Journal of Mathematical Research with Applications Jul., 2019, Vol. 39, No. 4, pp. 353–360 DOI:10.3770/j.issn:2095-2651.2019.04.003 Http://jmre.dlut.edu.cn

Brauer Upper Bound for the Z-Spectral Radius of Nonnegative Tensors

Jun HE*, Hua KE, Yanmin LIU, Junkang TIAN

School of Mathematics, Zunyi Normal College, Guizhou 563006, P. R. China

Abstract In this paper, we have proposed an upper bound for the largest Z-eigenvalue of an irreducible weakly symmetric and nonnegative tensor, which is called the Brauer upper bound:

$$\rho_Z(\mathcal{A}) \le \frac{1}{2} \max_{\substack{i,j \in N \\ j \neq i}} \left(a_{i\cdots i} + a_{j\cdots j} + \sqrt{\left(a_{i\cdots i} - a_{j\cdots j}\right)^2 + 4r_i(\mathcal{A})r_j(\mathcal{A})} \right),$$

where $r_i(\mathcal{A}) = \sum_{ii_2 \cdots i_m \neq ii \cdots i} a_{ii_2 \cdots i_m}, i, i_2, \dots, i_m \in N = \{1, 2, \dots, n\}$. As applications, a bound on the Z-spectral radius of uniform hypergraphs is presented.

Keywords bound; nonnegative tensor; Z-eigenvalue; hypergraph

MR(2010) Subject Classification 15A18; 15A69; 65F15; 65F10

1. Introduction

Let \mathbb{R} be the real field. An *m*-th order *n* dimensional square tensor \mathcal{A} consists of n^m entries in \mathbb{R} , which is defined as follows:

$$\mathcal{A} = (a_{i_1 i_2 \cdots i_m}), \ a_{i_1 i_2 \cdots i_m} \in \mathbb{R}, \ 1 \le i_1, i_2, \dots, i_m \le n$$

 $\mathcal{A} = (a_{i_1 i_2 \cdots i_m})$ is called nonnegative, denoted by $\mathcal{A} \in \mathbb{R}^{[m,n]}_+$, if each of its entries $a_{i_1 i_2 \cdots i_m} \geq 0$. For an *n*-vector *x*, real or complex, we define the *n*-vector:

$$\mathcal{A}x^{m-1} = \Big(\sum_{i_2,\dots,i_m=1}^n a_{ii_2\cdots i_m} x_{i_2}\cdots x_{i_m}\Big)_{1\le i\le n}$$

and

$$x^{[m-1]} = (x_i^{m-1})_{1 \le i \le n}.$$

If $\mathcal{A}x^{m-1} = \lambda x^{[m-1]}$, x and λ are all real, then λ is called an H-eigenvalue of \mathcal{A} and x an H-eigenvector of \mathcal{A} associated with λ . If $\mathcal{A}x^{m-1} = \lambda x$ and $x^T x = 1$, x and λ are all real, then λ is called a Z-eigenvalue of \mathcal{A} and x a Z-eigenvector of \mathcal{A} associated with λ (see [1]). See more

Received June 25, 2018; Accepted April 11, 2019

Supported by the High-Level Innovative Talents of Guizhou Province; Science and Technology Fund Project of GZ; Innovative Talent Team in Guizhou Province (Grant Nos. Zun Ke He Ren Cai[2017]8, Qian Ke He J Zi LKZS [2012]08, Qian Ke HE Pingtai Rencai[2016]5619.)

^{*} Corresponding author

E-mail address: hejunfan1@163.com (Jun HE)

about the eigenvalue problems of tensors in [2–9]. Let $N = \{1, 2, ..., n\}$. A real tensor of order m dimension n is called the unit tensor, if its entries are $\delta_{i_1...i_m}$ for $i_1, ..., i_m \in N$, where

$$\delta_{i_1 \cdots i_m} = \begin{cases} 1, & \text{if } i_1 = \cdots = i_m \\ 0, & \text{otherwise.} \end{cases}$$

