
Journal of Mathematical Research with Applications

Sept., 2019, Vol. 39, No. 5, pp. 459–468

DOI:10.3770/j.issn:2095-2651.2019.05.003

Http://jmre.dlut.edu.cn

Meet Uniform Continuous Posets

Xuxin MAO1,∗, Luoshan XU2

1. College of Science, Nanjing University of Aeronautics and Astronautics,

Jiangsu 210016, P. R. China;

2. Department of Mathematics, Yangzhou University, Jiangsu 225002, P. R. China

Abstract In this paper, as a generalization of uniform continuous posets, the concept of meet

uniform continuous posets via uniform Scott sets is introduced. Properties and characterizations

of meet uniform continuous posets are presented. The main results are: (1) A uniform complete

poset L is meet uniform continuous iff ↑(U∩ ↓ x) is a uniform Scott set for each x ∈ L and each

uniform Scott set U ; (2) A uniform complete poset L is meet uniform continuous iff for each

x ∈ L and each uniform subset S, one has x∧
∨

S =
∨
{x∧ s | s ∈ S}. In particular, a complete

lattice L is meet uniform continuous iff L is a complete Heyting algebra; (3) A uniform complete

poset is meet uniform continuous iff every principal ideal is meet uniform continuous iff all closed

intervals are meet uniform continuous iff all principal filters are meet uniform continuous; (4) A

uniform complete poset L is meet uniform continuous if L1 obtained by adjoining a top element

1 to L is a complete Heyting algebra; (5) Finite products and images of uniform continuous

projections of meet uniform continuous posets are still meet uniform continuous.
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1. Introduction

In 1972, Dana Scott introduced the notion of continuous lattices in order to provide models for

the semantics of programming languages [1]. Later, a more general notion of continuous directed

complete partially ordered sets (i.e., continuous dcpos or domains) was introduced and extensively

studied [2]. It should be noted that a distinctive feature of the theory of continuous domains is

that many of the considerations are closely interlinked with topological ideas. The Scott topology,

as an order-theoretical topology, is of fundamental importance in domain theory [2, 3]. Lawson

in [3] gave a remarkable characterization that a dcpo L is continuous iff the lattice σ∗(L) of

all Scott-closed subsets of L is completely distributive. A meet continuous lattice is a complete
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lattice in which the binary meet operation distributes over directed suprema [2]. This algebraic

notion has a purely topological characterization that can be generalized to the setting of dcpos

by the Scott topology in [2, 4] without involving the meet operations: A dcpo L is called meet

continuous if for any x ∈ L and any directed subset D with supD > x, one has x ∈ clσ(↓D∩ ↓x),
where clσ(↓ D∩ ↓ x) is the Scott closure of the set ↓D∩ ↓x.

Based on the concept of uniform sets in the theory of program expansion [5], Bai introduced

the concept of uniform continuous posets, a generalization of completely distributive lattices,

and showed that uniform continuous posets have many properties in common with continuous

lattices (see Theories of uniform continuous partial order sets. Journal of Northwest Normal

University, 1996, 32(2)). Later, Ruan and Zhang in [6] introduced the concept of uniform Scott

sets and gave more properties of uniform continuous posets.

It is well-known that a dcpo is continuous iff it is meet continuous and quasicontinuous [7–11].

Since uniform continuous posets share some properties with continuous dcpos [6–12], it is natural

to consider the meet uniform continuity and the quasi uniform continuity on posets. So, in this

paper, in the manner of defining the meet continuity of dcpos, we introduce the concept of meet

uniform continuous posets as a generalization of uniform continuous posets via the uniform Scott

sets. Properties and characterizations of meet uniform continuous posets are presented.

The paper is organized as follows. In the preliminary section, we recall some basic notions

such as uniform sets, uniform way-below relations and uniform continuous posets. Some basic

properties of uniform way-below relations are given. In the third section, the concept of the meet

uniform continuous posets via the uniform Scott sets is introduced. Characterizations of meet

uniform continuous posets are given by some kind of distributivity, principal ideals, principal

filters and closed intervals. It will be established that a uniform complete poset is meet uniform

continuous iff every principal ideal is meet uniform continuous iff all closed intervals are meet

uniform continuous iff all principal filters are meet uniform continuous. The forth section is

devoted to operational properties of meet uniform continuous posets. We will end the paper

with some conclusion remarks.

