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Abstract The methods for constructing planar C
1 cubic Hermite interpolation curves via

approximate energy minimization are studied. The main purpose of the proposed methods are to

obtain the optimal tangent vectors of the C
1 cubic Hermite interpolation curves. By minimizing

the appropriate approximate functions of the strain energy, the curvature variation energy and

the combined energy, the linear equation systems for solving the optimal tangent vectors are

obtained. It is found that there is no unique solution for the minimization of approximate

curvature variation energy minimization, while there is unique solution for the minimization of

approximate strain energy and the minimization of approximate combination energy because the

coefficient matrix of the equation system is strictly diagonally dominant. Some examples are

provided to illustrate the effectiveness of the proposed method in constructing planar C
1 cubic

Hermite interpolation curves.
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1. Introduction

It is known that the planar cubic Hermite interpolation curves can be described in the

following Bézier form,

bi(t) = piB
3
0(t) + (pi +

1

3
mi)B

3
1(t) + (pi+1 −

1

3
mi+1)B

3
2(t) + pi+1B

3
3(t), (1.1)

where i = 0, 1, . . . , n− 1, pj ∈ R
2 (j = 0, 1, . . . , n) are distinct points, mj ∈ R

2 (j = 0, 1, . . . , n)

are tangent vectors, B3
k(t) (k = 0, 1, 2, 3) are cubic Bernstein polynomials. It is clear that

bi(0) = pi, bi(1) = pi+1, b
′
i(0) = mi, b

′
i(1) = mi+1, and bi(t) satisfy C1 continuity.

Generally, the C1 Hermite interpolation curves problem requires that the tangent vectors are

given in advance. But in practical applications the tangent vectors are rarely available. Since

the tangent vectors have a significant influence on the shape of the curves, a natural question is

how to choose them appropriately so that the curves satisfy preferable geometric features.

As we know, the fairness is an important geometric feature of a curve. The construction

of fair curves is a fundamental issue in computer aided design (CAD) and related application
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fields [1–3]. Although the fairness of a curve is difficult to be expressed in a quantitative way, the

general ways to construct the fair curves are achieved by minimizing some energy functions [4].

In most cases, the strain energy (also called bending energy) minimization or the curvature

variation energy minimization is adopted to achieve this goal [1, 5–8].

Recently, a lot of works on constructing fair planar G1 or G2 Hermite interpolation curves

via strain energy minimization or curvature variation energy minimization have been proposed

[4, 9–13]. Generally, the G1 or G2 continuity is called geometric continuity while C1 or C2

continuity is called parametric continuity. Although geometric continuity is a more appropriate

geometric measurement of smoothness than parametric continuity, parametric continuity is still

necessary in some applications [14]. Actually, the C1 Hermite interpolation has been applied

to many fields in recent years, such as modeling scientific data [15], reconstruction of the river

beds [16], solving PDE [17], and so on. The motivation of this paper is to present the methods

about how to choose the optimal tangent vectors by minimizing strain energy and curvature

variation energy to obtain the fairest C1 cubic Hermite interpolation curves. The rest of this

paper is organized as follows. We give the method for constructing the tangent vectors by energy

minimization in Section 2. Some examples are shown in Section 3. A short conclusion is given

in Section 4.

2. Constructing tangent vectors via approximate energy minimization

The strain energy of the curve bi(t) is defined by [1]

s1(bi) =

∫ 1

0

[κi(t)]
2dt, (2.1)

where κi(t) =
‖b′

i(t)×b
′′

i(t)‖
‖b′

i(t)‖3 , b′
i(t) and b′′

i(t) represents the first and the second derivative of

bi(t), respectively.

In order to simplify the calculation, the strain energy (2.1) is usually approximated by [10,18]

ŝ1(bi) =

∫ 1

0

‖b′′
i(t)‖

2dt. (2.2)

By a deduction from (1.1), we can obtain that

b′′
i(t) = 2(3∆pi − 2mi −mi+1) + 6(mi +mi+1 − 2∆pi)t, (2.3)

where ∆pi := pi+1 − pi.

