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Abstract We introduce the class of split regular Hom-Poisson color algebras as the natural

generalization of split regular Hom-Poisson algebras and the one of split regular Hom-Lie color

algebras. By developing techniques of connections of roots for this kind of algebras, we show

that such a split regular Hom-Poisson color algebras A is of the form A = U +
∑

α Iα with U a

subspace of a maximal abelian subalgebra H and any Iα, a well described ideal of A, satisfying

[Iα, Iβ ] + IαIβ = 0 if [α] ̸= [β]. Under certain conditions, in the case of A being of maximal

length, the simplicity of the algebra is characterized.
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1. Introduction

As generalizations of Lie algebras, Hom-Lie algebras were introduced motivated by applica-

tions to physics and to deformations of Lie algebras, especially Lie algebras of vector fields. The

notion of Hom-Lie algebras was firstly introduced by Hartwig, Larsson and Silvestrov to describe

the structure of certain q-deformations of the Witt and the Virasoro algebras [1]. More precisely,

a Hom-Lie algebras are different from Lie algebras as the Jacobi identity is replaced by a twisted

form using a morphism.

The twisting of parts of the defining identities was transferred to other algebraic struc-

tures. Makhlouf and Silvestrov [2, 3] introduced the notions of Hom-associative algebras, Hom-

coassociative coalgebras, Hom-bialgebras and Hom-Hopf algebras. The original definition of a

Hom-bialgebra involved two linear maps, one twisting the associativity condition and the oth-

er one twisting the coassociativity condition. In the case of Hom-Lie algebras, the relevant

structure for a tensor theory is a Hom-Poisson algebra structure. A Hom-Poisson algebra has

simultaneously a Hom-Lie algebra structure and a Hom-associative algebra structure, satisfying

the Hom-Leibniz identity in [4]. Yuan [5] introduced the notations of Hom-Lie color algebras and

presented the methods to construct these color algebras, which can be viewed as an extension of

Hom-Lie algebras to Γ-graded algebras, where Γ is any abelian group.

The class of the split algebras is specially related to addition quantum numbers, graded

contractions and deformations. For instance, for a physical system which displays a symmetry, it
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is interesting to know in detail the structure of the split decomposition because its roots can be

seen as certain eigenvalues which are the additive quantum numbers characterizing the state of

such system. Determining the structure of split algebras will become more and more meaningful

in the area of research in mathematical physics. Recently, the structure of different classes of

split algebras have been determined by the techniques of connections of rootsin [6–15]. The

purpose of this paper is to consider the class of split regular Hom-Poisson color algebras as the

natural extension of one of split regular Hom-Lie color algebras.

In Section 2, we show that such an arbitrary split regular Hom-Poisson color algebras A is

of the form A = U +
∑

α Iα with U a subspace of a maximal abelian subalgebra H and any Iα,

a well described ideal of A, satisfying [Iα, Iβ ] + IαIβ = 0 if [α] ̸= [β].

In Section 3, we show that under certain conditions, in the case of A being of maximal length,

the simplicity of the algebra is characterized.

Throughout this paper, we will denote by N the set of all nonnegative integers and by Z the

set of all integers. Split regular Hom-Poisson color algebras are considered of arbitrary dimension

and over an arbitrary base field K.

2. Decomposition

Definition 2.1 ([5]) Let Γ be an abelian group. A bi-character on Γ is a map ε : Γ×Γ → K\{0}
satisfying

(1) ε(α, β)ε(β, α) = 1;

(2) ε(α, β + γ) = ε(α, β)ε(α, γ);

(3) ε(α+ β, γ) = ε(α, γ)ε(β, γ), for all any α, β ∈ Γ.

Definition 2.2 ([5]) A Hom-Lie color algebra is a quadruple (L, [·, ·], ϕ, ε) consisting of a Γ-

graded space L, an even bilinear mapping [·, ·] : L× L → L, a homomorphism ϕ : L → L and a

bi-character ε on Γ satisfying the following conditions,

[x, y] = −ε(x, y)[y, x],

ε(z, x)[ϕ(x), [y, z]] + ε(x, y)[ϕ(y), [z, x]] + ε(y, z)[ϕ(z), [x, y]] = 0,

for all homogeneous elements x, y, z ∈ L, x, y, z denote the homogeneous degree of x, y, z. When

ϕ is an algebra automorphism it is said that L is a regular Hom-Lie color algebra.