2. Preliminaries

We recall some basic notions and results [2, 6].

Let (L, 6) be a poset. A principal ideal (resp., principal filter) is a set of the form ↓x =

{y ∈ L | y 6 x} (resp., ↑x = {y ∈ L | x 6 y}). A closed interval [x, y] is a set of the form

↑ x ∩ ↓y for x 6 y. Note that closed intervals are always nonempty. For A ⊆ L, we write

↓A = {y ∈ L | ∃ x ∈ A, y 6 x}, ↑A = {y ∈ L | ∃ x ∈ A, x 6 y}. A subset A is a lower set

(resp., an upper set) if A =↓A (resp., A =↑A). We say that z is a lower bound (resp., an upper

bound) of A if A ⊆↑ z (resp., A ⊆↓ z). A subset A is a consistent set if A has an upper bound.

The supremum of A in L is denoted by
∨
A or supA. The infimum of A is denoted by

∧
A or

inf A. If supA (resp., inf A) exists, we say that A has a sup (resp., A has an inf).

A nonempty subset D of L is directed if every finite subset of D has an upper bound in D. A
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poset L is a directed complete partially ordered set (dcpo, for short) if every directed subset of L

has a sup. A sup semilattice (resp., a meet semilattice) is a poset in which every nonempty finite

subset has a sup (resp., an inf). A poset which is both a sup semilattice and a meet semilattice

is a lattice. A poset is a bounded complete poset (bc-poset, for short) if every consistent subset

has a sup. In particular, a bc-poset has a smallest element. It is easy to prove that a poset is

bounded complete if and only if every nonempty subset has an inf. So, every bc-poset is a meet

semilattice. A bounded complete dcpo is called a complete semilattice and written bc-dcpo for

short. A complete lattice is a poset in which every subset has a sup and an inf.

In a poset L, we say that x approximates y, written x ≪ y if whenever D is a directed set that

has a supremum supD > y, then x 6 d for some d ∈ D. The poset L is said to be continuous

if every element is the directed supremum of elements that approximate it. A continuous poset

which is also a dcpo is called a continuous domain or a domain. A continuous poset which is

also a complete lattice is called a continuous lattice.

A subset A of a poset L is Scott closed if ↓A = A and for any directed set D ⊆ A, supD ∈ A

whenever supD exists. The complements of the Scott closed sets form a topology, called the

Scott topology and denoted by σ(L).

Definition 2.1 ([6]) Let L be a poset and S ⊆ L. If for all a, b ∈ S, there exists c ∈ L such

that a 6 c and b 6 c, then S is called a uniform set. A poset L is called uniform complete if

every uniform subset of L has a supremum.

Remark 2.2 (1) All directed sets, all consistent sets and the empty set are uniform sets. So,

every uniform complete poset is a bc-dcpo. In particular, every uniform complete poset is a meet

semilattice and has a bottom.

(2) If a poset L has a top element, then every subset A of L is a uniform set. But a subset

of A may not be uniform in the poset A with the inherited order.

Example 2.3 A bc-dcpo need not be uniform complete. For example, let X = {a, b, c} and

P(X) be the powerset of X with the inclusion order. Let L = P(X)\{X}. It is clear that L is

a bc-dcpo. But the uniform subset {{a}, {b}, {c}} of L does not have a supremum. So, L is not

uniform complete.

Definition 2.4 ([6]) Let L be a uniform complete poset and x, y ∈ L. We say that x is uniform

way-below y, written x ≪v y if for any uniform subset S of L with supS > y, there is some

s ∈ S such that x 6 s. We say that x is uniform compact if x ≪v x. The set of all uniform

compact elements is denoted by UK(L). For each x ∈ L, we write ⇓v x = {y ∈ L | y ≪v x} and

⇑v x = {y ∈ L | x ≪v y}. A uniform complete poset L is called a uniform continuous poset if for

each x ∈ L, x =
∨

⇓v x.

