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Abstract We give an extension of Delyon’s inequality for locally square integrable martingales.

The result is very useful for establishing self-normalized exponential inequality for martingales.

An application to linear regressions is discussed.
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1. Introduction

Let (ξi,Fi)i=0,...,n be a finite sequence of real-valued square integrable martingale differences

defined on a probability space (Ω,F , P ), where ξ0 = 0 and {∅,Ω} = F0 ⊆ · · · ⊆ Fn ⊆ F are

increasing σ-fields. So by definition, we have E[ξi|Fi−1] = 0, i = 1, . . . , n. Set S0 = 0 and

Sk =
∑k

i=1 ξi for k = 1, . . . , n. Then S = (Sk,Fk)k=1,...,n is a martingale. Let [S] and ⟨S⟩ be,

respectively, the squared variance and the conditional variance of the martingale S, that is

[S]0 = ⟨S⟩0 = 0, [S]k =
k∑

i=1

ξ2i and ⟨S⟩k =
k∑

i=1

E[ξ2i |Fi−1], k = 1, . . . , n.

Bercu and Touati [1] established the following exponential inequality. For any x, vn > 0,

P(|Sn| ≥ x, [S]n + ⟨S⟩n ≤ v2n) ≤ 2 exp{− x2

2v2n
}.

Delyon [2] refined the inequality of Bercu and Touati, and gave the following result. For any

x, vn > 0,

P(Sn ≥ x,
1

3
[S]n +

2

3
⟨S⟩n ≤ v2n) ≤ exp{− x2

2v2n
}. (1.1)

The proof of Deylon is based on the following fact that for any t > 0,

E[exp{tSn − t2

2
(
1

3
[S]n +

2

3
⟨S⟩n)}] ≤ 1. (1.2)

Combining inequality (1.2) and exponential Markov’s inequality together, we have

P(Sn ≥ x,
1

3
[S]n +

2

3
⟨S⟩n ≤ v2n) ≤ exp{tx− t2

2
v2n}.

Taking t = x/v2 in the r.h.s. of the last inequality, we obtain inequality (1.1). Inequality (1.2) is

very useful. For instance, de la Peña and Pang [3] showed that such type inequalities are closely

related to the exponential inequalities for self-normalized martingales.
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In this paper, we show that inequality (1.2) holds also when the constants 1
6 and 1

3 therein

are replaced by certain positive constants, that is

E[exp{tSn − t2

2
(p[S]n + p′⟨S⟩n)}] ≤ 1, (1.3)

where p and p′ are certain positive constants such that (2.1) holds. Inequality (1.3) is very useful.

For instance, by exponential Markov’s inequality, it immediately leads to the following result:

For any x, vn > 0,

P(Sn ≥ x, p[S]n + p′⟨S⟩n ≤ v2n) ≤ exp{− x2

2v2n
},

which can be regarded as a generalization of Delyon’s inequality. See also (2.3) for a more

stronger result. Moreover, following de la Peña and Pang [3] and Bercu and Touati [1], we show

that inequality (1.3) can be applied to self-normalized exponential inequalities for martingales.

In particular, we prove that if ⟨S⟩n ≥ b2ES2
n a.s. for small positive b, then for any x > 0,

P(
|Sn|√

p[S]n + p′⟨S⟩n
≥ x) ≤ C| ln b| exp{−x2

6
}.

The rest of the paper is organized as follows. Our main results are stated and discussed in

Section 2. The application to linear regressions is given in Section 3. In Section 4, we prove our

main results.

2. Main results

Let p > 0. Denote

f(x) =
2(exp{x− p

2x
2} − 1− x)

x2
, x ∈ R.

Set

q = sup
x∈R

f(x).

Notice that

lim
x→0

f(x) = 1− p, lim
x→±∞

f(x) = 0,

and f(x) is continuous on R. Thus, q always exists and satisfies q ≥ 1−p. In particular, Delyon [2]

proved that if p = 1
3 , then q = 2

3 . By the definition of q, we have for any constant p′ ≥ q,

exp{x− p

2
x2} ≤ 1 + x+

p′

2
x2, x ∈ R. (2.1)

For practical purposes, one can use the following table:

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3

p′ 3.56 0.98 0.71 0.62 0.58 0.55 0.54 0.53 0.52 0.52 0.51 0.51

Table 1 Value of p′ under p

It is easy to see that when p is increasing, q is decreasing.