Definition 2.3 A Hom-Poisson color algebra is a Hom-Lie color algebra (A, [·, ·], ϕ, ε) endowed
with a Hom-associative color product, that is, a bilinear product denoted by juxtaposition such

that

ϕ(x)(yz) = (xy)ϕ(y),

for all x, y, z ∈ A, and such that the Hom-Leibniz color identity

[xy, ϕ(z)] = ϕ(x)[y, z] + ε(y, z)[x, z]ϕ(y)

holds for any x, y, z ∈ A, y, z denote the homogeneous degree of y, z.
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If ϕ is furthermore a Poisson automorphism, that is, a linear bijective on such that ϕ([x, y]) =

[ϕ(x), ϕ(y)] and ϕ(xy) = ϕ(x)ϕ(y) for any x, y ∈ A, then A is called a regular Hom-Poisson color

algebra.

Example 2.4 Let (A,µ, [·, ·], ε) be a Poisson color algebra and ϕ : A → A be a Possion color

algebra automorphism, If we endow the underlying linear space A with new products [·, ·]′, µ′

defined by [x, y]′ = ϕ[x, y], µ′(x⊗y) = ϕ◦µ(x⊗y) for any x, y ∈ A, we have that (A,µ′, [·, ·]′, ϕ, ε)
becomes a regular Hom-Poisson color algebra.

A subalgebra H of A is a graded subspace H = ⊕g∈ΓHg such that [H,H] + HH ⊂ A and

ϕ(H) = H. A graded subspace I = ⊕g∈ΓIg of A is called an ideal if [I, A] + IA + AI ⊂ I and

ϕ(I) = I. A Hom-Poisson color algebra A will be called simple if [A,A] + AA ̸= 0 and its only

ideals are {0} and A.

We recall from [14] that a Hom-Lie color algebra (A, [·, ·], ϕ, ε) and a maximal abelian subal-

gebra H of A, for a linear functional

α : H0 → K,

we define the root space of A associated to α as the subspace

Aα := {vα ∈ A : [h0, ϕ(vα)] = α(h)ϕ(vα), for any h0 ∈ H0}.

The elements α : H0 → K satisfying Aα ̸= 0 are called roots of A with respect to H and we

denote Λ := {α ∈ (H0)
∗/{0} : Aα ̸= 0}. We say that A is a split regular Hom-Lie color algebra

with respect to H if

A = H ⊕
⊕
α∈Λ

Aα.

We also say that Λ is the root system of A.

To ease notation, the mappings ϕ|H , ϕ−1|H : H → H will be denoted by ϕ and ϕ−1.

We recall some properties of split regular Hom-Lie color algebras that can be found in [14].

Lemma 2.5 Let (A, [·, ·], ϕ, ε) be a split regular Hom-Lie color algebra. Then for any α, β ∈
Λ ∪ {0},

(1) ϕ(Aα) = Aαϕ−1 , ϕ−1(Aα) = Aαϕ;

(2) [Aα, Aβ ] ⊂ Aαϕ−1+βϕ−1 ;

(3) If α ∈ Λ, then αϕ−z ∈ Λ for any z ∈ Z;
(4) A0 = H.

Lemma 2.6 Let A be a split regular Hom-Poisson color algebra. Then for any α, β ∈ Λ ∪ {0},
we have AαAβ ⊂ Aαϕ−1+βϕ−1 .