Proposition 2.5 ([6]) Let L be a uniform complete poset and ⊥ be the bottom. Then for all

x, y, u, z ∈ L:

(1) x ≪v y =⇒ x 6 y;
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(2) u 6 x ≪v y 6 z =⇒ u ≪v z;

(3) If x ∈ L \ {⊥}, then one has ⊥ ≪v x, but ⊥ ≪v ⊥ does not hold;

(4) ⇓v x is a uniform set.

Definition 2.6 ([6]) Let L and M be uniform complete posets. A function f : L → M is called

uniform continuous if f preserves suprema of uniform sets, that is, f is order-preserving and

f(supS) = sup f(S) for all uniform subsets S of L.

Lemma 2.7 Let L be a uniform complete poset. Then for all x ∈ L and all uniform subset S,

we have ↓x∩ ↓S =↓{x ∧ s | s ∈ S} =↓(x ∧
∨

S)∩ ↓S.

Proof Straightforward. �

3. Meet uniform continuous posets and characterizations

In this section, via uniform Scott sets in [6], the notion of meet uniform continuous posets is

introduced. Properties and characterizations of meet uniform continuous posets are presented.

Definition 3.1 ([6]) Let L be a uniform complete poset. A subset U of L is called a uniform

Scott set if the following two conditions are satisfied:

(1) U =↑U ;

(2) For all uniform subset S ⊆ L,
∨
S ∈ U implies S ∩ U ̸= ∅.

The family of all uniform Scott sets of L is denoted by US(L). The family of the complements

of all uniform Scott sets of L is denoted by US∗(L), i.e., US∗(L) = {F ⊆ L|L\F ∈ US(L)}.

Proposition 3.2 Let L be a uniform complete poset. Then

(1) F ∈ US∗(L) iff F =↓F and
∨
S ∈ F for any uniform set S ⊆ F ;

(2) L ∈ US∗(L), ∅ ̸∈ US∗(L);

(3) ∀x ∈ L, ↓x ∈ US∗(L);

(4) For any {Fα}α∈Γ ⊆ US∗(L),
∩

α∈Γ Fα ∈ US∗(L) whenever
∩

α∈Γ Fα ̸= ∅;

(5) ∀x ∈ L, x ∈ UK(L) iff ↑x ∈ US(L).

Proof Straightforward. �

Remark 3.3 By Definition 3.1 and Remark 2.2, uniform Scott sets of a uniform complete poset

are Scott open sets of the poset. By Proposition 3.2(1) and Remark 2.2, complements of uniform

Scott sets of a complete lattice are all principal ideals. Since unions of two principal ideals need

not be principal ideals, clearly an intersection of two uniform Scott sets need not be a uniform

Scott set. This reveals that the uniform Scott sets of a complete lattice need not be a topology.

Definition 3.4 Let L be a uniform complete poset. If for any x ∈ L and any uniform subset

S with supS > x, one has x ∈
∩
{F ∈ US∗(L) | ↓x∩ ↓S ⊆ F}, then L is called a meet uniform

continuous poset.
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Proposition 3.5 Every uniform continuous poset L is meet uniform continuous.

Proof Let x ∈ L and S ⊆ L a uniform set with supS > x. It is clear that ⇓v x ⊆↓ S and

⇓v x ⊆↓S∩ ↓x. It follows from the uniform continuity of L, Proposition 2.5(4) and Proposition

3.2(1) that x = sup ⇓v x ∈
∩
{F ∈ US∗(L) | ↓x∩ ↓S ⊆ F}. This shows that L is a meet uniform

continuous poset. �

Theorem 3.6 Let L be a uniform complete poset. Then L is meet uniform continuous iff for

all U ∈ US(L) and all x ∈ L, one has ↑(U∩ ↓ x) ∈ US(L).