Let \mathcal{H} be a hypergraph with vertex set $V(\mathcal{H}) = [n] := \{1, 2, ..., n\}$ and edge set $E(\mathcal{H})$. If |e| = k for $e \in E(\mathcal{H})$, then we say that \mathcal{H} is a k-uniform hypergraph. In this paper, we consider k-uniform hypergraphs on n vertices with $2 \leq k \leq n$. For $i \in [n]$, E_i denotes the set of edges of \mathcal{H} containing i. The degree of a vertex i in \mathcal{H} is defined as $d_i = |E_i|$. If $d_i = d$ for $i \in V(\mathcal{H})$, then \mathcal{H} is called a regular hypergraph (of degree d). For $i, j \in V(\mathcal{H})$, if there is a sequence of edges e_1, \ldots, e_r such that $i \in e_1$, $j \in e_r$ and $e_s \cap e_{s+1} \neq \emptyset$ for all $s \in [r-1]$, then we say that i and j are connected. A hypergraph is connected if every pair of different vertices of \mathcal{H} is connected.

The adjacency tensor of \mathcal{H} is defined as the k-th order n-dimensional tensor $\mathcal{A}(\mathcal{H})$ whose $(i_1 \cdots i_k)$ -entry is:

$$\left(\mathcal{A}(\mathcal{H})\right)_{i_1 i_2 \cdots i_k} = \begin{cases} \frac{1}{(k-1)!}, & \text{if } \{i_1, \dots, i_k\} \in E(\mathcal{H}), \\ 0, & \text{otherwise.} \end{cases}$$

When m = 2, the well-known Frobenius upper bound for the Perron root $\rho(A)$ of a nonnegative $n \times n$ matrix $A = (a_{ij})$ is introduced in [10,11]:

$$\rho(A) \le \max_{i \in N} \sum_{j=1}^{n} a_{ij}.$$

By Brauer's theorem [12], Brauer and Gentry [13] derived the following improved Brauer upper bound for the Perron root $\rho(A)$ of a nonnegative $n \times n$ matrix $A = (a_{ij})$:

$$\rho(A) \le \frac{1}{2} \max_{\substack{i,j \in N \\ j \ne i}} \left(a_{ii} + a_{jj} + \sqrt{(a_{ii} - a_{jj})^2 + 4R_i(A)R_j(A)} \right).$$

where $R_i(A) = \sum_{j=1}^{n} a_{ij} - a_{ii}$.

When m > 2, the Frobenius upper bound can be extended to establish the largest Heigenvalue or Z-eigenvalue of a nonnegative tensor \mathcal{A} (see [3,14]). Then, we ask that, whether the Brauer upper bound can be generalized to the largest H-eigenvalue or Z-eigenvalue of a nonnegative tensor \mathcal{A} ? Unfortunately, the answer is negative for the largest H-eigenvalue. The following example is given to show that the Brauer upper bound cannot be generalized to the largest H-eigenvalue of a nonnegative tensor \mathcal{A} .

Example 1.1 Let $\mathcal{A} = (a_{ijkl})$ be an order 4 dimension 2 tensor with entries defined as follows:

$$a_{1111} = 7$$
, $a_{1112} = a_{1211} = a_{1121} = a_{2111} = 10$,
 $a_{2222} = 6$, $a_{2221} = a_{2212} = a_{2122} = a_{1222} = 1$,

other $a_{ijkl} = 0$. Now, let

$$\tau(\mathcal{A}) = \frac{1}{2} \max_{\substack{i,j \in N \\ j \neq i}} \left(a_{i\cdots i} + a_{j\cdots j} + \sqrt{(a_{i\cdots i} - a_{j\cdots j})^2 + 4r_i(\mathcal{A})r_j(\mathcal{A})} \right) = 26.5811,$$

where $r_i(\mathcal{A}) = \sum_{\delta_{ii_2\cdots i_m}=0} a_{ii_2\cdots i_m}$. In fact, the largest H-eigenvalue $\rho_H(\mathcal{A}) = 30.8865 > \tau(\mathcal{A})$. Hence, the Brauer upper bound cannot be generalized to the largest H-eigenvalue of a nonnegative tensor \mathcal{A} .