Proof Let h0 ∈ H0, vα ∈ Aα and vβ ∈ Aβ . We can write

[h0, vαvβ ] = [ϕϕ−1(h0), vαvβ ],

and denote h′
0 = ϕ−1(h0). By applying the Hom-Leibniz color identity, we get

[ϕϕ−1(h0), vαvβ ] = [ϕ(h′
0
), vαvβ ]
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= −ε(h0, vβ)[vα, h
′]ϕ(vβ)− ϕ(vα)[vβ , h

′]

= [h′, vα]ϕ(vβ) + ϕ(vα)[h
′, vβ ]

= [ϕ−1(h), vα]ϕ(vβ) + ϕ(vα)[ϕ
−1(h), vβ ]

= αϕ−1(h)ϕ(vα)ϕ(vβ) + βϕ−1(h)ϕ(vα)ϕ(vβ)

= (αϕ−1 + βϕ−1)(h)ϕ(vα)ϕ(vβ).

That is AαAβ ⊂ Aαϕ−1+βϕ−1 . �
In the following, A denotes a split regular Hom-Poisson color algebra and

A = H ⊕ (
⊕
α∈Λ

Aα)

the corresponding root spaces decomposition. Given a linear functional α : H0 → K, we denote

by −α : H0 → K the element in H∗
0 defined by (−α)(h0) := −α(h0). We also denote by

−Λ := {−α : α ∈ Λ} and ± Λ : Λ ∪ (−Λ).

Example 2.7 Let A = H ⊕ (
⊕

α∈Γ Aα) be a split Possion color algebra, ϕ : A → A an

automorphism such that ϕ(H) = H. By Example 2.4, we know that (A,µ′, [·, ·]′, ϕ, ε) is a regular

Hom-Possion color algebra. Then we have

A = H ⊕ (
⊕
α∈Γ

Aαϕ−1)

makes of the regular Hom-Possion color algebra (A,µ′, [·, ·]′, ϕ, ε) being the roots system Λ =

{αϕ−1 : α ∈ Γ}.

Definition 2.8 Let α, β ∈ Λ. We will say that α is connected to β if either

β = ϵαϕz for some z ∈ Z and ϵ ∈ {−1, 1}

or there exists {α1, · · ·, αk} ⊂ ±Λ with k ≥ 2, such that

(1) α1 ∈ {αϕ−n : n, r ∈ N}.
(2) α1ϕ

−1+α2ϕ
−1 ∈ ±Λ, α1ϕ

−2+α2ϕ
−2+α3ϕ

−1 ∈ ±Λ, α1ϕ
−3+α2ϕ

−3+α3ϕ
−2+α4ϕ

−1 ∈
±Λ, . . ., α1ϕ

−i + α2ϕ
−i + α3ϕ

−i+1 + · · ·+ αiϕ
−2 + αi ∈ ±Λ, α1ϕ

−k+2 + α2ϕ
−k+2 + α3ϕ

−k+3 +

· · ·+ αk−2ϕ
−2 + αk−1ϕ

−1 ∈ ±Λ.

(3) α1ϕ
−k+1+α2ϕ

−k+1+α3ϕ
−k+2+ · · ·+αiϕ

−k+i−1+ · · ·+αk−1ϕ
−2+αkϕ

−1 ∈ {±βϕ−m :

m ∈ N}.
We will also say that {α1, . . . , αk} is a connection from α to β.

The proof of the next result is analogous to the one of [14] . For the sake of completeness,

we give a sketch of the proof. �

Proposition 2.9 The relation ∼ in Λ, defined by α ∼ β if and only if α is connected to β, is

an equivalence relation.

Proof If α ∼ β, then either β = ϵαϕz for some z ∈ Z and ϵ ∈ {−1, 1}, and so β is connected to
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α; or there exists {α1, . . . , αk} ⊂ ±Λ with k ≥ 2, from α to β with

α1ϕ
−k+1 + α2ϕ

−k+1 + α3ϕ
−k+2 + · · ·+ αiϕ

−k+i−1 + · · ·+ αkϕ
−1 = ϵβϕ−m,

for some m, s ∈ N, ϵ ∈ {−1, 1}. Then we can verify that

{βϕ−m,−ϵαkϕ
−1,−ϵαk−1ϕ

−3,−ϵαk−2ϕ
−5, . . . ,−ϵα2ϕ

−2k+3}

is a connection from β to α and the relation ∼ is symmetric.