Proof =⇒. Let x ∈ L and U ∈ US(L). Clearly, ↑ (U∩ ↓ x) is an upper set. Suppose that S

is a uniform subset with
∨
S ∈↑ (U∩ ↓ x). There is y ∈ U∩ ↓ x such that y 6

∨
S. It follows

from the meet uniform continuity of L that y ∈
∩
{F ∈ US∗(L) | ↓ y∩ ↓S ⊆ F}. Assume that

↑(U∩ ↓x)∩ S = ∅. Then U∩ ↓x∩ ↓S = ∅. So, ↓y∩ ↓S ⊆↓x∩ ↓S ⊆ L\U . Since L\U ∈ US∗(L),

we have y ∈ L\U , a contradiction to y ∈ U . This shows that ↑ (U∩ ↓x) ∩ S ̸= ∅. By Definition

3.1, ↑(U∩ ↓ x) ∈ US(L).

⇐=. Let x ∈ L and S ⊆ L a uniform set with supS > x. Assume that there is F0 ∈
US∗(L) such that ↓ x∩ ↓ S ⊆ F0 but x ̸∈ F0. Then x ∈ L\F0. So, x ∈↑ ((L\F0)∩ ↓ x) and

↑ ((L\F0)∩ ↓ x) ∈ US(L). Since x 6 ∨S, we have ∨S ∈↑ ((L\F0)∩ ↓ x). By Definition 3.1,

↑((L\F0)∩ ↓x) ∩ S ̸= ∅. So, (L\F0)∩ ↓x∩ ↓S ̸= ∅, a contradiction to ↓x∩ ↓S ⊆ F0. This shows

that x ∈
∩
{F ∈ US∗(L) | ↓x∩ ↓S ⊆ F}. By Definition 3.4, L is meet uniform continuous. �

By Theorem 3.6, we immediately have

Corollary 3.7 A uniform complete poset L is meet uniform continuous iff for any U ∈ US(L)

and any lower subset C of L, one has ↑ (U ∩ C) =
∪

x∈C ↑ (U∩ ↓ x) ∈ US(L).

Theorem 3.8 Let L be a uniform complete poset. Then the following statements are equivalent:

(1) L is a meet uniform continuous poset;

(2) For each x ∈ L and each uniform subset S, we have x ∧
∨
S =

∨
{x ∧ s | s ∈ S};

(3) For two uniform subsets S, H, we have
∨

S ∧
∨
H =

∨
(↓S∩ ↓H);

(4) For each x ∈ L and each uniform subset S, x 6
∨

S implies that x =
∨
(↓x∩ ↓S).

Proof (1) =⇒ (2). Let L be a meet uniform continuous poset. Then for each x ∈ L and

each uniform subset S, it follows from Remark 2.2 that x ∧
∨

S is an upper bound of the set

{x ∧ s | s ∈ S}. Hence, the set {x ∧ s | s ∈ S} is a uniform set of L. Let y =
∨
{x ∧ s | s ∈ S}.

By Lemma 2.7, we have

y =
∨

{x ∧ s | s ∈ S} =
∨

↓{x ∧ s | s ∈ S} =
∨

(↓x∩ ↓S) =
∨

(↓(x ∧
∨

S)∩ ↓S).

This shows that ↓ (x ∧
∨

S)∩ ↓S ⊆↓ y ∈ US∗(L). It follows from the meet uniform continuity

of L and x ∧
∨

S 6
∨
S that x ∧

∨
S ∈

∩
{F ∈ US∗(L) | ↓ (x ∧

∨
S)∩ ↓S ⊆ F}. So, we have

x ∧
∨

S ∈↓y. This shows that x ∧
∨
S = y =

∨
{x ∧ s | s ∈ S}.

(2) =⇒ (3). For two uniform subsets S, H, it follows from (2) that
∨

S ∧
∨
H =

∨
{
∨
S ∧h |

h ∈ H} =
∨
{s ∧ h | s ∈ S, h ∈ H} =

∨
(↓S∩ ↓H).
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(3) =⇒ (4). For each x ∈ L and each uniform subset S with x 6
∨
S, it follows from (3)

that x = x ∧
∨
S =

∨
(↓x) ∧

∨
S =

∨
(↓x∩ ↓S).