Let \mathcal{A} be an *m*-order and *n*-dimensional tensor. We define $\sigma(\mathcal{A})$ the Z-spectrum of \mathcal{A} by the set of all Z-eigenvalues of \mathcal{A} . Assume $\sigma(\mathcal{A}) \neq \emptyset$, then the Z-spectral radius of \mathcal{A} is denoted by

$$\rho_Z(\mathcal{A}) = \max\{|\lambda| : \lambda \in \sigma(\mathcal{A})\}.$$

In this paper, we will show that the Brauer upper bound still holds true for the largest Zeigenvalue of a nonnegative tensor \mathcal{A} , that is

$$\rho_Z(\mathcal{A}) \le \frac{1}{2} \max_{\substack{i,j \in N \\ j \neq i}} \left(a_{i\cdots i} + a_{j\cdots j} + \sqrt{(a_{i\cdots i} - a_{j\cdots j})^2 + 4r_i(\mathcal{A})r_j(\mathcal{A})} \right).$$

As applications, a new bound on the Z-spectral radius of uniform hypergraphs is presented.

2. Preliminaries

The following definition for irreducibility has been introduced in [15].

Definition 2.1 The squre tensor \mathcal{A} is called reducible if there exists a nonempty proper index subset $\mathbb{J} \subset \{1, 2, \ldots, n\}$ such that $a_{i_1, i_2, \ldots, i_m} = 0$, $\forall i_1 \in \mathbb{J}, \forall i_2, \ldots, i_m \notin \mathbb{J}$. If \mathcal{A} is not reducible, then we call \mathcal{A} irreducible.

In [16], Chang, Pearson and Zhang gave the following bound for the Z-eigenvalues of an m-order n-dimensional tensor \mathcal{A} .

Theorem 2.2 Let \mathcal{A} be an *m*-order and *n*-dimensional tensor. Then

$$\rho_Z(\mathcal{A}) \le \sqrt{n} \max_{i \in N} \sum_{i_2, \dots, i_m = 1}^n |a_{ii_2 \cdots i_m}|.$$
(2.1)

For the positively homogeneous operators, Song and Qi [14] studied the relationship between the Gelfand formula and the spectral radius as well as the upper bound of the spectral radius. From [14, Corollary 4.5], we can get the following result:

Theorem 2.3 Let \mathcal{A} be an *m*-order and *n*-dimensional tensor. Then

$$\rho_Z(\mathcal{A}) \le \max_{i \in N} \sum_{i_2, \dots, i_m = 1}^n |a_{ii_2 \cdots i_m}|.$$
(2.2)

A tensor $\mathcal A$ is called weakly symmetric if the associated homogeneous polynomial $\mathcal A x^m$ satisfies

$$\nabla \mathcal{A} x^m = m \mathcal{A} x^{m-1}$$

If the tensor is positive, He and Huang gave the following Z-eigenpair bound [17, Theorem 2.7]:

Theorem 2.4 Suppose that $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{R}^{[m,n]}_+$ is an irreducible weakly symmetric tensor. Then

$$\rho_Z(\mathcal{A}) \le R - l(1 - \theta), \tag{2.3}$$

Jun HE, Hua KE, Yanmin LIU and et al.

where $R_i = \sum_{i_2,...,i_m=1}^n |a_{ii_2...i_m}|$,

$$R = \max_{i \in N} R_i, \ r = \min_{i \in N} R_i, \ \ l = \min_{i_1, \dots, i_m} a_{i_1 \cdots i_m}, \ \ \theta = \{\frac{r}{R}\}^{\frac{1}{m}}$$

Li, Liu and Vong obtained the following upper bound [18, Theorem 3.5]:

Theorem 2.5 Suppose that $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{R}^{[m,n]}_+$ is an irreducible weakly symmetric tensor. Then

$$\rho_Z(\mathcal{A}) \le \max_{i,j} \{ R_i + a_{ij\cdots j} (\delta^{-\frac{m-1}{m}} - 1) \},$$
(2.4)

where

$$\delta = \frac{\min_{i,j} a_{ij\cdots j}}{r - \min_{i,j} a_{ij\cdots j}} (\gamma^{\frac{m-1}{m}} - \gamma^{\frac{1}{m}}) + \gamma, \quad \gamma = \frac{R - \min_{i,j} a_{ij\cdots j}}{r - \min_{i,j} a_{ij\cdots j}}.$$

