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Abstract Considered here is the periodic Cauchy problem for an integrable Hunter-Saxton

equation with a dispersive term. Firstly, we derive a precise blow-up criterion of strong solutions

to the equation. Secondly, sufficient conditions guaranteeing the development of breaking waves

in finite time are demonstrated by applying some conservative quantities and the method of

characteristics, respectively. Finally, the exact blow-up rate is determined.
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1. Introduction

The nonlinear partial differential equations of second order of the general form [1]

uxt = u+ c0u
2 + c1uux + c2uuxx + c3u

2
x + d0u

3 + d1u
2ux + d2u

2uxx + d3uu
2
x (1.1)

are of interest and physically, they are always found in the description of the short-wave behavior

of nonlinear systems. Recently, Hone, Novikov and Wang show that when having an infinite hi-

erarchy of local higher symmetries, the form (1.1) contains many interesting equations, especially

some valuable integrable ones up to scaling transform.

For instance, in case that cj = 0, j = 0, 1, 2, 3 and d0 = d1 = 0, d3 = 2d2, the form (1.1)

becomes the short-pulse equation

uxt = u+ (u3)xx,

which was first proposed as an equation for pseudo-spherical surfaces with an associated inverse

scattering problem [2, 3]. Later, Schäfer and Wayne in [4] derived it as a model of ultra-short

optical pulses in nonlinear media. Mathematical properties of the short-pulse equation were

studied recently in details, including the construction of the Lax pair, recursion operator, bi-

Hamiltonian structure and the non-existence of smooth traveling wave solutions [4–6], the local

and global well-posednesses in energy space [4, 7], and the blow-up phenomena both on the line

and in the periodic domain [8].
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The second interesting member of the form (1.1) is the Ostrovsky-Hunter equation

uxt = u+ (u2)xx, (1.2)

which was derived by Vakhnenko [9] as a model for the propagation of short-wave perturbations

in a relaxing medium. It models small-amplitude long waves in rotating fluids of finite depth,

under the assumption of no-high frequency dispersion [10]. Eq. (1.2) has some different names,

such as the Vakhnenko equation [11], the short-wave equation [12], and the reduced Ostrovsky

equation [13]. Local existence of solutions of the Ostrovsky-Hunter equation in Hs(R) for s >

3/2 was obtained in [14]. Then sufficient conditions for the wave breaking of the Ostrovsky-

Hunter equation on an infinite line and in a periodic domain were both given in [15]. They also

specified the blow-up rate of the wave breaking based on the method of characteristics. Grimshaw

and Pelinovsky [16] proved global existence of small-norm solutions in H3(R) by using a new

transformation of equation (1.2) to the integrable Tzitzéica equation.

The third interesting member of the form (1.1) is the equation

uxt = u+ 2uuxx + u2
x, (1.3)

which is one of the integrable generalized short-pulse equation and its integrability has been

studied by Hone, Novikov and Wang in [1]. It possesses an infinite hierarchy of local higher

symmetries and the first higher symmetry is

uτ =
u3x

(1 + 4u2x)3/2
.

The symmetries of equation (1.3) can be generated by a recursion operator

ℜ = HDx = (
1

1 + 4uxx
Dx +Dx

1

1 + 4uxx
− 8uτD

−1
x uτ )Dx,

where Dx is a symplectic operator satisfying Dxuτ = −1
4δu

√
1 + 4uxx, and the operator H and

D−1
x form a compatible Hamiltonian pair. Furthermore, Eq. (1.3) admits the following lax pair

Φx =

(
0 1 + 4uxx

−λ 0

)
Φ, Φt =

(
ux − 1

4λ + 2u+ 8uuxx

1
4 − 2λu −ux

)
Φ.

Hone, Novikov and Wang [1] showed that Eq. (1.3) can be considered as a short-wave limit of

the Camassa-Holm equation. Taking its x derivative, we can get

mt = 2umx + 4uxm, m = 1 + 4uxx,

which shares the same form with the Camassa-Holm (CH) equation (in the case m = u −
uxx). The Camassa-Holm (CH) equation was proposed as a model describing the uni-directional

propagation of the shallow water waves over a flat bottom, where u(t, x) represents the free surface

of shallow water in nondimensional variables or wave speed [17]. The CH equation has a number

of remarkable properties, including complete integrability, wave-breaking, etc. (see [18–26] and

the references therein).