(4) =⇒ (1). For any x ∈ L and any uniform subset S with supS > x, we need to show

that x ∈
∩
{F ∈ US∗(L) | ↓ x∩ ↓ S ⊆ F}. Assume that there is F0 ∈ US∗(L) such that

↓x∩ ↓S ⊆ F0 but x ̸∈ F0. It follows from supS > x and (4) that x =
∨
(↓x∩ ↓S) ∈ L\F0. By

Definition 3.1, we have ↓x∩ ↓S ∩ (L\F0) ̸= ∅, a contradiction to ↓x∩ ↓S ⊆ F0. This shows that

x ∈
∩
{F ∈ US∗(L) | ↓x∩ ↓S ⊆ F}. So, L is meet uniform continuous. �

Corollary 3.9 If L is a meet uniform continuous poset, then L and L1 are both meet continuous

dcpos, where L1 = L∪ {1} is obtained from L by adjoining a top element 1 ̸∈ L such that x 6 1

for all x ∈ L.

Proof Follows from Remark 2.2, Theorem 3.8, Theorem 3.1 in [8], Definition O-4.1 and Remark

III-2.2 in [2]. �

Corollary 3.10 A complete lattice L is meet uniform continuous if and only if L is a complete

Heyting algebra (cHa, for short). Particularly, every meet uniform continuous complete lattice

is a meet continuous lattice.

Proof Apply Remark 2.2 and Theorem 3.8. �

Remark 3.11 It is easy to see that every finite lattice is a continuous lattice. But finite lattices

need not be distributive. For example, both the diamond lattice and the pentagon lattice are

non-distributive. By Corollary 3.10, neither the diamond lattice nor the pentagon lattice is meet

uniform continuous, showing that continuous lattices need not be meet uniform continuous.

Example 3.12 Let L = (0, 1)× (0, 1)∪{(0, 0), (1, 1)} be equipped with the usual order. Then

L is a distributive complete lattice. But L is not meet continuous [2, Counterexample O-4.5(1)].

By Corollary 3.10, L is not meet uniform continuous.

4. Operational properties of meet uniform continuous posets

In this section, operational properties of meet uniform continuous posets are concerned. We

consider the meet uniform continuity of subposets, extensions by adjoining a top element, finite

products and images under uniform continuous projections of meet uniform continuous posets.

Lemma 4.1 Let L be a uniform complete poset and A ⊆ L a lower set. Then x ∧A t = x ∧L t

for all x, t ∈ A, where x ∧A t and x ∧L t denote the meet of x and t in the poset A and L,

respectively. In particular, every lower set of a uniform complete poset is a meet semilattice.

Proof Straightforward. �

Lemma 4.2 Let L be a uniform complete poset and A ∈ US∗(L). Then
∨
S =

∨
A S for all

uniform subset S in A, where
∨

A S denotes the supremum of S in the poset A with the inherited

order. In particular, the poset A is uniform complete.



Meet uniform continuous posets 465

Proof Apply Proposition 3.2(1). �

Proposition 4.3 Let L be a meet uniform continuous poset and A ∈ US∗(L). Then A in the

inherited order is also a meet uniform continuous poset. Particularly, every principal ideal of L

is meet uniform continuous, and a cHa.

Proof For any x ∈ A and any uniform subset S in A, it follows from the meet uniform continuity

of L, Lemmas 4.1, 4.2 and Theorem 3.8 that x∧A (
∨

A S) = x∧L (
∨

L S) =
∨

L{x∧L s | s ∈ S} =∨
A{x∧A s | s ∈ S}. By Theorem 3.8, A in the inherited order is also a meet uniform continuous

poset. �

Theorem 4.4 Let L be a uniform complete poset. Then L is a meet uniform continuous poset

if and only if every principal ideal is a meet uniform continuous poset.

Proof =⇒. Follows from Proposition 4.3.