And we define

$$r_i(\mathcal{A}) = \sum_{\substack{\delta_{ii_2\cdots i_m} = 0}} |a_{ii_2\cdots i_m}|, \quad r_i^j(\mathcal{A}) = \sum_{\substack{\delta_{ii_2\cdots i_m} = 0,\\\delta_{ji_2\cdots i_m} = 0}} |a_{ii_2\cdots i_m}| = r_i(\mathcal{A}) - |a_{ij\cdots j}|.$$

The following upper bound was given in [19, Theorem 3.5]:

Theorem 2.6 Suppose that $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{R}^{[m,n]}_+$ is an irreducible weakly symmetric tensor. Then

$$\rho_Z(\mathcal{A}) \le \max_{i,j \in N, j \ne i} \frac{1}{2} \{ a_{i\cdots i} + a_{j\cdots j} + r_i^j(\mathcal{A}) + \Theta_{i,j}^{\frac{1}{2}}(\mathcal{A}) \},$$
(2.5)

where

$$\Theta_{i,j}(\mathcal{A}) = (a_{i\cdots i} - a_{j\cdots j} + r_i^j(\mathcal{A}))^2 + 4a_{ij\cdots j}r_j(\mathcal{A}).$$

3. Main results

In this section, we consider a new upper bound for the largest Z-eigenvalue of a nonnegative tensor. In [16], Chang, Pearson and Zhang presented the following Perron-Frobenius Theorem for the Z-eigenvalue of nonnegative tensors.

Lemma 3.1 Suppose that $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{R}^{[m,n]}_+$ is an irreducible weakly symmetric tensor. Then the spectral radius $\rho_Z(\mathcal{A})$ is a positive Z-eigenvalue with a positive Z-eigenvector.

And a lower bound on $\rho_Z(\mathcal{A})$ is given as follows [16].

Lemma 3.2 Suppose that $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{R}^{[m,n]}_+$ is an irreducible weakly symmetric tensor. Then $\rho_Z(\mathcal{A}) \geq a_{i \cdots i}$, for any $1 \leq i \leq n$.

Based on the Lemmas, we give our main results as follows.

Theorem 3.3 (Brauer upper bound) Suppose that $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{R}^{[m,n]}_+$ is an irreducible weakly symmetric tensor. Then

$$\rho_Z(\mathcal{A}) \le \omega = \frac{1}{2} \max_{\substack{i,j \in N \\ j \neq i}} \left(a_{i\cdots i} + a_{j\cdots j} + \sqrt{(a_{i\cdots i} - a_{j\cdots j})^2 + 4r_i(\mathcal{A})r_j(\mathcal{A})} \right)$$

Brauer upper bound for the Z-spectral radius of nonnegative tensors

Proof First, let $x = (x_1, \ldots, x_n)^T$ be a Z-eigenvector of \mathcal{A} corresponding to $\rho_Z(\mathcal{A})$, that is,

$$\mathcal{A}x^{m-1} = \rho_Z(\mathcal{A})x, \quad x^T x = 1. \tag{3.1}$$

Assume $x_t = \max_{i \in N} x_i$, $x_s = \max_{i \in N, i \neq t} x_i$, then, $x_s^{m-1} \le x_s$, we can get

$$\rho_Z(\mathcal{A})x_t = a_{t\cdots t}x_t^{m-1} + \sum_{\delta_{ti_2\cdots i_m}=0} a_{ti_2\cdots i_m}x_{i_2}\cdots x_{i_m}.$$
(3.2)

By using $x_t^{m-1} \le x_t, x_t^{m-2} \le 1$, we can get,

$$\rho_Z(\mathcal{A})x_t \le a_{t\cdots t}x_t^{m-1} + \sum_{\substack{\delta_{ti_2\cdots i_m}=0}} a_{ti_2\cdots i_m}x_t^{m-2}x_s$$
$$\le a_{t\cdots t}x_t + \sum_{\substack{\delta_{ti_2\cdots i_m}=0}} a_{ti_2\cdots i_m}x_s.$$
(3.3)