Finally, suppose α ∼ β and β ∼ γ. If β = ϵαϕz for some z ∈ Z, ϵ ∈ {−1, 1} and γ = ϵ′αϕz′

for some z′ ∈ Z, ϵ′ ∈ {−1, 1}, it is clear that α ∼ γ. Hence suppose {α1, . . . , αk} with k ≥ 2 is a

connection from α to β which satisfies

α1ϕ
−k+1 + α2ϕ

−k+1 + · · ·+ αkϕ
−1 = ϵβϕ−m

for some m ∈ N, ϵ ∈ {−1, 1}, and {h1, . . . , hp} is a connection from β to γ. Then {α1, . . . , αk,

ϵh2, . . . , ϵhp} is connection from α to γ, so the connection relation is also transitive. �
By Proposition 2.9 we can consider the quotient set

Λ/ ∼= {[α] : α ∈ Λ},

with [α] being the set of nonzero roots which are connected to α. Our next goal is to associate

an ideal I[α] to [α]. Fix [α] ∈ Λ/ ∼, we start by defining

IH,[α] = spanK{[Aβϕ−1 , A−βϕ−1 ] +Aβϕ−1A−βϕ−1 : β ∈ [α]}.

Now we define

V[α] :=
⊕
β∈[α]

Aβ .

Finally, we denote by I[α] the direct sum of the two subspaces above:

I[α] := IH,[α] ⊕ V[α].

Proposition 2.10 For any [α] ∈ Λ/ ∼, the following assertions hold.

(1) [I[α], I[α]] + I[α]I[α] ⊂ I[α];

(2) ϕ(I[α]) = I[α];

(3) For any [β] ̸= [α], we have [I[α], I[β]] + I[α]I[β] = 0.

Proof (1) First we check that [I[α], I[α]] ⊂ I[α], we can write

[I[α], I[α]] = [IH,[α] ⊕ V[α], IH,[α] ⊕ V[α]]

⊂ [IH,[α], V[α]] + [V[α], IH,[α]] + [V[α], V[α]]. (2.1)

Given β ∈ [α], we have [IH,[α]] ⊂ Aβϕ−1 . Since βϕ−1 ∈ [α], we have [IH,[α], Aβ ] ⊂ V[α]. In a

similar way we get [Aβ , IH,α] ⊂ V[α]. Next we consider [V[α], V[α]]. If we take β, γ ∈ [α] such that

[Aβ , Aγ ] ̸= 0, then [Aβ , Aγ ] ⊂ Aβϕ−1+γϕ−1 . If βϕ−1 + γϕ−1 = 0 we have [Aβ , A−γ ] ⊂ H and so

[Aβ , A−γ ] ⊂ IH,[α]. Suppose that βϕ−1 + γϕ−1 ∈ Λ. We have that {β, γ} is connection from β

to βϕ−1 + γϕ−1. The transitivity of ∼ gives now that βϕ−1 + γϕ−1 ∈ [α] and so [Aβ , Aγ ] ⊂ V[α].
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Hence

[V[α], V[α]] ∈ I[α]. (2.2)

From (2.1) and (2.2), we get [I[α], I[α]] ⊂ I[α].

Second, we will check that I[α]I[α] ⊂ I[α]. We have

I[α]I[α] = (IH,[α] ⊕ V[α])(IH,[α] ⊕ V[α])

⊂ IH,[α]IH,[α] + IH,[α]V[α] + V[α]IH,[α] + V[α]V[α]. (2.3)

By arguing as above, we have

IH,[α]V[α] + V[α]IH,[α] + V[α]V[α] ⊂ IH,[α].