⇐=. Assume that each principal ideal of L is meet uniform continuous. For any x ∈ L and

any uniform subset S of L with supL S := h > x, let A =↓h. By Proposition 3.2(3) and Lemma

4.2, we have supL S = supA S. It follows from x 6 supA S, the meet uniform continuity of A,

Theorem 3.8 and Lemma 4.2 that x =
∨

A(↓ x∩ ↓S) =
∨

L(↓ x∩ ↓S). By Theorem 3.8, L is a

meet uniform continuous poset. �

Corollary 4.5 Let L be a uniform complete poset. Then every closed interval of L is meet

uniform continuous iff each principal filer ↑x is meet uniform continuous.

Proof Apply Theorem 4.4 to the principal filters of L. �

Theorem 4.6 Let L be a uniform complete poset. Then the following statements are equivalent:

(1) L is a meet uniform continuous poset;

(2) Every principal ideal of L is meet uniform continuous;

(3) Every closed interval of L is meet uniform continuous;

(4) Every principal filer of L is meet uniform continuous.

Proof (1) ⇐⇒ (2). Follows from Theorem 4.4.

(3) ⇐⇒ (4). Follows from Corollary 4.5.

(1) =⇒ (3). Assume that L is a meet uniform continuous poset. Let [a, b] be a closed interval

of L. It follows from Proposition 4.3 that the principal ideal ↓b is a cHa. Since [a, b] is a closed

interval of ↓b, [a, b] is also a cHa and thus meet uniform continuous.

(3) =⇒ (2). By Remark 2.2(1), L has a bottom ⊥. Then every principal ideal ↓x of L is the

closed interval [⊥, x] and hence meet uniform continuous. �

Proposition 4.7 Let L be a complete Heyting algebra and 1 ∈ L be the top element. If the

poset L\{1} is uniform complete, then L\{1} is meet uniform continuous.

Proof For each x ∈ L\{1} and each uniform subset S in L\{1}, it follows from the uniform
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completeness of L\{1} that the supremum of S in the poset L\{1} exists and is denoted by∨
L\{1} S ̸= 1. So,

∨
L\{1} S =

∨
L S. By Lemma 4.1, x ∧L\{1} t = x ∧L t for any t ∈ L\{1}.

Thus, x ∧L\{1} (
∨

L\{1} S) = x ∧L (
∨

L S) =
∨

L{x ∧L s | s ∈ S} =
∨

L\{1}{x ∧L\{1} s | s ∈ S}.
It follows from Theorem 3.8 that the poset L\{1} is meet uniform continuous. �

Example 4.8 Let X = {a, b, c} and P(X) be the powerset of X with the inclusion order.

It is clear that P(X) is a cHa. Let L = P(X)\{X}. By Example 2.3, L is a bc-dcpo but L

is not uniform complete. So, L is not meet uniform continuous. This shows that the uniform

completeness condition of L\{1} in Proposition 4.7 cannot be replaced with the condition of

bounded completeness.

Corollary 4.9 Let L be a complete Heyting algebra with the top element 1 ≪v 1. Then L\{1}
is meet uniform continuous.

Proof It follows from 1 ≪v 1 and Proposition 3.2(5) that the set {1} is a uniform Scott set. By

Corollary 3.10, Lemma 4.2 and Proposition 4.7, L\{1} is meet uniform continuous. �

Corollary 4.10 Let L be a uniform complete poset. If L1 = L ∪ {1} is a cHa, then L is meet

uniform continuous.

Proof Follows from Proposition 4.7. �

Example 4.11 Let L = {⊥, a, b, c}. The order on L is defined as follows: ⊥ 6 a, ⊥ 6 b, ⊥ 6 c.

It is easy to see that L is a meet uniform continuous poset. But L1 = L ∪ {1} is the diamond

lattice. By Remark 3.11, L1 is not meet uniform continuous. Particularly, L1 is not a cHa.

Proposition 4.12 Let L and M be meet uniform continuous posets. Then the product L×M

is meet uniform continuous.