Similarly, we can get

$$\rho_Z(\mathcal{A})x_s = a_{s\cdots s}x_s^{m-1} + \sum_{\substack{\delta_{si_2\cdots i_m} = 0}} a_{si_2\cdots i_m}x_{i_2}\cdots x_{i_m}$$

$$\leq a_{s\cdots s}x_s^{m-1} + \sum_{\substack{\delta_{si_2\cdots i_m} = 0}} a_{si_2\cdots i_m}x_t^{m-1}$$

$$\leq a_{s\cdots s}x_s + \sum_{\substack{\delta_{si_2}\cdots i_m = 0}} a_{si_2\cdots i_m}x_t.$$
(3.4)

From Lemma 3.2, we have

$$\rho_Z(\mathcal{A}) - a_{i\cdots i} \ge 0, \quad i = 1, \dots, n.$$

Then, by (3.3) and (3.4), we obtain

$$(\rho_Z(\mathcal{A}) - a_{t\cdots t})(\rho_Z(\mathcal{A}) - a_{s\cdots s}) \le r_t(\mathcal{A})r_s(\mathcal{A}).$$
(3.5)

Therefore,

$$\rho_Z(\mathcal{A}) \le \frac{1}{2} \Big(a_{t\cdots t} + a_{s\cdots s} + \sqrt{(a_{t\cdots t} - a_{s\cdots s})^2 + 4r_t(\mathcal{A})r_s(\mathcal{A})} \Big).$$

Then,

$$\rho_Z(\mathcal{A}) \le \frac{1}{2} \max_{\substack{i,j \in N \\ j \ne i}} \left(a_{i\cdots i} + a_{j\cdots j} + \sqrt{(a_{i\cdots i} - a_{j\cdots j})^2 + 4r_i(\mathcal{A})r_j(\mathcal{A})} \right).$$

Thus, we complete the proof. \Box

We now compare the upper bound in Theorems 3.3 with that in Theorem 2.3.

Theorem 3.4 Suppose that $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{R}^{[m,n]}_+$ is an irreducible weakly symmetric tensor. Then

$$\omega \le \max_{i \in N} \sum_{i_2, \dots, i_m = 1}^n a_{ii_2 \cdots i_m}.$$

Proof For any $i, j \in N, j \neq i$, assume that

$$\sum_{i_2,\dots,i_m=1}^n a_{ii_2\dots i_m} \le \sum_{i_2,\dots,i_m=1}^n a_{ji_2\dots i_m}.$$

Then

$$0 \le r_i(\mathcal{A}) \le r_j(\mathcal{A}) + a_{j\cdots j} - a_{i\cdots i}.$$

Hence,

$$(a_{j\dots j} - a_{i\dots i})^2 + 4r_i(\mathcal{A})r_j(\mathcal{A}) \le (a_{j\dots j} - a_{i\dots i})^2 + 4(r_j(\mathcal{A}) - a_{j\dots j} - a_{i\dots i})r_j(\mathcal{A})$$

= $(a_{j\dots j} - a_{i\dots i} + 2r_j(\mathcal{A}))^2.$

Furthermore,

$$a_{j\dots j} + a_{i\dots i} + \sqrt{(a_{j\dots j} - a_{i\dots i})^2 + 4r_i(\mathcal{A})r_j(\mathcal{A})} \le a_{j\dots j} + a_{i\dots i} + a_{j\dots j} - a_{i\dots i} + 2r_j(\mathcal{A})$$
$$= 2a_{j\dots j} + 2r_j(\mathcal{A}) = \sum_{i_2,\dots,i_m=1}^n a_{ji_2\dots i_m}$$

which implies

$$\omega = \frac{1}{2} \max_{\substack{i,j \in N \\ j \neq i}} \left(a_{i\dots i} + a_{j\dots j} + \sqrt{\left(a_{i\dots i} - a_{j\dots j}\right)^2 + 4r_i(\mathcal{A})r_j(\mathcal{A})} \right) \le \max_{i \in N} \sum_{i_2,\dots,i_m=1}^n a_{ii_2\dots i_m}.$$

Thus, we complete the proof. \Box

Remark 3.5 From Theorem 3.4, we know that, the upper bound ω is tight and sharper than those in Theorems 2.2 and 2.3. And it is difficult to compare the upper bound ω with the results in Theorems 2.4–2.6. We will research this problem in the future. But, if $a_{ij\dots j} = 0$ for all $i \in N$, then the upper bounds in Theorems 2.4–2.6 reduce to $\max_{i \in N} \sum_{i_2,\dots,i_m=1}^n a_{ii_2\dots i_m}$, which means that, the upper bound ω is sharper than the results in Theorems 2.4–2.6 in some cases.