Hence, it just remains to check that IH,[α]IH,[α], observe that

IH,[α]IH,[α] ⊂
( ∑

β∈[α]

[Aβϕ−1 , A−βϕ−1 ] +Aβϕ−1A−βϕ−1

)
H

⊂
( ∑

β∈[α]

[Aβϕ−1 , A−βϕ−1 ]
)
H +

( ∑
β∈[α]

Aβϕ−1A−βϕ−1

)
H. (2.4)

Consider the first summand on the right hand side of (2.4). By Hom-Leibniz color identity, we

have

[Aβϕ−1 , A−βϕ−1 ]ϕϕ−1(H)

⊂ [A−βϕ−1ϕ−1(H), ϕ(A−βϕ−1)] + ϕ(Aβϕ−1)[ϕ−1(H), ϕϕ−1(A−βϕ−1)]

⊂ [A−βϕ−2 , A−βϕ−2 ] +Aβϕ−2A−βϕ−2 ⊂ IH,[α].

Next we consider the last summand on the right hand side of (2.4). By Hom-associativity, we

have

(Aβϕ−1A−βϕ−1)ϕ(ϕ−1(H)) = ϕ(Aβϕ−1)(A−βϕ−1ϕ−1(H))

⊂ Aβϕ−1ϕ−1A−βϕ−1ϕ−1 ⊂ IH,[α].

(2) It is easy to check that ϕ(I[α]) = I[α].

(3) We will study the expression [I[α], I[β]] + I[α]I[β]. Observe that

[I[α], I[β]] = [IH,[α] ⊕ V[α], IH,[β] ⊕ V[β]]

⊂ [IH,[α], V[β]] + [V[α], IH,[β]] + [V[α], V[β]], (2.5)

and

I[α]I[β] = (IH,[α] ⊕ V[α])(IH,[β] ⊕ V[β])

⊂ IH,[α]IH,[β] + IH,[α]V[β] + V[α]IH,[β] + V[α]V[β]. (2.6)

First we consider [V[α], V[β]] + V[α]V[β] and suppose there exist α1 ∈ [α] and β1 ∈ [β] such

that [Aα1 , Aβ1 ] + Aα1Aβ1 ̸= 0. As necessarily α1ϕ
−1 ̸= −β1ϕ

−1, then α1ϕ
−1 + β1ϕ

−1 ∈ Λ.

So {α1, β1,−α1ϕ
−1} is a connection between α1 and β1. By the transitivity of the connection

relation we have α ∈ [β], a contradicition. Hence [Aα1 , Aβ1 ] +Aα1Aβ1 = 0 and so

[V[α], V[β]] + V[α]V[β] = 0.



On split regular Hom-Poisson color algebras 501

Next we consider the first summand [IH,[α], V[β]] on the right hand side of (2.5) and the second

one IH,[α]V[β] of (2.6), and suppose there exist α1 ∈ [α] and β1 ∈ [β] and such that

[[Aα1 , A−α1 ], Aβ1 ] + [Aα1A−α1 , Aβ1 ] + [Aα1 , A−α1 ]Aβ1 + (Aα1A−α1)Aβ1 ̸= 0.

Then some of the four summands are different from zero.

If [[Aα1 , A−α1 ], Aβ1 ] ̸= 0, then Hom-Leibniz identity gives

0 ̸= [[Aα1 , A−α1 ], ϕϕ
−1(Aβ1)]

⊂ [[Aα1 , ϕ
−1(Aβ1)], ϕ(A−α1)] + [ϕ(Aα1), [A−α1 , ϕ

−1(Aβ1)]]

⊂ [[Aα1 , ϕ
−1(Aβ1)], ϕ(A−α1)] + [[A−α1 , ϕ

−1(Aβ1)], ϕ(Aα1)].

Hence

[Aα1 , ϕ
−1(Aβ1)] + [A−α1 , ϕ

−1(Aβ1)] ̸= 0

which contradicts (2.6). Hence, [[Aα1 , A−α1 ], Aβ1 ] = 0.

If the second, third or fourth summand were nonzero, we can argue as above but using

the Hom-Leibniz or Hom-associativity color identities to show that these products are zero.

Consequently,

[IH,[α], V[β]] + IH,[α]V[β] = 0.

In a similar way we prove that the remaining summands in (2.5) and (2.6) are zero, and the

proof is completed. �

Proposition 2.11 For any [α] ∈ Λ/ ∼, we have IH,[α]H +HIH[α] ∈ IH[α].