Eq. (1.3) can also be considered as the Hunter-Saxton (HS) equation with a dispersion term

u (see [27]). In fact, dropping the dispersion term u from right-hand side of (1.3) and replacing
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u with 1
2u, we can get the following HS equation

(ut + uux)x =
1

2
u2
x,

which was derived by Hunter and Saxton [28] as an asymptotic model of liquid crystals. It

was shown that the x derivative of the HS equation corresponds to geodesic flow on an infinite-

dimensional homogeneous space with constant positive curvature [29]. The HS equation is com-

pletely integrable [30,31] and has a bi-Hamiltonian structure [28,32]. The initial value problems

for the HS equation on the line and the circle were studied in [28, 33]. Global solutions of the

HS equation was investigated in [34].

Recently, Li and Yin [27] studied the periodic Cauchy problem of Eq. (1.3). A precise blow-up

criterion and a blow-up result of strong solutions to the Eq. (1.3) were established. They also

present its travelling wave solutions by using the travelling wave solutions of the sinh-Gordon

equation and a period stretch between these two equations.

By setting u → −u, Eq. (1.3) becomes

uxt = u− 2uuxx − u2
x. (1.4)

The goal of the present paper is to consider the behavior of solutions to the Cauchy problem of

Eq. (1.4), i.e., 
uxt = u− 2uuxx − u2

x, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,
u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R.

(1.5)

It is worth mentioning that here we take a different method from that used in [27]. The first

step is to establish a wave-breaking criterion. The theory of transport equations implies that

the solution u will not blow up as long as the slope of the velocity, i.e., ux remains bounded,

while the solution blows up in finite time when the slope ux is unbounded from blow. Then we

try to find conditions of the initial data which can guarantee the wave breaking in finite time

by the conservative quantities. Furthermore, applying the method of characteristics, a sufficient

condition for the wave breaking in the Cauchy problem (1.5) that is different from the sufficient

conditions of Theorem 2.3 is established. The blow-up rate at which the waves break is also

specified consequently.

The remainder of the paper is organized as follows. Section 2 gives a sufficient condition for

wave breaking. The blow-up rate of the wave breaking is studied in Section 3 and the other wave

breaking condition is established based on the method of characteristics.

Notation Throughout this paper, we identity all spaces of periodic functions with function

spaces over the unit circle S in R2, i.e., S = R/Z. The norm of the Sobolev space Hs(S), s ∈ R,
is denoted by ∥ · ∥Hs . Since all space of functions are over S, for simplicity, we drop S in our

notations of function spaces if there is no ambiguity.

2. Wave breaking phenomena
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In this section, we establish a blow up criterion and also derive a sufficient condition for the

breaking of waves for the initial-value problem (1.5). Firstly, we introduce the following lemma

which is useful in the subsequent sections.

Lemma 2.1 ([21]) Suppose that v ∈ C1([0, T );H2(S)) for some T > 0, then for every t ∈ [0, T ),

there exists at least one point ξ(t) ∈ S with

m(t) := inf
x∈S

(vx(t, x)) = vx(t, ξ(t)).

The function I(t) is absolutely continuous on (0, T ) with

dm(t)

dt
= vtx(t, ξ(t)), a.e., on (0, T ).

Applying the Kato method for the Cauchy problem for abstract quasi-linear equation of

evolution [35], we can obtain the following local well-posedness for the system (1.5).

Theorem 2.2 Let u0 ∈ Hs with s > 3/2. Suppose that u0 satisfies the following condition∫
S
(u0 + u2

0,x)dx = 0.

Then there exists a time T = T (u0) > 0 such that the Cauchy problem (1.5) has a unique strong

solution u, such that

u = u(·, u0) ∈ C([0, T ];Hs ∩ C1([0, T ];Hs−1)

with the following two conservation laws:∫
S
u2
x(t, x)dx =

∫
S
u2
0,x(x)dx,

∫
S
u(t, x)dx =

∫
S
u0(x)dx.