Proof Let S ⊆ L ×M be a uniform set. It is easy to see that p(S) is a uniform set of L and

q(S) is a uniform set of M , where p : L×M → L and q : L×M → M are the projection maps.

It follows from the uniform completeness of L and M that supL×M S = (supL p(S), supM q(S)).

This shows that the product L×M is uniform complete.

Let (a,m) ∈ L×M . It is directly to show that ↓L×M (a,m) =↓L a× ↓M m. It follows from

Proposition 4.3 and the meet uniform continuities of L and M that the principal ideal ↓L a of

L and the principal ideal ↓M m of M are both cHa. Hence, the principal ideal ↓L×M (a,m) of

L×M is also a cHa. By Theorem 4.4, the product L×M is meet uniform continuous. �
Let L be a uniform complete poset. A function p : L → L is called a uniform continuous

projection if p2 = p and p is uniform continuous.

Lemma 4.13 For a uniform complete poset L and a uniform continuous projection p : L → L,

(1) For all uniform subset S of p(L), we have
∨

L S =
∨

p(L) S. In particular, the poset p(L)

is uniform complete;

(2) For all x, t ∈ p(L), we have p(x ∧L t) = p(x ∧p(L) t).
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Proof (1) Let S be a uniform subset of p(L). Then S is also a uniform subset of L. Since

p : L → L is a uniform continuous projection, we have p(
∨

L S) =
∨

L p(S) =
∨

L S. This shows

that
∨

L S =
∨

p(L) S.

(2) Let x, t ∈ p(L). By (1) and Remark 2.2(1), L and p(L) are both meet semilattices. Since

p is order-preserving and p2 = p, we have p(x ∧L t) 6 p(x) = x and p(x ∧L t) 6 p(t) = t. This

shows that p(x ∧L t) 6 x ∧p(L) t 6 x ∧L t. So, p(x ∧L t) = p2(x ∧L t) 6 p(x ∧p(L) t) 6 p(x ∧L t).

Hence, p(x ∧L t) = p(x ∧p(L) t). �

Theorem 4.14 Let L be a meet uniform continuous poset and p : L → L a uniform continuous

projection. Then p(L) in the inherited order is meet uniform continuous.

Proof Let x ∈ p(L) and S a uniform subset of p(L). By the meet uniform continuity of L,

Theorem 3.8 and Lemma 4.13, p(L) is uniform complete and x∧p(L) (
∨

p(L) S) = x∧L (
∨

L S) =∨
L{x ∧L s | s ∈ S} =

∨
p(L){x ∧p(L) s | s ∈ S}. By Theorem 3.8, p(L) in the inherited order is

also a meet uniform continuous poset. �

5. Concluding remarks

The Scott topology, as an intrinsic topology, is of fundamental importance in domain theory.

The concept of meet continuous dcpos was successfully defined [4] by the Scott topology. To give

more characterizations of uniform continuous posets, we introduce the concept of meet uniform

continuous posets via the uniform Scott sets which are some special Scott open sets. Though

the uniform Scott sets of a poset is not a topology, they indeed form a semi-topology in some

sense and play roles in characterizing (meet) uniform continuous posets similar to that of Scott

open sets in characterizing (meet) continuous posets. We see that a uniform complete poset

L is meet uniform continuous if L1 obtained by adjoining a top element 1 to L is a complete

Heyting algebra and that finite products and images of uniform continuous projections of meet

uniform continuous posets are still meet uniform continuous. We also gave characterizations of

meet uniform continuous posets by some kind of distributivity, principal ideals, principal filters

and closed intervals. It is proved (Theorem 3.8) that a uniform complete poset L is meet uniform

continuous iff for each x ∈ L and each uniform subset S, one has x∧
∨

S =
∨
{x∧s | s ∈ S}. It is

also established (Theorem 4.6) that a uniform complete poset is meet uniform continuous iff every

principal ideal is meet uniform continuous iff all closed intervals are meet uniform continuous iff

all principal filters are meet uniform continuous.

It is expected in the future that the ideas and methods in this paper can be used to study

countable uniform sets and other related topics [11–15].
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