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1. Introduction and main results

Many statistical problems based on a random sample are weighted sums of random variables.

Some limiting properties of weighted sums of random variables have been studied. We refer

to [1–5] and so on.

The concept of complete convergence was first introduced by Hsu and Robbins [6]. After

that, many scholars have made a deep and extensive study of complete convergence. Recently,

Sung [1] obtained the following result (we call these Sung’s type weighted sums).

Theorem 1.1 Let r > 1 and 1 ≤ p < 2. Let {X,Xn, n ≥ 1} be a sequence of identically

distributed ρ∗-mixing random variables with EX = 0. Assume that {ani, 1 ≤ i ≤ n, n ≥ 1} is

an array of real numbers satisfying
n∑

i=1

|ani|q = O(n) (1.1)

for some q > rp. If E|X|rp < ∞, then

∞∑
n=1

nr−2P
(

max
1≤j≤n

∣∣∣ j∑
i=1

aniXi

∣∣∣ > εn1/p
)
< ∞, ∀ ε > 0. (1.2)

Received August 2, 2018; Accepted February 23, 2019

Supported by the Natural Science Foundation of Hunan Province (Grant No. 2018JJ4024) and the Science and

Technology Plan Project of Hengyang City (Grant No. 2018KJ129).

* Corresponding author

E-mail address: qiudhua@sina.com (Dehua QIU)



396 Dehua QIU, Yanchun YI and Pingyan CHEN

Conversely, if (1.2) holds for any array {ani, 1 ≤ i ≤ n, n ≥ 1} satisfying (1.1) for some q > rp,

then E|X|rp < ∞.

The Sung’s type weights are very meaningful. Zhang [3] investigated Theorem 1.1 for END

random variables and Li et al. [4] investigated complete moment convergence for Banach-valued

random elements.

Lehmann [7] introduced the concept of negatively quadrant dependent (NQD) and Liu [8]

introduced the concept of extended negatively dependent (END). Obviously, {{Xn} : {Xn} is

an NA sequence} $ {{Xn} : {Xn} is an NOD sequence} $ {{Xn} : {Xn} is an END sequence}
(see [9, 10]). For the application and the limiting behavior of END random variables, we refer

to [3] and [11–19] and so on.

It is of significance to find more generalized moment conditions such that the complete con-

vergence holds. Under higher order moment conditions, Lanzinger [20], Gut and Stadtmüller [21],

Chen and Sung [22] extended the Baum-Katz theorem; Under some generalized moment condi-

tions, Sung [23] obtained the complete convergence for pairwise independent random variables

and Chen et al. [24] extended the Baum-Katz theorem to i.i.d. random variables. Qiu et al. [25]

extended the Baum-Katz theorem with general moment conditions. In particular, Chen et al. [26]

obtained the following two results:

Theorem 1.2 Let r > 1 and 1 ≤ p < 2. Let {X,Xn, n ≥ 1} be a sequence of identically dis-

tributed NOD random variables, {an, n ≥ 1} be a sequence of real numbers with 0 < an/n
1/p ↑.

Then the following statements are equivalent:

∞∑
n=1

nr−1P (|X| > an) < ∞; (1.3)

∞∑
n=1

nr−2P
(

max
1≤j≤n

∣∣∣ j∑
i=1

(Xi − EXiI(|Xi| ≤ an)
∣∣∣ > εan

)
< ∞, ∀ ε > 0. (1.4)

Theorem 1.3 Let {X,Xn, n ≥ 1} be a sequence of identically distributed pairwise negatively

quadrant dependent (PNQD) random variables, {an, n ≥ 1} be a sequence of real numbers with

0 < an/n ↑. Then the following statements are equivalent:

∞∑
n=1

P (|X| > an) < ∞; (1.5)

∞∑
n=1

n−1P
(

max
1≤j≤n

∣∣∣ j∑
i=1

(Xi − EXiI(|Xi| ≤ an)
∣∣∣ > εan

)
< ∞, ∀ ε > 0; (1.6)

a−1
n

n∑
i=1

(Xi − EXiI(|Xi| ≤ ai)) → 0 a.s. (1.7)

The aim of this paper is to obtain the complete convergence for Sung’s type weighted sums

of END random variables with general moment conditions (1.3) and the complete convergence

for Sung’s type weighted sums of PNQD random variables with general moment conditions (1.5).