Our first result is the following exponential inequality for martingales.
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Theorem 2.1 Let p > 0. Assume p′ ≥ q. Then for any t ∈ R,

E[exp{tSn − t2

2
(p[S]n + p′⟨S⟩n)}] ≤ 1, (2.2)

and for any x, vn > 0,

P(Sk ≥ x and p[S]k + p′⟨S⟩k ≤ v2n for some k ∈ [1, n]) ≤ exp{− x2

2v2n
}. (2.3)

In particular, the last inequality implies that for any x, vn > 0,

P( max
1≤k≤n

Sk ≥ x, p[S]n + p′⟨S⟩n ≤ v2n) ≤ exp{− x2

2v2n
}.

Clearly, inequality (2.3) with p = 1
3 and p′ = 2

3 implies inequality (1.1). Thus our inequality

can be regarded as an extension of Delyon’s inequality (1.1).

Inequality (2.2) is very useful for establishing exponential inequality for self-normalized mar-

tingales. Using (2.2), we obtain the following analogue of Bercu and Touati [1, Theorem 4.2].

Theorem 2.2 Assume p′ ≥ q. Then for any x > 0,

P(
Sn

p[S]n + p′⟨S⟩n
≥ x) ≤ inf

l>1
(E[exp{−(l − 1)

x2

2
(p[S]n + p′⟨S⟩n)}])

1
l ,

and, for all y > 0,

P(
Sn

p[S]n + p′⟨S⟩n
≥ x, p[S]n + p′⟨S⟩n ≥ y) ≤ exp{−x2y

2
}.

Moreover, the same inequalities hold when Sn is replaced by −Sn.

Similarly, we have the following result.

Theorem 2.3 Assume p′ ≥ q. Then for any x, y > 0,

P(
Sn

[S]n
≥ x, (2− p)[S]n ≥ p′⟨S⟩n + y) ≤ exp {−x2y

2
}. (2.4)

Moreover, we also have

P(
Sn

[S]n
≥ x, p′⟨S⟩n ≤ yp[S]n) ≤ inf

l>1
(E[exp {− (l − 1)x2

2(1 + y)p
[S]n}])

1
l . (2.5)

Moreover, the same inequalities hold when Sn is replaced by −Sn.

Clearly, when p = p′ = 1, Theorem 2.3 reduces to Theorem 2.2 of Bercu and Touati [1] with

a = 0 and b = 1.

Remark 2.4 According to the proof of Theorem 2.3, it is not hard to see that (2.4) and (2.5)

also hold exchanging the roles of ⟨S⟩n and [S]n, and exchanging the roles of p and p′ at the same

time. That is, the following two inequalities hold: for any x, y > 0,

P(
Sn

⟨S⟩n
≥ x, (2− p′)⟨S⟩n ≥ p[S]n + y) ≤ exp {−x2y

2
}

and

P(
Sn

⟨S⟩n
≥ x, p[S]n ≤ yp′⟨S⟩n) ≤ inf

l>1
(E[exp {− (l − 1)x2

2(1 + y)p′
⟨S⟩n}])

1
l .
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Denote sn the standard variance of Sn. It is well known that

s2n = ES2
n =

n∑
i=1

Eξ2i .

Inequality (2.2) implies the following exponential inequality for self-normalized martingales.

Theorem 2.5 Assume p′ ≥ q. Then for any b ∈ (0, 1/2] and x ≥ 0,

P(
|Sn|√

p[S]n + p′⟨S⟩n
≥ x,

√
p[S]n + p′⟨S⟩n ≥ bsn) ≤ C| ln b| exp{−x2

6
}, (2.6)

where C is an absolute constant. In particular, if p′⟨S⟩n ≥ b2s2n > 0 a.s., then (2.6) implies that

P(
|Sn|√

p[S]n + p′⟨S⟩n
≥ x) ≤ C| ln b| exp{−x2

6
}.