Or, more precisely, we have ∫
S
u2
xdx = −

∫
S
udx = K,

here K ≥ 0 is a constant only depending on u0, and as a consequence for any (x, t) ∈ S× [0, T ),

−K −
√
K ≤ u(x, t) ≤ −K +

√
K.

Moreover, the solution depends continuously on the initial data, i.e., the mapping

u0 7→ u(·, u0) : H
s → C([0, T ];Hs) ∩ C1([0, T ];Hs−1)

is continuous.

Proof Existence, uniqueness, and continuous dependence in Hs, s > 3/2 can be proved by

performing the same argument as in [27] (up to a slight modification), so the proof is omitted

here. To prove the conservation laws, multiplying the first equation of (1.5) by ux, and integrating

by parts in the unit circle S, we have

1

2

d

dt
∥ux∥2L2(S) =

∫
S
uxuxtdx =

∫
S
ux(u− 2uuxx − u2

x)dx

=

∫
S
uuxdx−

∫
S
2uuxuxxdx−

∫
S
u3
xdx = 0,



Wave breaking in the periodic integrable Hunter-Saxton equation with a dispersive term 521

which implies the desired conserved quantity for ∥ux∥L2 . On the other hand, integrating the first

equation of (1.5) directly over S yields∫
S
uxtdx =

∫
S
(u− 2uuxx − u2

x)dx =

∫
S
udx+

∫
S
u2
xdx =

d

dt

∫
S
uxdx = 0.

By the conserved quantity ∥ux∥L2 , we obtain

−
∫
S
u(x, t)dx =

∫
S
u2
xdx =

∫
S
u2
0,xdx = K. (2.1)

Obviously, we get K ≥ 0 only depending on u0. Then we have∣∣∣u(x, t)− ∫
S
u(y, t)dy

∣∣∣ =∣∣∣ ∫
S
(u(x, t)− u(y, t))dy

∣∣∣ = ∣∣∣ ∫
S

[ ∫ x

y

uz(z, t)dz
]
dy
∣∣∣

≤sup
y∈S

∣∣∣ ∫ x

y

uz(z, t)dz
∣∣∣ ≤ ∫

S
|uz(z, t)|dz ≤

(∫
S
u2
z(z, t)dz

)1/2
.

According to the equality (2.1), we get |u(x, t) + K| ≤
√
K, for any (x, t) ∈ S × [0, T ). This

completes the proof. 2
Using the above conservation law of ∥ux∥L2 and the boundedness of ∥u∥L∞ , the H1-norm of

u can be controlled in the periodic case. We now show a precise blow-up criterion for (1.5) as

follows.

Theorem 2.3 Let u0(x) ∈ Hs, s ≥ 2, and let T be the maximal existence time of the solution

u(x, t) to (1.5) with the initial data u0(x). Then the corresponding solution blows up in finite

time if and only if

lim inf
t↑T

{inf
x∈S

ux(t, x)} = −∞.

Proof Applying the local well-posedness and a simple density argument, it suffices to consider

the case when u ∈ C∞
0 . To begin with, for the H1-norm of u, we have

∥u(·, t)∥2H1(S) =

∫
S
u2 + u2

xdx ≤ ∥u∥2L∞ +

∫
S
u2
xdx ≤ (K +

√
K)2 +K ≤ C.

Differentiating both sides of (1.5) with respect to x, taking L2 inner product with uxx and then

integrating by parts, we obtain

1

2

d

dt

∫
S
u2
xxdx =

∫
S
uxxuxxtdx =

∫
S
uxx(ux − 4uxuxx − 2uuxxx)dx

=

∫
S
(uxuxx − 4uxu

2
xx − 2uuxxuxxx)dx = −3

∫
S
uxu

2
xxdx.

Suppose that ux is bounded from below on [0, T )×S, i.e., there exists M > 0 such that ux ≥ −M

on [0, T )× S, then it follows that

d

dt

∫
S
u2
xxdx ≤ 6M

∫
S
u2
xxdx.