Proof Fix any β ∈ [α]. On the one hand, by the Hom-Leibniz color identity, we get

[Aβ , A−β ]H +H[Aβ , A−β ] ∈ IH[α].

On the other hand, by Hom-associativity

(AβA−β)H +H(AβA−β) ∈ IH[α]. �

Theorem 2.12 (1) For any [α] ∈ Λ/ ∼, the linear space I[α] = IH,[α] + V[α] of A associated to

[α] is an ideal of A.

(2) If A is simple, then there exists a connection from α to β for any α, β ∈ Λ and H =∑
α∈Λ([Aαϕ−1 , A−αϕ−1 ] +Aαϕ−1A−αϕ−1).

Proof (1) Since [I[α],H] ⊂ I[α], by Proposition 2.10 we have

[I[α], A] =
[
I[α],H ⊕

( ⊕
β∈[α]

Aβ

)
⊕
( ⊕

γ∈[α]

Aγ

)]
⊂ I[α].

By Propositions 2.10 and 2.11, we have

I[α]A+AI[α] =I[α]

(
H ⊕

( ⊕
β∈[α]

Aβ

)
⊕
( ⊕

γ /∈[α]

Aγ

))
+

(
H ⊕

( ⊕
β∈[α]

Aβ)⊕
( ⊕

γ /∈[α]

Aγ

))
I[α] ⊂ I[α].
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As we also have ϕ(I[α]) = I[α]. So we conclude I[α] is an ideal of A.

(2) The simplicity of A implies I[α] = A. From here, it is clear that [α] = Λ and H =∑
α∈Λ([Aαϕ−1 , A−αϕ−1 ] +Aαϕ−1A−αϕ−1). �

Theorem 2.13 We have

A = U +
∑

[α]∈Λ/∼

I[α],

where U is a linear complement in H of spanK{[Aαϕ−1 , A−αϕ−1 ] + Aαϕ−1A−αϕ−1 : α ∈ Λ} and

any I[α] is one of the ideals of A described in Theorem 2.12, satisfying [I[α], I[β]] + I[α]I[β] = 0 if

[α] ̸= [β].

Proof I[α] is well defined and an ideal of A, being clear that

A = H ⊕
∑
[α]∈Λ

A[α] = U +
∑

[α]∈Λ/∼

I[α].

Finally, Proposition gives us [I[α], I[β]] + I[α]I[β] = 0 if [α] ̸= [β]. �
Let us denote by Z(A) := {v ∈ A : [v,A] + vA+Av = 0} the center of A.

Corollary 2.14 If Z(A) = 0 and H =
∑

α∈Λ([Aαϕ−1 , A−αϕ−1 ] +Aαϕ−1A−αϕ−1). Then A is the

direct sum of the ideals given in Theorem 2.12,

A =
⊕

[α]∈Λ/∼

I[α],

Furthermore [I[α], I[β]] + I[α]I[β] = 0 if [α] ̸= [β].

Proof Since H =
∑

α∈Λ([Aαϕ−1 , A−αϕ−1 ] +Aαϕ−1A−αϕ−1), we get A =
∑

[α]∈Λ/∼ I[α]. Finally,

to verify the direct character of the sum, take some v ∈ I[α] ∩ (
∑

[β]∈Λ/∼,[β ]̸=[α] I[β]). Since

v ∈ I[α], the fact [I[α], I[β]] + I[α]I[β] = 0 when [α] ̸= [β] gives us

[v,
∑

[β]∈Λ/∼,[β ]̸=[α]

I[β]] + v
( ∑

[β]∈Λ/∼,[β ]̸=[α]

I[β]

)
+
( ∑

[β]∈Λ/∼,[β] ̸=[α]

I[β]

)
v = 0.

In a similar way, since v ∈
∑

[β]∈Λ/∼,[β] ̸=[α] I[β], we have [v, I[α]] + vI[α] + I[α]v = 0. That is

v ∈ Z(A) and so v = 0. �

3. The simple components

In this section we focus on the simplicity of split regular Hom-Poisson color algebras by

centering our attention in those of maximal length, we recall that a roots system Λ of a split

regular Hom-Poisson color algebra A is called symmetric if it satisfies that α ∈ Λ implies −α ∈ Λ.