Our main results include Theorems 1.1, 1.2 and 1.3.
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Now we state the main results. Some lemmas and the proofs of the main results will be

detailed in the next section.

Theorem 1.4 Let r > 1 and 1 ≤ p < 2. Let {X,Xn, n ≥ 1} be a sequence of identically

distributed END random variables, {an, n ≥ 1} be a sequence of real numbers such that 0 <

an/n
1/p ↑. Then (1.3) is equivalent to

∞∑
n=1

nr−2P
(

max
1≤k≤n

∣∣∣ k∑
i=1

ani(Xi − EXiI(|aniXi| ≤ an))
∣∣∣ > ϵan)

)
< ∞ (1.8)

for all ε > 0 and all arrays of real numbers {ani, 1 ≤ i ≤ n, n ≥ 1} satisfying (1.1) for some

q > rp.

Theorem 1.5 If (1.8) in Theorem 1.4 is replaced by

∞∑
n=1

nr−2P
(

max
1≤k≤n

∣∣∣ k∑
i=1

ani(Xi − EXiI(|Xi| ≤ an))
∣∣∣ > ϵan)

)
< ∞,

then Theorem 1.4 still holds.

Corollary 1.6 Let r > 1 and 1 ≤ p < 2. Let {X,Xn, n ≥ 1} be a sequence of identically

distributed END random variables. Then the following statements are equivalent:

EX = 0 and E|X|rp < ∞; (1.9)

∞∑
n=1

nr−2P
(

max
1≤k≤n

∣∣∣ k∑
i=1

aniXi

∣∣∣ > ϵn1/p)
)
< ∞ (1.10)

for all ε > 0 and all arrays of real numbers {ani, 1 ≤ i ≤ n, n ≥ 1} satisfying (1.1) for some

q > rp.

Theorem 1.7 Let {X,Xn, n ≥ 1} be a sequence of identically distributed PNQD random

variables, {an, n ≥ 1} be a sequence of real numbers with 0 < an/n ↑ . Then (1.5) and (1.7) and

the following statement are equivalent

∞∑
n=1

n−1P
(

max
1≤j≤n

∣∣∣ j∑
i=1

ani(Xi − EXiI(|Xi| ≤ an))
∣∣∣ > εan

)
< ∞ (1.11)

for all ε > 0 and all arrays of real numbers {ani, 1 ≤ i ≤ n, n ≥ 1} satisfying (1.1) for some

q > 1.

Corollary 1.8 Let {X,Xn, n ≥ 1} be a sequence of identically distributed PNQD random

variables. Then the following statements are equivalent

EX = 0; (1.12)

∞∑
n=1

n−1P
(

max
1≤j≤n

∣∣∣ j∑
i=1

aniXi

∣∣∣ > εn
)
< ∞ (1.13)

for all ε > 0 and all arrays of real numbers {ani, 1 ≤ i ≤ n, n ≥ 1} satisfying (1.1) for some q > 1.



398 Dehua QIU, Yanchun YI and Pingyan CHEN

Remark 1.9 Taking ani = 1 for 1 ≤ i ≤ n and n ≥ 1, we can immediately get Theorem 1.2

from Theorem 1.4 and get Theorem 1.3 from Theorem 1.7. But the contents of Theorems 1.4

and 1.7 are riches. For example, (i) Taking ani = a+sin i or a+cos i or a+sin(ni) or a+con(ni)

for 1 ≤ i ≤ n and n ≥ 1, where a is a constant; (ii) Taking ani = 1 for 1 ≤ i ≤ n − 1 and

ann = n1/q for all n ≥ 1; (iii) Taking ani = iτ/nτ for 1 ≤ i ≤ n and n ≥ 1, where τ > −1/q, and

so on.

Next, C denotes a positive constant not depending on n whose value may differ from one

place to another, I(A) denotes the indicator function of the event A, [x] denotes the integer part

of x.