From (2.3) the expression (2.2) becomes

ŝ1(bi) =

∫ 1

0

‖2(3∆pi − 2mi −mi+1) + 6(mi +mi+1 − 2∆pi)t‖
2dt

= 4(‖mi‖
2 + ‖mi+1‖

2 +mi ·mi+1 − 3mi ·∆pi − 3mi+1 ·∆pi + 3‖∆pi‖
2). (2.4)

From (2.4) the approximate strain energy of the whole C1 curves can be expressed as

f1(m0,m1, . . . ,mn) :=

n−1
∑

i=0

ŝ1(bi)
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=4

n−1
∑

i=0

(‖mi‖
2 + ‖mi+1‖

2 +mi ·mi+1 − 3mi ·∆pi−

3mi+1 ·∆pi + 3‖∆pi‖
2). (2.5)

The curvature variation energy of the curve bi(t) is defined by [19]

s2(bi) =

∫ 1

0

[κ′
i(t)]

2dt. (2.6)

According to (2.2), an approximate form of the curvature variation energy (2.6) can be

approximately expressed as [12]

ŝ2(bi) =

∫ 1

0

‖b′′′
i (t)‖

2dt. (2.7)

By (2.3) we have

b′′′
i (t) = 6(mi +mi+1 − 2∆pi). (2.8)

From (2.8) the expression (2.7) becomes

ŝ2(bi) = 36

∫ 1

0

‖mi +mi+1 − 2∆pi‖
2dt

= 36(‖mi‖
2 + ‖mi+1‖

2 + 2mi ·mi+1 − 4mi ·∆pi − 4mi+1 ·∆pi + 4‖∆pi‖
2). (2.9)

From (2.9) the approximate curvature variation energy of the whole C1 curves can be ex-

pressed as

f2(m0,m1, . . . ,mn) :=
n−1
∑

i=0

ŝ2(bi)

=36
n−1
∑

i=0

(‖mi‖
2 + ‖mi+1‖

2 + 2mi ·mi+1 − 4mi ·∆pi−

4mi+1 ·∆pi + 4‖∆pi‖
2). (2.10)

Since the strain energy minimization and the curvature variation energy minimization are

two general ways to construct the fair curves, one may obtain the optimal tangent vectors by

minimizing f1(m0,m1, . . . ,mn) or f2(m0,m1, . . . ,mn). Alternatively, a natural idea also drives

us to combine the strain energy minimization and the curvature variation energy minimization

to obtain the optimal tangent vectors.

Here, we express the approximate combined energy of the curve bi(t) as

ŝ3(bi) = ŝ1(bi) + ŝ2(bi). (2.11)

Then, from (2.4) and (2.9) the approximate combined energy of the whole C1 curves can be

expressed as

f3(m0,m1, . . . ,mn) :=

n−1
∑

i=0

ŝ3(bi) =

n−1
∑

i=0

[ŝ1(bi) + ŝ2(bi)]
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=4

n−1
∑

i=0

(10‖mi‖
2 + 10‖mi+1‖

2 + 19mi ·mi+1 − 39mi ·∆pi−

39mi+1 ·∆pi + 39‖∆pi‖
2). (2.12)

Denote ∂f
∂mi

:= ( ∂f
∂mx

i

, ∂f

∂m
y

i

)T, where ∂f
∂mx

i

and ∂f

∂m
y

i

is the x-coordinate and the y-coordinate

of mi, respectively. The following three cases are discussed.

Case 1 Approximate strain energy minimization.

The gradients of (2.5) can be calculated as follows,

∂f1
∂m0

= 4(2m0 +m1 − 3∆p0),

∂f1
∂mi

= 4[mi−1 + 4mi +mi+1 − 3(∆pi−1 +∆pi)], i = 1, 2, . . . , n− 1,

∂f1
∂mn

= 4(mn−1 + 2mn − 3∆pn−1).

