|1−γ|B3
1

|(1+µ)(µ+2λ)B2
1+2(B1−B2)(µ+λ)2| , |h(γ)| ≥ 1

4(µ+2λ) .
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[17] M. ÇAǦLAR, P. GURUSAMY, E. DENIZ. Unpredictability of initial coefficient bounds for m-fold symmetric

bi-univalent starlike and convex functions defined by subordinations. Afr. Mat., 2018, 29(5-6): 793–802.

[18] S. BULUT. Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions.

Turk. J. Math., 2016, 40(6): 1386–1397.
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