2. Lemmas and proofs

To prove the main results, we need the following lemmas.

Lemma 2.1 ([11]) Let X1, X2, . . . , Xn be END random variables. Assume that f1, f2, . . . , fn

are Borel functions all of which are monotone increasing (or all monotone decreasing), then

f1(X1), f2(X2), . . . , fn(Xn) are END random variables and the dominating constant of the defi-

nition of END random variables remains unchanged.

Lemma 2.2 ([3]) If {Xn, n ≥ 1} is a sequence of END random variables with EXn = 0 for every

n ≥ 1, then for any v ≥ 2, there is a positive constant C depending on v and the dominating

constant of the definition of END random variables such that for all n ≥ 2,

E
∣∣∣ n∑
i=1

Xi

∣∣∣v ≤ C
{ n∑

i=1

E|Xi|v +
( n∑

i=1

E|Xi|2
)v/2}

;

E max
1≤k≤n

∣∣∣ k∑
i=1

Xi

∣∣∣v ≤ C(log n)v
{ n∑

i=1

E|Xi|v +
( n∑

i=1

E|Xi|2
)v/2}

.

Lemma 2.3 ([27]) For any 1 < v ≤ 2, there is a positive constant Cv depending only on v such

that if {Xn, n ≥ 1} is a sequence of PNQD random variables with EXn = 0 for every n ≥ 1,

then for all n ≥ 2, the following statements hold:

E
∣∣∣ n∑
i=1

Xi

∣∣∣v ≤ Cv

n∑
i=1

E|Xi|v;

E max
1≤k≤n

∣∣∣ k∑
i=1

Xi

∣∣∣v ≤ Cv(log n)
v

n∑
i=1

E|Xi|v.

Lemma 2.4 Let r > 0 and p > 0. Let {X,Xn, n ≥ 1} be a sequence of identically distributed

random variables and {an, n ≥ 1} a sequence of constants with 0 < an/n
1/p ↑. Assume that

{ani, 1 ≤ i ≤ n, n ≥ 1} is an array of real numbers satisfying (1.1) for some q > rp. Set

α = min{rp, 2}. If (1.3) holds, then the following statements hold:

∞∑
n=1

nr−2
n∑

i=1

P (|aniXi| > εan) < ∞ for all ε > 0; (2.1)
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∞∑
n=1

nr−2a−v
n

n∑
i=1

E|aniXi|vI(|aniXi| ≤ an) < ∞ for all v ≥ q; (2.2)

n∑
i=1

P (|aniXi| > a[nθ ]) ≤ Cn1−θα/p for all θ ∈ (0, 1]; (2.3)

1

aαn

n∑
i=1

E|aniXi|αI(|aniXi| ≤ a[nθ ]) ≤ Cn1−α/p for all θ ∈ (0, 1]. (2.4)

Proof By 0 < an/n
1/p ↑ we have 0 < an ↑ and ak/an ≤ (k/n)1/p for any n ≥ k. Hence, we

have by q > rp, mean valued theorem and (1.3) that

∞∑
n=1

nr−1a−q
n E|X|qI(|X| ≤ an)

=
∞∑

n=1

nr−1a−q
n

n∑
k=1

E|X|qI(ak−1 < |X| ≤ ak) (where and the following set a0 = 0)

≤
∞∑

n=1

nr−1
n∑

k=1

(ak/an)
qP (ak−1 < |X| ≤ ak)

≤
∞∑
k=1

kq/pP (ak−1 < |X| ≤ ak)

∞∑
n=k

nr−1−q/p

≤ C
∞∑
k=1

krP (ak−1 < |X| ≤ ak)

= C
∞∑
k=1

kr{P (|X| > ak−1)− P (|X| > ak)}

≤ C + C

∞∑
k=1

((k + 1)r − kr)P (|X| > ak)

≤ C + C
∞∑
k=1

kr−1P (|X| > ak) < ∞. (2.5)

Therefore, by (1.1), (1.3) and (2.5),

∞∑
n=1

nr−2
n∑

i=1

P (|aniXi| > εan)