Some exponential inequalities similar to (2.6) can be found in Liptser and Spokoiny [4], de

la Peña and Pang [3]. In these papers, Liptser and Spokoiny [4] considered the probability of

the event { Sn√
p[S]n+p′⟨S⟩n

≥ x, b ≤
√
p[S]n + p′⟨S⟩n ≤ bM}, while de la Peña and Pang [3]

considered the tail probability of |Sn|√
p[S]n+p′⟨S⟩n+s2n

.

3. Application to linear regressions

The stochastic linear regression model is given by, for all n ≥ 0,

Xn+1 = θϕn + εn+1, (3.1)

where Xn, ϕn and εn are the observation, the regression variable, and the driven noise, respec-

tively. We assume that (ϕn) is a sequence of independent and identically distributed random

variables, and that (εn) is a sequence of identically distributed random variables with mean zero

and variance σ2 > 0. Furthermore, we suppose that, for all n ≥ 0, the random variable εn+1 is

independent of Fn where Fn = σ(ϕ0, ε1, . . . , ϕn−1, εn). Our interest is to estimate the unknown

parameter θ. The well-known least-squares estimator θ̂n is given below

θ̂n =

∑n
k=1 ϕk−1Xk∑n
k=1 ϕ

2
k−1

. (3.2)

It immediately follows from (3.1) and (3.2) that

θ̂n − θn = σ2 Sn

⟨S⟩n
, (3.3)

where

Sn =

n∑
k=1

ϕk−1εk and ⟨S⟩n = σ2
n∑

k=1

ϕ2
k−1.

Let H and L be the cumulant generating functions of the sequences (ϕ2
n) and (ε2n), respectively

given, for all t ∈ R, by

H(t) = logE[exp {tϕ2
n}] and L(t) = logE[exp {tε2n}].
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When ϕn and εn are sub-Gaussian, the following exponential inequality on the convergence of

θ̂n − θn has been established by Bercu and Touati [1]. Assume that L is finite on some interval

[0, c] with c > 0 and denote by I its Fenchel-Legendre transform on [0, c],

I(x) = sup
0≤t≤c

{xt− L(t)}.

Then, for all n ≥ 1, x > 0 and y > 0, Bercu and Touati proved that

P(|θ̂n − θ| ≥ x) ≤ 2 inf
l>1

exp {n
l
H(− (l − 1)x2

2σ2(1 + y)
)}+ exp {−nI(

yσ2

n
)}. (3.4)

Here, we would like to give a refinement of (3.4).

Theorem 3.1 For all n ≥ 1, x > 0, and y > 0, we have

P(|θ̂n − θ| ≥ x) ≤ 2 inf
l>1

exp {n
l
H(− (l − 1)x2

2σ2(1 + y)p′
)}+ exp {−nI(

p′yσ2

pn
)}.

Clearly, when p = p′ = 1, our inequality reduces to the inequality of Bercu and Touati.

4. Proofs of theorems

In the proof of Theorem 2.1, we make use of the following lemma.

Lemma 4.1 Assume p′ ≥ q. Then for any t ∈ R,

E[exp{tξi −
p

2
t2ξ2i }|Fi−1] ≤ exp{p

′

2
t2E[ξ2i |Fi−1]}.

Proof By inequality (2.1), we have

exp{tξi −
p

2
t2ξ2i } ≤ 1 + tξi +

p′

2
t2ξ2i .

Taking conditional expectation on both sides of the last inequality, we get

E[exp{tξi −
p

2
t2ξ2i }|Fi−1] ≤ 1 +

p′

2
t2E[ξ2i |Fi−1].

Using the inequality 1 + x ≤ ex, we obtain

E[exp{tξi −
p

2
t2ξ2i }|Fi−1] ≤ exp{p

′

2
t2E[ξ2i |Fi−1]},

which gives the desired inequality. �
From the last lemma, we get

Lemma 4.2 Assume p′ ≥ q. For any t ∈ R, denote

Vn(t) = exp{tSn − t2

2
(p[S]n + p′⟨S⟩n)}.