An application of Gronwall’s inequality yields∫
S
u2
xxdx ≤ e6Mt

∫
S
u2
0,xxdx.
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Therefore, we obtain

∥u(·, t)∥2H2(S) ≤ C + e6Mt

∫
S
u2
0,xxdx ≤ C + e6Mt∥u0∥H2(S).

This contradicts the assumption that T < ∞ is the maximal existence time, which completes

the proof of the theorem. 2
A sufficient condition for the wave breaking in the Cauchy problem (1.5) is established as

follows.

Theorem 2.4 Assume that u0(x) ∈ Hs(S), s ≥ 2. If u0 satisfies∫
S
(u′

0(x))
3dx < −(3(K +

√
K))3/2,

then the solution u(t, x) of the Cauchy problem (1.5) blows up in finite time T ∈ (0,∞).

Proof Let T > 0 be the maximal time of existence of solution u(x, t) in the well-posedness

result. Then we obtain the priori differential estimate

d

dt

∫
S
u3
xdx =

∫
S
3u2

xuxtdx =

∫
S
3u2

x(u− 2uuxx − u2
x)dx

=

∫
S
3uu2

xdx−
∫
S
u4
xdx ≤ 3∥u∥L∞

∫
S
u2
xdx−

∫
S
u4
xdx

≤ 3(K +
√
K)∥ux∥2L4 − ∥ux∥4L4 = −(∥ux∥2L4 −

3(K +
√
K)

2
)2 +

9(K +
√
K)2

4
,

where we have used the Cauchy-Schwartz inequality. An application of Hölder inequality yields

∥ux∥3L3 ≤ ∥ux∥3L4 .

Let V (t) =
∫
S u

3
x(t, x)dx for all t ∈ [0, T ), and consider the assumption, we have that

V (0) < −(3(K +
√
K))3/2 < 0.

Then we have

∥ux∥2L4 −
3(K +

√
K)

2
≥ ∥ux∥2L3 −

3(K +
√
K)

2
≥ |V |2/3 − 3(K +

√
K)

2
,

so that

dV

dt
≤ −(|V |2/3 − 3(K +

√
K)

2
)2 +

9(K +
√
K)2

4

= −|V |2/3(|V |2/3 − 3(K +
√
K)).

When t = 0, the right hand side of the above inequality is negative. By the continuation

argument, V (t) is decreasing on [0, T ) so that V (t) ≤ V (0) < 0. To prove that T is finite and

lim
t↑T

V (t) = −∞. Let y = |V |1/3 and obtain

−3y2
dy

dt
≤ −y2(y2 − 3(K +

√
K)),

i.e.,
dy

dt
≥ 1

3
(y2 − 3(K +

√
K)),
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where the right hand side is positive at t = 0. By the comparison principle for differential

equations, y(t) ≥ y+(t) for all t ∈ [0, T ), where y+(t) solves the differential equation{
dy+

dt = 1
3 ((y

+)2 − 3(K +
√
K),

y+(0) = y(0).

Since y(0) > ( 3(K+
√
K)

2 )1/2, there is a finite time T+ ∈ (0,∞) such that lim
t↑T+

y+(t) = +∞, and

thus there is a time T ∈ (0, T+) such that lim
t↑T

y(t) = +∞, which implies lim
t↑T

V (t) = −∞. Consider

that in the above case,

inf
x∈S

u3
x(t, x) ≤

∫
S
u3
xdx ≡ V (t),

it implies immediately that

lim
t↑T

inf
x∈S

ux(t, x) = −∞.

This completes the proof of the theorem. 2
3. Blow-up rate of wave breaking

We shall study here the blow-up rate of the wave-breaking for solutions of the Cauchy problem

(1.5), which can be transformed into a transport-like equation{
ut + 2uux = ∂−1

x (u+ u2
x), t > 0, x ∈ S,

u(0, x) = u0(x), x ∈ S.
(3.1)

Here ∂−1
x is the mean-zero antiderivative in the sense of

∂−1
x f =

∫ x

0

f(t, x′)dx′ −
∫
S

∫ x

0

f(t, x′)dx′dx.