=
∞∑

n=1

nr−2
n∑

i=1

{P (|aniXi| > εan, |Xi| > an) + P (|aniXi| > εan, |Xi| ≤ an)}

≤
∞∑

n=1

nr−2
n∑

i=1

P (|Xi| > an) + ε−q
∞∑

n=1

nr−2a−q
n

n∑
i=1

E|aniXi|qI(|Xi| ≤ an)

≤
∞∑

n=1

nr−1P (|X| > an) + C
∞∑

n=1

nr−1a−q
n E|X|qI(|X| ≤ an) < ∞

and
∞∑

n=1

nr−2a−v
n

n∑
i=1

E|aniXi|vI(|aniXi| ≤ an)
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=

∞∑
n=1

nr−2a−v
n

n∑
i=1

E|aniXi|v
{
I(|aniXi| ≤ an, |Xi| > an) + I(|aniXi| ≤ an, |Xi| ≤ an)

}
≤ C

∞∑
n=1

nr−2
{ n∑

i=1

P (|Xi| > an) + a−q
n

n∑
i=1

E|aniXi|qI(|Xi| ≤ an)
}

( since v ≥ q)

≤ C
∞∑

n=1

nr−1P (|X| > an) + C
∞∑

n=1

nr−1a−q
n E|X|qI(|X| ≤ an) < ∞.

Thus, (2.1) and (2.2) hold. By (1.3) and 0 < an ↑, we have

n(a[nθ ])
−αE|X|αI(|X| ≤ a[nθ ]) ≤ n(a[nθ])

−α

[nθ]∑
k=1

Eaαk I(ak−1 < |X| ≤ ak)

≤ n

[nθ]∑
k=1

(k/[nθ])α/pP (ak−1 < |X| ≤ ak)

≤ Cn1−θα/p
∞∑
k=1

kα/pP (ak−1 < |X| ≤ ak)

≤ Cn1−θα/p
∞∑
k=1

krP (ak−1 < |X| ≤ ak) ≤ Cn1−θα/p, (2.6)

and

nrP (|X| > an) → 0 as n → ∞. (2.7)

By (1.1) and the Hölder inequality, we have for any τ ∈ (0, q] that

n∑
k=1

|ank|τ ≤
( n∑

k=1

|ank|q
)τ/q( n∑

k=1

1
)1−τ/q

≤ Cn. (2.8)

By (2.6)∼ (2.8), we have

n∑
i=1

P (|aniXi| > a[nθ])

=
n∑

i=1

{P (|aniXi| > a[nθ ], |Xi| ≤ a[nθ ]) + P (|aniXi| > a[nθ], |Xi| > a[nθ])}

≤ (a[nθ])
−α

n∑
i=1

E|aniXi|αI(|Xi| ≤ a[nθ ]) +
n∑

i=1

P (|Xi| > a[nθ ])

≤ Cn(a[nθ])
−αE|X|αI(|X| ≤ a[nθ]) + nP (|X| > a[nθ])

≤ Cn1−θα/p

and

a−α
n

n∑
i=1

E|aniXi|αI(|aniXi| ≤ a[nθ])

= a−α
n

n∑
i=1

E|aniXi|α{I(|aniXi| ≤ a[nθ ], |Xi| ≤ an) + I(|aniXi| ≤ a[nθ], |Xi| > an)}
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≤ a−α
n

n∑
i=1

E|aniXi|αI(|Xi| ≤ an) +

n∑
i=1

P (|Xi| > an)

≤ Cna−α
n E|X|αI(|X| ≤ an) + nP (|X| > an) ≤ Cn1−α/p.