Then, by ∂f1/∂mi = 0, i = 0, 1, . . . , n, we can obtain the following equation system of the

approximate strain energy minimization,










2m0 +m1 = 3∆p0,

mi−1 + 4mi +mi+1 = 3(∆pi−1 +∆pi), i = 1, 2, . . . , n− 1,

mn−1 + 2mn = 3∆pn−1.

(2.13)

We can see that system (2.13) is just the system of the natural cubic spline interpolation

curves. Let d0 = 3∆p0, di = 3(∆pi−1 + ∆pi), i = 1, 2, . . . , n − 1, dn = 3∆pn−1, d =

(d0,d1, . . . ,dn)
T, m = (m0,m1, . . . ,mn)

T, A = (ai,j) be the coefficient matrix. Then the

system (2.13) can be rewritten as

Am = d. (2.14)

Let ki =
1

|ai,i|

∑

j 6=i |ai,j |. It is clear that k := max{ki} = 1/2 < 1, which shows the matrix

A is strictly diagonally dominant. Therefore, system (2.14) has unique solution expressed by

m = A−1d. Then the function f1(m0,m1, . . . ,mn) has unique global minimum point at

mi =

n
∑

j=0

ci,jdj , i = 0, 1, . . . , n, (2.15)

where (ci,j) := A−1.

Case 2 Approximate curvature variation energy minimization.

The gradients of (2.10) can be calculated as follows,

∂f2
∂m0

= 4(m0 +m1 − 2∆p0),

∂f2
∂mi

= 4[mi−1 + 2mi +mi+1 − 2(∆pi−1 +∆pi)], i = 1, 2, . . . , n− 1,

∂f2
∂mn

= 4(mn−1 +mn − 2∆pn−1).
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Then, by ∂f2/∂mi = 0, i = 0, 1, . . . , n, we can obtain the following equation system of the

approximate curvature variation energy minimization,










m0 +m1 = 2∆p0,

mi−1 + 2mi +mi+1 = 2(∆pi−1 +∆pi), i = 1, 2, . . . , n− 1,

mn−1 +mn = 2∆pn−1.

(2.16)

It is not difficult to verify that the coefficient matrix of system (2.16) is singular. That is to

say, there is no unique solution for the system (2.16).

Case 3 Approximate combined energy minimization.

The gradients of (2.12) can be calculated as follows,

∂f3
∂m0

= 4(20m0 + 19m1 − 39∆p0),

∂f3
∂mi

= 4[19mi−1 + 40mi + 19mi+1 − 39(∆pi−1 +∆pi)], i = 1, 2, . . . , n− 1,

∂f3
∂mn

= 4(19mn−1 + 20mn − 39∆pn−1).

Then, by ∂f3/∂mi = 0, i = 0, 1, . . . , n, we can obtain the following equation system of the

approximate combined energy minimization,










20m0 + 19m1 = 39∆p0,

19mi−1 + 40mi + 19mi+1 = 39(∆pi−1 +∆pi), i = 1, 2, . . . , n− 1,

19mn−1 + 20mn = 39∆pn−1.

(2.17)

Let B = (bi,j) be the coefficient matrix. Then the system (2.17) can be rewritten as

Bm = 13d. (2.18)

Let li =
1

|bi,i|

∑

j 6=i |bi,j |. It is clear that l := max{li} = 19
20 < 1, which shows the matrix B is

strictly diagonally dominant. Thus system (2.18) has unique solution expressed by m = 13B−1d.

Then the function f3(m0,m1, . . . ,mn) has unique global minimum point at

mi = 13

n
∑

j=0

hi,jdj , i = 0, 1, . . . , n, (2.19)

where (hi,j) := B−1.

Notice that the systems (2.13) and (2.17) contain the equations about the x-coordinate and

the y-coordinate. Due to the fact that the coefficient matrixes are tri-diagonal, the solutions of

system (2.13) and (2.17) can be obtained easily by the LU factorization method.