Then (Vi(t),Fi)i=1,...,n is a positive supermartingale with E[Vn(t)] ≤ 1.

Proof For all t ∈ R and n ≥ 0, we have

Vn(t) = Vn−1(t) exp{tξn − p

2
t2(pξ2n + p′E[ξ2n|Fn−1])}.
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Hence, by Lemma 4.1, we deduce that for all t ∈ R,

E[Vn(t)|Fn−1] = Vn−1(t)E[exp{tξn − t2

2
(pξ2n + p′E[ξ2n|Fn−1])}|Fn−1]

≤ Vn−1(t),

which means (Vi(t),Fi)i=0,...,n is a positive supermartingale. Moreover, there holds

E[Vn(t)] ≤ E[Vn−1(t)] ≤ · · · ≤ E[V1(t)] ≤ 1.

This completes the proof of lemma. �

Proof of Theorem 2.1 We follow the argument of Fan et al. [5]. For any nonnegative number

λ, define the exponential multiplicative martingale (Zk(λ),Fk)k=0,...,n, where

Zk(λ) =

k∏
i=1

eλξi−
p
2λ

2ξ2i

E[eλξi−
p
2λ

2ξ2i |Fi−1]
, Z0(λ) = 1, λ ≥ 0.

If T is a stopping time, then ZT∧k(λ) is also a martingale, where

ZT∧k(λ) =
T∧k∏
i=1

eλξi−
p
2λ

2ξ2i

E[eλξi−
p
2λ

2ξ2i |Fi−1]
, Z0(λ) = 1, λ ≥ 0.

Thus the random variable ZT∧k(λ) is a probability density on (Ω,F ,P), i.e.,∫
ZT∧k(λ)dP = E[ZT∧k(λ)] = 1.

Define the conjugate probability measure Pλ on (Ω,F) as follows

dPλ = ZT∧n(λ)dP, (4.1)

and denote by Eλ the expectation with respect to Pλ. For any x, vn > 0, define the stopping

time

T (x, vn) = min{k ∈ [1, n] : Sk ≥ x and p[S]k + p′⟨S⟩k ≤ v2n},

with the convention that min{∅} = 0. Then it follows that

1{Sk≥x and p[S]k+p′⟨S⟩k≤v2
n for some k∈[1,n]} =

n∑
k=1

1{T (x,vn)=k}.

By the change of measure (4.1), we deduce that for any x, vn > 0 and λ ≥ 0,

P(Sk ≥ x and p[S]k + p′⟨S⟩k ≤ v2n for some k ∈ [1, n])

= Eλ[ZT∧n(λ)
−11{Sk≥x and p[S]k+p′⟨S⟩k≤v2

n for some k∈[1,n]}]

=
n∑

k=1

Eλ[exp {−λST∧n +ΨT∧n(λ)}1{T (x,vn)=k}]

=

n∑
k=1

Eλ[exp {−λSk +Ψk(λ)}1{T (x,vn)=k}]

≤
n∑

k=1

Eλ[exp {−λx+Ψk(λ)}1{T (x,vn)=k}],
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where

Ψk(λ) =

k∑
i=1

logE[eλξi−
p
2λ

2ξ2i |Fi−1], 0 ≤ k ≤ n.

By Lemma 4.1, it follows that

Ψk(λ) ≤
k∑

i=1

λ2

2
(pξ2i + p′E[ξ2i |Fi−1])

=
λ2

2
(p[S]k + p′⟨S⟩k).

Using the fact that Ψk(λ) ≤ λ2

2 v2n on the set {T (x, vn) = k}, we deduce that for any x, vn > 0,

P(Sk ≥ x and p[S]k + p′⟨S⟩k ≤ v2n for some k ∈ [1, n])

≤ exp {−λx+
λ2

2
v2n}Eλ[

n∑
k=1

1{T (x,vn)=k}]

= exp {−λx+
λ2

2
v2n}Eλ[1{Sk≥x and p[S]k+p′⟨S⟩k≤v2

n for some k∈[1,n]}]

≤ exp {−λx+
λ2

2
v2n}. (4.2)

The bound (4.2) attains its minimum at

λ = λ(x) =
x

v2n
,

Substituting λ = λ(x) into (4.2), we obtain for any x, vn > 0,

P(Sk ≥ x and p[S]k + p′⟨S⟩k ≤ v2n for some k ∈ [1, n]) ≤ {− x2

2v2n
}.