Example 3.6 We now show the efficiency of the new upper bound in Theorem 3.3 by the following example. Consider the tensor $\mathcal{A} = (a_{ijk})$ of order 3 dimension 3 with entries defined as follows:

$$a_{111} = \frac{1}{2}$$
, $a_{222} = 1$, $a_{333} = 3$, and $a_{ijk} = \frac{1}{3}$ elsewhere.

By Theorem 2.2, we have $\rho_Z(\mathcal{A}) \leq 9.8150$.

By Theorem 2.3, we have $\rho_Z(\mathcal{A}) \leq 5.6667$.

- By Theorem 2.4, we have $\rho_Z(\mathcal{A}) \leq 5.6079$.
- By Theorem 2.5, we have $\rho_Z(\mathcal{A}) \leq 5.5494$.
- By Theorem 2.6, we have $\rho_Z(\mathcal{A}) \leq 5.5296$.
- By Theorem 3.3, we have $\rho_Z(\mathcal{A}) \leq 4.8480$.

In fact $\rho_Z(\mathcal{A}) = 3.1970$. This example shows that the bound in Theorem 3.3 is the best.

4. Application to uniform hypergraphs

Let $|\mathcal{A}|$ mean that $(|\mathcal{A}|)_{i_1\cdots i_k} = |a_{i_1\cdots i_k}|$. We need the following Lemmas.

Lemma 4.1 ([20]) Let \mathcal{A} and \mathcal{B} be two weakly symmetric and irreducible tensors of order m and dimension n. If \mathcal{B} and $\mathcal{B} - |\mathcal{A}|$ are nonnegative, then $\rho_Z(\mathcal{B}) \ge \rho_Z(\mathcal{A})$.

Lemma 4.2 ([20]) Let $\{A_k\}$ be a sequence of nonnegative, weakly symmetric and irreducible tensors of order m and dimension n, and $A_k - A_{k+1}$ is nonnegative for each positive integer k. Then

$$\lim_{k \to \infty} \rho_Z(\mathcal{A}_k) = \rho_Z(\lim_{k \to \infty} \mathcal{A}_k).$$

Now we give a new upper bound for the largest Z-eigenvalues $\rho_Z(\mathcal{H})$ of the adjacency tensors for uniform hypergraphs.

Theorem 4.3 Let \mathcal{H} be a k-uniform hypergraph on n vertices. Then

$$\rho_Z(\mathcal{H}) \le \max_{e \in E(H)} \max_{\{i,j\} \in e} \sqrt{d_i d_j}.$$
(4.1)

Proof Case I. $\mathcal{A}(\mathcal{H})$ is irreducible. In this case, by Lemma 3.1, there exists a positive eigenvector corresponding to the spectral radius $\rho_Z(\mathcal{H})$. Then, by Theorem 3.3, we have

$$\rho_Z(\mathcal{H}) \le \max_{e \in E(H)} \max_{\{i,j\} \in e} \sqrt{d_i d_j}.$$

Case II. $\mathcal{A}(\mathcal{H})$ is reducible. Let $\mathcal{A}_k(\mathcal{H}) = \mathcal{A}(\mathcal{H}) + \frac{1}{k}\mathcal{T}$, where \mathcal{T} is an irreducible tensor whose diagonal entries are zero. By Lemmas 3.1 and 4.2, the inequality (4.1) also holds. \Box

For a k-uniform hypergraph \mathcal{H} , let $\Delta = d_1 \geq \cdots \geq d_n = \delta$ be the degree sequence of \mathcal{H} . In 2013, Xie and Chang [21] presented the following upper bound for the largest Z-eigenvalues $\rho_Z(\mathcal{H})$ of the adjacency tensors:

$$\rho_Z(\mathcal{H}) \le \Delta. \tag{4.2}$$

We now show the efficiency of the new upper bound in Theorem 4.3 by the following examples.