Therefore, (2.3) and (2.4) hold. �

Lemma 2.5 Let X be a random variable and {an, n ≥ 1} be a sequence of constants with

0 < an/n ↑. If (1.5) holds, then

lim
n→∞

na−1
n EXI(a[nθ] < X ≤ an) = 0 for all θ ∈ (0, 1). (2.9)

Proof Note that (2.7) holds for r = 1 by 0 < an/n ↑ and (1.5). Hence,

na−1
n EXI(a[nθ ] < X ≤ an) ≤ na−1

n

n∑
k=[nθ]+1

akEI(ak−1 < X ≤ ak)

≤
n∑

k=[nθ]+1

kEI(ak−1 < X ≤ ak)

≤ CnθP (|X| > a[nθ ]) +

n∑
k=[nθ ]

P (|X| > ak) → 0

as n → ∞. Thus, (2.9) holds. �

Proof of Theorem 1.4 Sufficiency. Since ani = a+ni − a−ni, where a+ni = max{0, ani}, a−ni =

max{0,−ani}, without loss of generality, we assume that ani ≥ 0, 1 ≤ i ≤ n, n ≥ 1. Set

Xni = −anI(aniXi < −an) + aniXiI(|aniXi| ≤ an) + anI(aniXi > an)

for all 1 ≤ i ≤ n and n ≥ 1. By Lemma 2.4 and r > 1 and 1 ≤ p < 2,

a−1
n max

1≤k≤n
|

k∑
i=1

(−anP (aniXi < −an) + anP (aniXi > an))|

≤
n∑

i=1

P (|aniXi| > an) → 0

as n → ∞. Therefore, to prove (1.8), it suffices to prove that

∞∑
n=1

nr−2P
(

max
1≤k≤n

∣∣∣ k∑
i=1

(aniXi − EXni)
∣∣∣ > εan

)
< ∞. (2.10)

Note that (
max

1≤k≤n

∣∣∣ k∑
i=1

(aniXi − EXni)
∣∣∣ > εan

)
⊂ ∪n

i=1(|aniXi| > an) ∪
(

max
1≤k≤n

∣∣∣ k∑
i=1

(Xni − EXni)
∣∣∣ > εan

)
.
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Hence, by Lemma 2.4, to prove (2.10), it is enough to prove

∞∑
n=1

nr−2P
(

max
1≤k≤n

∣∣∣ k∑
i=1

(Xni − EXni)
∣∣∣ > εan

)
< ∞. (2.11)

For any fixed θ ∈ (max{1/r, p/2}, 1), set

X
(1)
ni = −a[nθ]I(aniXi < −a[nθ]) + aniXiI(|aniXi| ≤ a[nθ ]) + a[nθ]I(aniXi > a[nθ]),

X
(2)
ni = (aniXi − a[nθ])I(a[nθ] < aniXi ≤ an) + (an − a[nθ])I(aniXi > an),

X
(3)
ni = (aniXi + a[nθ])I(−an ≤ aniXi < −a[nθ ])− (an − a[nθ])I(aniXi < −an).

Then Xni =
∑3

l=1 X
(l)
ni , and {X(1)

ni , 1 ≤ k ≤ n}, {X(2)
ni , 1 ≤ k ≤ n}, {X(3)

ni , 1 ≤ k ≤ n} are all

END by Lemma 2.1. Hence to prove (2.11), it is enough to prove that for l = 1, 2, 3,

Il =
∞∑

n=1

nr−2P
(

max
1≤k≤n

∣∣∣ k∑
i=1

(X
(l)
ni − EX

(l)
ni )

∣∣∣ > εan/3
)
< ∞.

Firstly, we prove that I1 < ∞. By the Markov inequality, Lemma 2.2, the Cr inequality and the

Jensen inequality, for any v ≥ 2,

I1 ≤ C
∞∑

n=1

nr−2a−v
n E max

1≤k≤n
|

k∑
i=1

(X
(1)
ni − EX

(1)
ni )|

v

≤ C
∞∑

n=1

nr−2(log n)va−v
n

n∑
i=1

E|X(1)
ni |

v + C
∞∑

n=1

nr−2(log n)v[a−2
n

n∑
i=1

E(X
(1)
ni )

2]v/2

:= I11 + I12.

Taking v large enough such that r − v(1− θ)/p < −1 and r − (θ ·min{r, 2/p} − 1)v/2 < 0, then

by the definition of X
(1)
ni and 0 < an/n

1/p ↑, we get that

I11 ≤ C

∞∑
n=1

nr−2(log n)v
n∑

i=1

(a[nθ]/an)
v ≤ C

∞∑
n=1

nr−1−v(1−θ)/p(log n)v < ∞.