This completes the proof of theorem. �

Proof of Theorem 2.2 We follow the method of Bercu and Touati [1]. For all t ∈ R, recall

Vn(t) = exp{tSn − t2

2
(p[S]n + p′⟨S⟩n)}.

It follows from Lemma 4.2 that for all t ≥ 0, E[Vn(t)] ≤ 1. For all x > 0, let An = {Sn ≥
x(p[S]n + p′⟨S⟩n)}. Set 1

p̃ + 1
q̃ = 1, p̃, q̃ > 1. By Hölder’s inequality, we have for all t > 0,

P(An) = P(Sn ≥ x(p[S]n + p′⟨S⟩n))

≤ E[exp { t
q̃
(Sn − x(p[S]n + p′⟨S⟩n))}1An ]

= E[exp { t
q̃
(Sn − t

2
(p[S]n + p′⟨S⟩n))} exp {

t

2q̃
(t− 2x)(p[S]n + p′⟨S⟩n)}1An ]

= (E[exp { p̃t
2q̃

(t− 2x)(p[S]n + p′⟨S⟩n)}1An ])
1
p̃ (E[Vn(t)])

1
q̃

≤ (E[exp { p̃t
2q̃

(t− 2x)(p[S]n + p′⟨S⟩n)}])
1
p̃ . (4.3)

Consequently, as p̃/q̃ = p̃− 1, we can deduce from (4.3) and the particular choice t = x that

P(An) ≤ inf
p̃>1

(E[exp{−(p̃− 1)
x2

2
(p[S]n + p′⟨S⟩n)}])

1
p̃ ,
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which gives the first desired inequality. Furthermore, for all x, y > 0, let Bn = {Sn ≥ x(p[S]n +

p′⟨S⟩n), p[S]n + p′⟨S⟩n ≥ y}. By Cauchy-Schwarz’s inequality, it follows that for all 0 < t < 2x,

P(Bn) ≤ E[exp { t
2
Sn − t2

4
(p[S]n + p′⟨S⟩n)} exp {

t

4
(t− 2x)(p[S]n + p′⟨S⟩n)}1Bn ]

≤ exp { ty
4
(t− 2x)}E[Vn(t)

1
21Bn ].

Again by Cauchy-Schwarz’s inequality, we have

E[Vn(t)
1
21Bn ] ≤

√
P(Bn).

Therefore, we have √
P(Bn) ≤ exp { ty

4
(t− 2x)}.

Choosing the value t = x, we obtain

P(Bn) ≤ exp {−x2y

2
},

which gives the second desired inequality. �

Proof of Theorem 2.3 Denote

Zn = p[S]n + p′⟨S⟩n.

For all x, y > 0, let

Cn = {Sn ≥ x[S]n, (2− p)[S]n ≥ p′⟨S⟩n + y}.

Set 1
p̃ + 1

q̃ = 1, p̃, q̃ > 1. By Hölder’s inequality, we have the following inequality. For all t > 0,

P(Cn) ≤ E[exp { t
q̃
Sn − tx

q̃
[S]n}1Cn ]

= E[exp { t
q̃
Sn − t2

2q̃
Zn} exp {

t2

2q̃
Zn − tx

q̃
[S]n}1Cn ]

≤ (E[exp { t
2p̃

2q̃
(p[S]n + p′⟨S⟩n)−

p̃tx

q̃
[S]n}1Cn ])

1
p̃ . (4.4)

Consequently, as p̃
q̃ = p̃− 1, we can deduce from (4.4) and the particular choice t = x that

P(Cn) ≤ inf
p̃>1

exp {−x2y(p̃− 1)

2p̃
}

= exp {−x2y

2
},

which gives the first desired inequality. Furthermore, for all x, y > 0, let

Dn = {Sn ≥ x[S]n, p′⟨S⟩n ≤ yp[S]n}.