At the end of this section, we give the method for constructing closed curves. In order to

obtain closed curves, we set pn = p0 andmn = m0. Then, by ∂f1/∂m0 = 0, corresponding to the

first equation and the last equation of (2.13), we have 4m0+m1+mn−1 = 3(p1−pn−1). We can

discuss the equation ∂f1/∂mn−1 = 0 in the same way, and then we have m0+mn−2+4mn−1 =

3(p0 − pn−2).
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For i = 1, 2, . . . , n−2, we can obtain the same system as (2.13) in form. Hence, for the closed

curves, the system of the approximate strain energy minimization can be expressed as










4m0 +m1 +mn−1 = 3(p1 − pn−1),

mi−1 + 4mi +mi+1 = 3(pi+1 − pi−1), i = 1, 2, . . . , n− 2,

m0 +mn−2 + 4mn−1 = 3(p0 − pn−2).

(2.20)

Similarly, for closed curves, the system of the approximate combined energy minimization

can be expressed as










40m0 + 19m1 + 19mn−1 = 39(p1 − pn−1),

19mi−1 + 40mi + 19mi+1 = 39(pi+1 − pi−1), i = 1, 2, . . . , n− 2,

19m0 + 19mn−2 + 40mn−1 = 39(p0 − pn−2).

(2.21)

3. Numerical examples

We present some examples generated by the approximate strain energy minimization (viz. the

natural cubic spline interpolation curves) and the approximate combined energy minimization

in this section.

We first illustrate the effects of the presented method by taking the points as p0 = (1, 90),

p1 = (3, 105), p2 = (6, 120), p3 = (10, 100), p4 = (12, 85), p5 = (15, 104), p6 = (17, 80). Figure

1 shows the interpolation curves.

The second example is to consider the monotone points set for p0 = (−3,−3), p1 = (−1,−2),

p2 = (0, 0), p3 = (3, 1), p4 = (5, 2), p5 = (6, 4). Figure 2 shows the interpolation curves.

The third example is to consider different number of points sampled from a unit semicircle

r(t) = (cos(πt), sin(πt))T, t ∈ [0, 1]. Figure 3 shows the interpolation curves.

The fourth example is to consider the points taken from function f(x) = x sinx, x = 0 : 1 : 8.

Figure 4 shows the interpolation curves.

The last example is to consider the case of closed curves. The points are taken from an ellipse

r(t) = (2 cos(2πt), sin(2πt))T, t ∈ [0, 1]. Figure 5 shows the interpolation curves.
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Figure 1 Interpolating the given data Figure 2 Interpolation of the monotone points

In Figures 1–5, the red lines represent the curves obtained by minimizing the approximate

combined energy, the blue lines represent the natural cubic spline interpolation curves, and the
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circle points represent the given points, respectively. For Figures 3–5, the dashed lines represent

the sampled curves.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) 3 sampling points (b) 5 sampling points
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Figure 3 Interpolating a unit semicircle
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Figure 4 Interpolating the function x sin x Figure 5 Interpolating an ellipse

The above examples show that both the natural cubic spline interpolation curves and the

curves obtained by the combined energy minimization can achieve good interpolation results.

Furthermore, Figure 3 shows that the approximation effect becomes better as the number of the

sampling points becomes larger and the curves by minimizing the approximate combined energy

give a better approximation than the natural cubic spline interpolation curves; Figures 3–5 show

that the curves obtained by the approximate combined energy minimization give a more pleasant

approximation than the natural cubic spline interpolation curves.

4. Conclusions
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This paper discusses the methods for constructing the fair cubic C1 Hermite interpolation

curves by minimizing the approximate energy functions. Our method focuses on how to con-

struct the optimal tangent vectors, which is achieved by minimizing the appropriate approximate

functions of the strain energy, curvature variation energy and combined energy. Results show

that the approximate curvature variation energy minimization has no unique solution, and ap-

proximate combined energy minimization provides a more satisfactory approximation than the

approximate strain energy minimization.
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length and energy. J. Comput. Appl. Math., 2014, 255: 887–897.

[9] Junhai YONG, Fuhua CHENG. Geometric Hermite curves with minimum strain energy. Comput. Aided
Geom. Design, 2004, 21(3): 281–301.
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