From now on we will suppose Λ is symmetric.

Observe the grading of I, we have

I = ⊕g∈ΓIg =
⊕
g∈Γ

(Ig ∩Hg)⊕
(⊕

α∈Λ

(Ig ∩Aα,g)
)
.

Lemma 3.1 Suppose H =
∑

α∈Λ([Aαϕ−1 , A−αϕ−1 ] +Aαϕ−1A−αϕ−1). If I is an ideal of A such
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that I ⊂ H, then I ⊂ Z(A).

Proof Observe that [I,H] ⊂ [H,H] = 0 and[
I,

⊕
α∈Λ

Aα

]
+ I

(⊕
α∈Λ

Aα

)
+
(⊕

α∈Λ

Aα

)
I ⊂ I ∩

(⊕
α∈Λ

Aα

)
⊂ H ∩

(⊕
α∈Λ

Aα

)
= 0.

Since H =
∑

α∈Λ([Aαϕ−1 , A−αϕ−1 ] +Aαϕ−1A−αϕ−1), by the Hom-Leibniz color identity and the

above observation, that HI + IH = 0. So I ⊂ Z(A).

In a similar way, we use the notions of [14], for each g ∈ Γ, we denote Λg := {α ∈ Λ : Lα,g ̸=
0}.

Definition 3.2 A split regular Hom-Poisson color algebra A is root multiplicative if α ∈ Λgi , β ∈
Λgj with gi, gj ∈ Γ such that α+ β ∈ Λ, then [Aα,gi , Aβ,gj ] +Aα,giAβ,gj ̸= 0.

Definition 3.3 A split regular Hom-Poisson color algebra A is of maximal length if dimAκα,κg =

1 for any α ∈ Λg, κ ∈ {−1, 1} and g ∈ Γ.

Observe that if A is of maximal length, then we have

I = ⊕g∈Γ((Ig ∩Hg)⊕ (⊕α∈Λ′(Ig ∩Aα,g)), (3.1)

where Λ′
g = {α ∈ Λ : Ig ∩Aα,g ̸= 0}.

Theorem 3.4 Let A be a split regular Hom-Poisson color algebra of maximal length and

root multiplicative. Then A is simple if and only if Z(A) = 0, H =
∑

α∈Λ([Aαϕ−1 , A−αϕ−1 ] +

Aαϕ−1A−αϕ−1) and Λ has all of its elements connected.

Proof Suppose A is simple. Since Z(A) is an ideal of A, we have Z(A) = 0. Now Theorem

2.12(2) completes the proof of the direct implication. To prove the converse, consider a nozero

ideal of A. By (3.1), we can write I = ⊕g∈Γ((Ig ∩Hg)⊕ (⊕α∈Λ′(Ig ∩Aα,g)), where Λ
′
g ⊂ Λg, and

some Λ′
g ̸= ∅ as consequence of Lemma 3.1. Let us fix some α0 ∈ Λ′

i
with 0 ̸= Aα0,g ⊂ I. Since

ϕ(I) = I, we can obtain that

if α ∈ Λ′, then {αϕz : z ∈ Z} ⊂ Λ′. (3.2)

In particular

{Aα0ϕz,g : z ∈ Z} ⊂ I. (3.3)

Now, let us take any β ∈ Λ satisfying β /∈ {α0ϕ
z : z ∈ Z}. Since α0 and β are connected, we

have a connection {α1, . . . , αk}, k ≥ 2, from α0 to β satisfying:

α1 = α0ϕ
−n : n ∈ N,

α1ϕ
−1 + α2ϕ

−1 ∈ Λ,

α1ϕ
−2 + α2ϕ

−2 + α3ϕ
−1 ∈ Λ,

α1ϕ
−3 + α2ϕ

−3 + α3ϕ
−2 + α4ϕ

−1 ∈ Λ,

· · ·

α1ϕ
−i + α2ϕ

−i + α3ϕ
−i+1 + · · ·+ αiϕ

−2 + αi+1ϕ
−1 ∈ Λ,
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α1ϕ
−k+2 + α2ϕ

−k+2 + α3ϕ
−k+3 + · · ·+ αk−2ϕ

−2 + αk−1ϕ
−1 ∈ Λ

α1ϕ
−k+1 + α2ϕ

−k+1 + α3ϕ
−k+2 + · · ·+ αiϕ

−k+i−1 + · · ·+

αk−1ϕ
−2 + αkϕ

−1 = ϵβϕ−m : m ∈ N.