By Hölder’s inequality, we have for all t > 0,

P(Dn) ≤ E[exp { t
q̃
Sn − tx

q̃
[S]n}1Dn ]

= E[exp { t
q̃
Sn − t2

2q̃
Zn} exp {

t2

2q̃
Zn − tx

q̃
[S]n}1Dn ]
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≤ (E[exp { tp̃
2q̃

(tp[S]n + tp′⟨S⟩n − 2x[S]n)}1Dn ])
1
p̃

≤ (E[exp { tp̃
2q̃

(tp+ typ− 2x)[S]n}])
1
p̃ . (4.5)

Therefore, as p̃
q̃ = p̃−1, we can deduce from (4.5) and the particular choice t = x/((1+y)p) that

P(Dn) ≤ inf
p̃>1

(E[exp {−(p̃− 1)
x2

2(1 + y)p
[S]n}])

1
p̃ .

This completes the proof of Theorem 2.3. �

Proof of Theorem 2.5 The proof of Theorem 2.5 is based on the following two lemmas. Fol-

lowing the main result of de la Peña and Pang [3], we obtain the following exponential inequality

for self-normalized martingales.

Lemma 4.3 Assume p′ ≥ q. Then for any x > 0,

P(
|Sn|√

3
2 (p[S]n + p′⟨S⟩n + s2n)

≥ x) ≤ (
3

2
)

1
3x− 2

3 exp{−x2

2
}.

In particular, it implies that for any x > 0,

P(
|Sn|√

p[S]n + p′⟨S⟩n
≥ x, p[S]n + p′⟨S⟩n ≥ s2n) ≤ C exp{−x2

6
} (4.6)

for some positive absolute constant C.

Proof By Lemma 4.2, we have the following result

E
[
exp{tSn − t2

2
(p[S]n + p′⟨S⟩n)}

]
≤ 1.

Put A = Sn and B2 = p[S]n + p′⟨S⟩n. Then Lemma 4.3 follows by the main result of de la Peña

and Pang [3]. �
We have the following new exponential inequality for self-normalized martingales.

Lemma 4.4 Assume p′ ≥ q. Then for any b > 0, M ≥ 1 and x ≥ 0,

P(
Sn√

p[S]n + p′⟨S⟩n
≥ x, b ≤

√
p[S]n + p′⟨S⟩n ≤ bM)

≤
√
e(1 + 2(1 + x) lnM) exp{−x2

2
}. (4.7)

Proof We follow the method of Liptser and Spokoiny [4]. Given a > 1, introduce the geometric

series bk = bak and define random events

Ak = { Sn√
p[S]n + p′⟨S⟩n

≥ x, bk ≤
√
p[S]n + p′⟨S⟩n < bk+1}, k = 0, 1, . . . ,K,

where K stands for the integer part of loga M . Clearly, it holds

{ Sn√
p[S]n + p′⟨S⟩n

≥ x, b ≤
√
p[S]n + p′⟨S⟩n ≤ bM} ⊆

K∪
k=0

Ak. (4.8)



Self-normalized exponential inequalities for martingales 313

For any positive t, inequality (2.2) implies that

E[exp{tSn − t2

2
(p[S]n + p′⟨S⟩n)

}
1Ak

] ≤ 1.

Next, taking tk = x/bk, for any x > 0, we obtain

1 ≥ E[exp { x

bk
Sn − x2

2b2k
(p[S]n + p′⟨S⟩n)}1Ak

]

≥ E[exp {x
2

bk

√
p[S]n + p′⟨S⟩n − x2

2b2k
(p[S]n + p′⟨S⟩n)}1Ak

]

≥ E[exp { inf
bk≤c≤bk+1

(
x2c

bk
− x2c2

2b2k
)}1Ak

].

Since “ infbk≤c≤bk+1
” is attained at the point c = bk+1 = abk, we end up with

P(Ak) ≤ exp {−x2(a− a2

2
)}.