Example 4.4 Consider 3-uniform hypergraph \mathcal{G}_1 with vertex set $V(\mathcal{G}_1) = \{1, 2, 3, 4, 5, 6\}$ and edge set $E(\mathcal{G}_1) = \{e_1, e_2, e_3\}$, where $e_1 = \{1, 2, 3\}, e_2 = \{1, 2, 4\}, e_3 = \{1, 5, 6\}$.

Example 4.5 Consider 3-uniform hypergraph \mathcal{G}_2 with vertex set $V(\mathcal{G}_2) = \{1, 2, 3, 4, 5, 6, 7\}$ and edge set $E(\mathcal{G}_2) = \{e_1, e_2, e_3, e_4\}$, where $e_1 = \{1, 6, 7\}$, $e_2 = \{2, 6, 7\}$, $e_3 = \{3, 6, 7\}$, $e_4 = \{4, 5, 7\}$.

	(11)	(12)
G_1	$\sqrt{6}$	3
G_2	$\sqrt{12}$	4

Table 1 Upper bounds for the hypergraphs \mathcal{G}_1 and \mathcal{G}_2

From Table 1, we can find that, the bound (4.1) is always better than (4.2).

Acknowledgements We thank the referees for their time and comments.

References

- [1] Liqun QI. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput., 2005, 40(6): 1302–1324.
- [2] Liqun QI. Eigenvalues and invariants of tensor. J. Math. Anal. Appl., 2007, 325(2): 1363–1377.
- [3] Yuning YANG, Qingzhi YANG. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM. J. Matrix Anal. Appl., 2010, 31(5): 2517–2530.

- Yuning YANG, Qingzhi YANG. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM. J. Matrix Anal. Appl., 2011, 32(4): 1236–1250.
- [5] Chaoqian LI, Yaotang LI, Xu KONG. New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl., 2014, 21(1): 39–50.
- [6] Chaoqian LI, Zhen CHEN, Yaotang LI. A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl., 2015, 481: 36–53.
- [7] Changjiang BU, Jiang ZHOU, Yimin WEI. E-cospectral hypergraphs and some hypergraphs determined by their spectra. Linear Algebra Appl., 2014, 459: 397–403.
- [8] Weiyang DING, Liqun QI, Yimin WEI. *M-tensors and nonsingular M-tensors*. Linear Algebra Appl., 2013, 439(10): 3264–3278.
- Weiyang DING, Yimin WEI. Solving Multi-linear Systems with M-Tensors. J. Sci. Comput., 2016, 68(2): 689–715.
- [10] A. BERMAN, R. J. PLEMMONS. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, PA, 1994.
- [11] G. FROBENIUS. Über Matrizen aus nichtnegativen Elementen. Sitzungsber. Kön. Preuss. Akad. Wiss. Berlin, 1912.
- [12] A. BRAUER. Limits for the characteristic roots of a matrix. II. Duke Math. J., 1947, 14: 21-26.
- [13] A. BRAUER, I. C. GENTRY. Bounds for the greatest characteristic root of an irreducible nonnegative matrix. Linear Algebra and Appl., 1974, 8: 105–107.
- [14] Yisheng SONG, Liqun QI. Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM. J. Matrix Anal. Appl., 2013, 34(4): 1581–1595.
- [15] K. C. CHANG, K. PEARSON, Tan ZHANG. Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci., 2008, 6(2): 507–520.
- [16] K. C. CHANG, K. PEARSON, Tan ZHANG. Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl., 2013, 438(11): 4166–4182.
- [17] Jun HE, Tingzhu HUANG. Upper bound for the largest Z-eigenvalue of positive tensors. Appl. Math. Lett., 2014, 38: 110–114.
- [18] Wen LI, Dongdong LIU, S. VONG. Z-eigenpair bounds for an irreducible nonnegative tensor. Linear Algebra Appl., 2015, 483: 182–199.
- [19] Jun HE. Bounds for the largest eigenvalue of nonnegative tensors. J. Comput. Anal. Appl., 2016, 20(7): 1290–1301.
- [20] Jun HE, Yanmin LIU, Junkang TIAN, et al. Upper bounds for the signless Laplacian Z-spectral radius of uniform hypergraphs. Technical Report.
- [21] Jinshan XIE, An CHANG. On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs. Linear Algebra Appl., 2013, 439(8): 2195–2204.