By the definition of X
(1)
ni again, Lemma 2.4 and 0 < an ↑,

a−2
n

n∑
i=1

E(X
(1)
ni )

2 ≤ a−2
n

n∑
i=1

E{|aniXi|2I(|aniXi| ≤ a[nθ ]) + a2[nθ]I(|aniXi| > a[nθ])}

≤ a−min{rp,2}
n

n∑
i=1

E|aniXi|min{rp,2}I(|aniXi| ≤ a[nθ]) +
n∑

i=1

P (|aniXi| > a[nθ ])

≤ Cn1−θ·min{r,2/p}.

Therefore, we have by the choice of v that

I12 ≤ C

∞∑
n=1

nr−2−(θ·min{r,2/p}−1)v/2(log n)v < ∞.

Thus, I1 < ∞. Secondly, we prove that I2 < ∞. By the definition of X
(2)
ni and Lemma 2.4,

a−1
n max

1≤k≤n

∣∣∣ k∑
i=1

EX
(2)
ni

∣∣∣ ≤ a−1
n

n∑
i=1

E{aniXiI(a[nθ] < aniXi ≤ an) + anI(aniXi > an)}
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≤ 2

n∑
i=1

P (|aniXi| > a[nθ ]) ≤ Cn1−θ·min{r,2/p} → 0

as n → ∞. Therefore, by the definition of X
(2)
ni again, to prove I2 < ∞, it is to prove that

I∗2 =

∞∑
n=1

nr−2P
( n∑

i=1

(X
(2)
ni − EX

(2)
ni ) > εan/12

)
< ∞.

By the Markov inequality, Lemma 2.2, the Cr inequality and the Jensen inequality, for any v

such that v > max{2, q, 2r/(θ ·min{r, 2/p} − 1)},

I∗2 ≤ C

∞∑
n=1

nr−2a−v
n E

∣∣∣ n∑
i=1

(X
(2)
ni − EX

(2)
ni )

∣∣∣v
≤ C

∞∑
n=1

nr−2a−v
n

n∑
i=1

E|X(2)
ni |

v + C

∞∑
n=1

nr−2a−v
n

( n∑
i=1

E|X(2)
ni |

2
)v/2

:= I∗21 + I∗22.

By Lemma 2.4, we have

I∗21 ≤C

∞∑
n=1

nr−2a−v
n

n∑
i=1

E|aniXi|vI(|aniXi| ≤ an)+

C
∞∑

n=1

nr−2
n∑

i=1

P (|aniXi| > an) < ∞

and

I∗22 ≤ C
∞∑

n=1

nr−2
{ n∑

i=1

(E(aniXi/an)
2I(a[nθ] < aniXi ≤ an) + P (aniXi > an))

}v/2

≤ C

∞∑
n=1

nr−2
(
2

n∑
i=1

P (|aniXi| > a[nθ])
)v/2

≤ C

∞∑
n=1

nr−2−(θ·min{r,2/p}−1)v/2 < ∞.

Hence, I2 < ∞. By the same argument as I2 < ∞, we have I3 < ∞. Thus, (1.8) holds.

Necessity. Set ani = 1 for all 1 ≤ i ≤ n and n ≥ 1. Then (1.8) can be rewritten to

∞∑
n=1

nr−2P
(

max
1≤k≤n

∣∣∣ k∑
i=1

(Xi − EXiI(|Xi| ≤ an))
∣∣∣ > εan

)
< ∞ for all ε > 0.

Hence, the proof of (1.3) can be accomplished completely in a similar way as Theorem 1.1 of [26].

Thus, we omit the details of the proof. �

Proof of Theorem 1.5 In order to prove Theorem 1.5, we need only to prove sufficiency. By

(1.8) in Theorem 1.4, we only need to prove that

a−1
n

n∑
i=1

E|aniXi||I(|aniXi| ≤ an)− I(|Xi| ≤ an)| = 0.