Using (4.8) and the fact that K ≤ loga M , we get

P(
Sn√

p[S]n + p′⟨S⟩n
≥ x, b ≤

√
p[S]n + p′⟨S⟩n ≤ bM) ≤

K∑
k=0

P(Ak)

≤ (1 + loga M) exp {−x2(a− a2

2
)}.

Finally, since the left-hand side of this inequality does not depend on a, we may pick a to make

the right-hand side possibly small. This leads to the choice a = 1 + 1
1+x , so that

x2(a− a2

2
) = x2{1 + 1

1 + x
− 1

2
(1 +

1

1 + x
)2} ≥ 1

2
(x2 − 1).

Since also log(1+ 1
1+x ) ≥

1
2(1+x) for x ≥ 0, we obtain loga M ≤ 2(1+x) lnM and (4.7) follows. �

Now we are in position to prove Theorem 2.5. Let s2n = b2M2. Then M = sn/b. Inequality

(4.6) can be rewritten as

P(
Sn√

p[S]n + p′⟨S⟩n
≥ x,

√
p[S]n + p′⟨S⟩n ≥ bM) ≤ C exp{−x2

6
}, (4.9)

where C is some positive absolute constant. Therefore, combining the inequalities (4.7) and

(4.9), we obtain

P(
Sn√

p[S]n + p′⟨S⟩n
≥ x,

√
p[S]n + p′⟨S⟩n ≥ b)

≤
√
e(1 + 2(1 + x) ln

sn
b
) exp{−x2

2
}+ C1 exp{−

x2

6
}

≤ (
√
e(1 + 2(1 + x) ln

sn
b
) exp{−x2

3
}+ C1) exp{−

x2

6
}.

Here, taking b = tsn, 0 < t < 1
2 , we have

P(
Sn√

p[S]n + p′⟨S⟩n
≥ x,

√
p[S]n + p′⟨S⟩n ≥ tsn)

≤ (
√
e(1 + 2(1 + x)| ln t|) exp{−x2

3
}+ C1) exp{−

x2

6
}
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≤ (
√
e(1 + 2(1 + x)) exp{−x2

3
}+ C1| ln 2|)| ln t| exp{−

x2

6
}.

Let C = supx≥0(
√
e(1 + 2(1 + x)) exp{−x2

3 }+ C2). Then, we obtain

P(
Sn√

p[S]n + p′⟨S⟩n
≥ x,

√
p[S]n + p′⟨S⟩n ≥ tsn)

≤ C| ln t| exp{−x2

6
},

which gives the desired result. �

Proof of Theorem 3.1 From (3.3), for all n ≥ 1, x > 0, and y > 0, we get

P(|θ̂n − θ| ≥ x) = P(|Sn| ≥
x

σ2
⟨S⟩n)

≤ P(|Sn| ≥
x

σ2
⟨S⟩n, p[S]n ≤ yp′⟨S⟩n) + P(p[S]n ≥ yp′⟨S⟩n).

By Remark 2.4, it follows that

P(|Sn| ≥
x

σ2
⟨S⟩n, p[S]n ≤ yp′⟨S⟩n) ≤ 2 inf

p̃>1
(E[exp {−(p̃− 1)

x2

2σ4(1 + y)p′
⟨S⟩n}])

1
p̃

= 2 inf
p̃>1

exp {n
p̃
H(− (p̃− 1)x2

2σ2(1 + y)p′
)}.

In addition, for all y > 0 and 0 ≤ t ≤ c,

P(p[S]n ≥ yp′⟨S⟩n) = P(p
n∑

k=1

ϕ2
k−1ε

2
k ≥ p′yσ2

n∑
k=1

ϕ2
k−1)

≤ P(
n∑

k=1

ε2k ≥ p′

p
yσ2) ≤ exp {−p′

p
yσ2t}E exp {t

n∑
k=1

ε2k}

≤ exp {−p′

p
yσ2t+ nL(t)}

≤ exp {−nI(
p′yσ2

pn
)}.

Then, from the above discussions, we obtain the desired result. �
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