Taking into account that α1, α2 ∈ Λ, there exists g1 ∈ Γ such that Aα2,g1 ̸= 0. From here, the

root multiplicativity and maximal length of A allow us to assert that either 0 ̸= [Aα1,g, Aα2,g1 ] =

Aα1ϕ−1+α2ϕ−1,g+g1 or 0 ̸= Aα1,gAα2,g1 +Aα2,g1Aα1,g = Aα1ϕ−1+α2ϕ−1,g+g1 .

Since 0 ̸= Aα1,g ⊂ I, as a consequence of (3.3) we get

0 ̸= Aα1ϕ−1+α2ϕ−1,g+g1 ⊂ I.

A similar argument applied to α1ϕ
−1 + α2ϕ

−1, α3, and

(α1ϕ
−1 + α2ϕ

−1)ϕ−1 + α3ϕ
−1 = α1ϕ

−2 + α2ϕ
−2 + α3ϕ

−1

gives us 0 ̸= Aα1ϕ−2+α2ϕ−2+α3ϕ−1,g2 ⊂ I with g2 ∈ Γ. We can follow this process with the

connection {α1, . . . , αk} to get

0 ̸= Aα1ϕ−k+1+α2ϕ−k+1+···+αkϕ−1,g3 ⊂ I

and then

either Aβϕ−m,g3 ⊂ I or A−βϕ−m,g3 ⊂ I.

From (3.2) and (3.3), we have

either Aαϕ−z,g3 ⊂ I or A−αϕ−z,g3 ⊂ I.

This can be reformulated by saying that for any α ∈ Λ, either {αϕ−z} or {−αϕ−z} is contained

in ΛI . Taking now into account H =
∑

α∈Λ([Aαϕ−1 , A−αϕ−1 ] +Aαϕ−1A−αϕ−1), we have

H ⊂ I. (3.4)

Now for any α ∈ Λ, since Aα = [H,Aαϕ] by the maximal length of A, (3.4) gives us Aα ⊂ I and

so A = I. That is, A is simple. �

Theorem 3.5 Let A be a split regular Hom-Poisson color algebra of maximal length and root

multiplicative with Z(A) = 0 satisfying H =
∑

α∈Λ([Aαϕ−1 , A−αϕ−1 ] +Aαϕ−1A−αϕ−1). Then

A =
⊕

[α]∈Λ/∼

I[α],

where any I[α] is a simple split ideal having its roots system ΛI[α]
, with all of its elements ΛI[α]

-

connected.

Proof By Corollary 2.14, we can write A as the direct sum
⊕

[α]∈Λ/∼ I[α] of the family of ideals

I[α] = IH,[α] ⊕ V[α] = spanK{[Aβϕ−1 , A−βϕ−1 ] +Aβϕ−1A−βϕ−1 : β ∈ [α]} ⊕β∈[α] Aβ ,

where each I[α] is a split regular Hom-Poisson color algebra with root system AI[α]
= [α]. To make

use of Theorem 3.4 in each I[α], we observe that the root multiplicativity of A and Proposition 2.11

show that AI[α]
has all of its elements AI[α]

connected, that is, connected through connections
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contained in AI[α]
. Moreover, each I[α] is root multiplicative by the root multiplicativity of

A. So we obtain I[α] is of maximal length, and finally its center Z(I[α]) = 0 as consequence

[Iα, Iβ ] + IαIβ = 0 if [α] ̸= [β]. Applying Theorem 3.4, we have that I[α] is simple and A =⊕
[α]∈Λ/∼ I[α]. �
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