Set An = {i : |ani| > 1}, Bn = {i : 0 < |ani ≤ 1}. By (2.7) and r > 1, utilizing a similar method
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to the proof of (2.6), we have

a−1
n

n∑
i=1

E|aniXi||I(|aniXi| ≤ an)− I(|Xi| ≤ an)|

= a−1
n

∑
i∈An

E|aniXi|I(an < |aniXi| ≤ |ani|an)+

a−1
n

∑
i∈Bn

E|aniXi|I(|ani|an < |aniXi| ≤ an)

≤ a−1
n

∑
i∈An

E|aniXi|(
|aniXi|
an

)rp−1I(an < |aniXi| ≤ |ani|an)+

a−1
n

∑
i∈Bn

E|aniXi|I(|ani|an < |aniXi| ≤ an)

≤ a−rp
n

∑
i∈An

|ani|rpE|X|rpI(|X| ≤ an) + a−1
n

∑
i∈Bn

anP (|X| > an)

≤ na−rp
n E|X|rpI(|X| ≤ an) + nP (|X| > an)

≤ Cn1−r + nP (|X| > an) → 0.

Thus, Theorem 1.5 holds. �

Proof of Corollary 1.6 Firstly, we prove (1.9)⇒ (1.10). By (1.9) and using Theorem 1.4 for

an = n1/p, to prove (1.10), it is enough to prove

lim
n→∞

n−1/p max
1≤k≤n

∣∣∣ k∑
i=1

aniEXiI(|aniXi| ≤ n1/p)
∣∣∣ = 0.

By (1.9) and (2.8),

n−1/p max
1≤k≤n

|
k∑

i=1

aniEXiI(|aniXi| ≤ n1/p)| ≤ n−1/p
n∑

i=1

E|aniXi|I(|aniXi| > n1/p)

≤ n−r
n∑

i=1

E|aniX|rpI(|aniX| > n1/p) ≤ Cn1−r → 0

as n → ∞. Therefore, (1.10) holds. The proof of (1.10)⇒ (1.9) can be accomplished in a similar

way as Theorem 1.1 of [3], we omit the details of the proof. �

Proof of Theorem 1.7 The proof of (1.5)⇔(1.7) can be done by the same method as in [23,

Theorem 2.3]. Next, we prove that (1.5)⇔(1.11). Firstly, we prove that (1.5)⇒(1.11). Without

loss of generality, we assume that ani ≥ 0 and (1.1) holds for 1 < q ≤ 2 by the Hölder inequality.

Set

Xni = −anI(Xi < −an) +XiI(|Xi| ≤ an) + anI(Xi > an) for 1 ≤ i ≤ n, n ≥ 1.

Since (2.7) holds for r = 1 by (1.5) and 0 < an/n ↑, we have by (2.8) that

a−1
n max

1≤k≤n

∣∣∣ k∑
i=1

ani(−anP (Xi < −an) + anP (Xi > an))
∣∣∣ ≤ CnP (|X| > an) → 0
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as n → ∞. Therefore, to prove that (1.11), it suffices to prove for all ε > 0 and all arrays of real

numbers {ani, 1 ≤ i ≤ n, n ≥ 1} satisfying (1.1) for some 1 < q ≤ 2 that

n∑
n=1

n−1P
(

max
1≤k≤n

∣∣∣ k∑
i=1

ani(Xi − EXni)
∣∣∣ > εan

)
< ∞. (2.12)

Note that (
max

1≤k≤n

∣∣∣ k∑
i=1

ani(Xi − EXni)
∣∣∣ > εan

)
⊂ ∪n

i=1(|Xi| > an) ∪
(

max
1≤k≤n

∣∣∣ k∑
i=1

ani(Xni − EXni)
∣∣∣ > εan

)
.

Hence, by (1.5), to prove (2.12), it is enough to prove

n∑
n=1

n−1P
(

max
1≤k≤n

∣∣∣ k∑
i=1

ani(Xni − EXni)
∣∣∣ > εan

)
< ∞. (2.13)

For any fixed θ ∈ (0, 1− 1/q) set

X
(1)
ni = −a[nθ ]I(Xi < −a[nθ ]) +XiI(|Xi| ≤ a[nθ ]) + a[nθ]I(Xi > a[nθ ]),

X
(2)
ni = (Xi − a[nθ ])I(a[nθ] < Xi ≤ an) + (an − a[nθ])I(Xi > an),

X
(3)
ni = (Xi + a[nθ ])I(−an ≤ Xi < −a[nθ ])− (an − a[nθ])I(Xi < −an).

Then Xni =
∑3

l=1 X
(l)
ni , and {X(1)

ni , 1 ≤ i ≤ n}, {X(2)
ni , 1 ≤ i ≤ n}, {X(3)

ni , 1 ≤ i ≤ n} are all END

by Lemma 2.1. Hence, to prove (2.13), it is enough to prove that for l = 1, 2, 3,

Il =
∞∑

n=1

n−1P
(

max
1≤k≤n

∣∣∣ k∑
i=1

ani(X
(l)
ni − EX

(l)
ni )

∣∣∣ > εan/3
)
< ∞.

Firstly, we prove that I1 < ∞. By the Markov inequality, Lemma 2.3, the Cr inequality, the

Jensen inequality, the definition of X
(1)
ni and (1.1),

I1 ≤ C
∞∑

n=1

n−1(log n)qa−q
n

n∑
i=1

E|aniX(1)
ni |

q

≤ C

∞∑
n=1

n−1(log n)qa−q
n

n∑
i=1

(ani)
qnqθ ≤ C

∞∑
n=1

n−(1−θ)q(log n)q < ∞.

Secondly, we prove that I2 < ∞. By (2.7) and (2.8) and Lemma 2.5,

a−1
n max

1≤k≤n

∣∣∣ k∑
i=1

EaniX
(2)
ni

∣∣∣ ≤ a−1
n

n∑
i=1

aniE{XiI(a[nθ] < Xi ≤ an) + anI(Xi > an)}

≤ na−1
n EXI(a[nθ ] < X ≤ an) + nP (|X| > an) → 0

as n → ∞. Therefore, by the definition of X
(2)
ni , to prove I2 < ∞, it is to prove that

I∗2 =
∞∑

n=1

n−1P
( n∑

i=1

ani(X
(2)
ni − EX

(2)
ni ) > εan/12

)
< ∞.
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By the Markov inequality, Lemma 2.3, the Cr inequality, the Jensen inequality, (1.5) and (2.5),

I∗2 ≤ C
∞∑

n=1

n−1a−q
n

n∑
i=1

(ani)
qE|X(2)

ni |
q

≤ C
∞∑

n=1

n−1a−q
n

n∑
i=1

E|aniXi|qI(|Xi| ≤ an) + C
∞∑

n=1

P (|X| > an)

≤ C
∞∑

n=1

a−q
n E|X|qI(|X| ≤ an) + C

∞∑
n=1

P (|X| > an) < ∞.

Hence, I2 < ∞. By the same argument as I2 < ∞, we have I3 < ∞. Thus, (1.11) holds.

Next, we prove that (1.11)⇒(1.5). Set ani = 1 for all 1 ≤ i ≤ n and n ≥ 1. Then (1.9) can

be rewritten to

∞∑
n=1

n−1P
(

max
1≤k≤n

∣∣∣ k∑
i=1

(Xi − EXiI(|Xi| ≤ an))
∣∣∣ > εan

)
< ∞, ∀ε > 0.

Hence, it is similar to the proof of Theorem 1.2 in [26]. So we complete the proof. �

Proof of Corollary 1.8 Firstly, we prove (1.12)⇒ (1.13). By (1.12) and using Theorem 1.7

for an = n, to prove (1.13), it is enough to prove

lim
n→∞

1

n
max

1≤k≤n
|

k∑
i=1

aniEXiI(|Xi| ≤ n)| = 0.

By (2.8) and EX = 0,

1

n
max

1≤k≤n
|

k∑
i=1

aniEXiI(|Xi| ≤ n)| ≤ 1

n

n∑
i=1

E|aniX|I(|X| > n)

≤ CE|X|I(|X| > n) → 0

as n → ∞. Therefore, (1.13) holds. The proof of (1.13)⇒ (1.12) can be completed in a similar

way as Theorem 1.1 of [3], we omit the details of the proof. �
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