Let T > 0 be the maximal time of existence of the solution u(x, t) of the Cauchy problem

(3.1) with the initial data u0 ∈ Hs(S) for s ≥ 2. For all t ∈ [0, T ) and ξ ∈ S, define

x = X(t, ξ), u(t, x) = U(t, ξ), ∂−1
x (u+ u2

x)(t, x) = G(t, ξ),

so that

Ẋ(t) = 2U, X(0) = ξ, U̇(t) = G, U(0) = u0(ξ), (3.2)

where dots denote derivatives with respect to time t on a particular characteristic x = X(t, ξ)

for a fixed ξ ∈ S. Applying classical results in the theory of ODEs, we obtain the following two

useful results on the solutions of the initial-value problem (3.2).

Lemma 3.1 Let u0(x) ∈ Hs(S) with s ≥ 2, and T > 0 be the maximal time of existence of

solution u(t, x). Then there exists a unique solution X(t, ξ) ∈ C1([0, T )× S) to the initial-value

problem (3.2). Moreover, the map X(t, ·) : S → R is an increasing diffeomorphism with

∂ξX(t, ξ) = exp
(∫ t

0

2ux(s,X(s, ξ))ds
)
> 0, ∀t ∈ [0, T ), ∀x ∈ S.
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Proof Consider the integral equation

X(t, ξ) = ξ +

∫ t

0

2u(s,X(s, ξ))ds, t ∈ [0, T ),

where u(t, x) ∈ C([0, T );Hs(S))∩C1([0, T );Hs−1(S)) for s ≥ 2. By the ODE theory, there exists

a unique solution X(t, ξ) ∈ C1([0, T );Hs−1(S)) of the integral equation above. Using the chain

rule, we obtain

∂ξẊ =
∂

∂ξ
(2u(t,X(t, ξ))) = 2ux(t,X(t, ξ))∂ξX,

then

∂ξX(t, ξ) = exp
(∫ t

0

2ux(s,X(s, ξ))ds
)
.

So that ∂ξX(t, ξ) > 0 for all (t, x) ∈ [0, T )× S. 2
Lemma 3.2 Let u0(x) ∈ Hs(S) with s ≥ 2, and T > 0 be the maximal time of existence of

solution u(t, x) in the Theorem 2.1. Then the solution u(t, x) satisfies

sup
s∈[0,t]

|u(s, ·)| ≤ ∥u0∥L∞ + t(∥u0,x∥2L2 + 2∥u0,x∥L2), ∀t ∈ [0, T ).

Proof By the lemma above, the function x = X(t, ξ) is invertible in ξ ∈ S for any t ∈ [0, T ).

Then, we have

sup
s∈[0,t]

sup
x∈S

|u(s, x)| = sup
s∈[0,t]

sup
x∈S

|U(s, ξ)|, t ∈ [0, T ).

Since ∂−1
x (u + u2

x)(t, x) ∈ C([0, T );Hs(S)) is the mean-zero periodic function of x for each

t ∈ [0, T ), there exists a ξt ∈ S such that ∂−1
x (u + u2

x)(t, ξt) = 0. Then for any x ∈ S and

t ∈ [0, T ), we have that

|∂−1
x (u+ u2

x)(t, x)| ≤
∣∣∣ ∫ x

ξt

(u+ u2
x)(t, x)dx

∣∣∣ ≤ ∫
S
|u+ u2

x|dx

≤
∫
S
|u|dx+

∫
S
u2
xdx ≤ ∥u∥L∞ + ∥u2

0,x∥L2 ,

where we have used the Cauchy-Schwartz inequality and the conserved quantity ∥ux∥L2 . Using

the integral equation,

U(t, ξ) = u0(ξ) +

∫ t

0

G(s, ξ)ds, t ∈ [0, T ),

we obtain

sup
s∈[0,t]

sup
x∈S

|u(s, x)| ≤ ∥u0∥L∞ + t sup
s∈[0,t]

sup
ξ∈S

|G(s, ξ)|

≤ ∥u0∥L∞ + t sup
s∈[0,t]

sup
x∈S

|∂−1
x (u+ u2

x)(s, x)|

≤ ∥u0∥L∞ + t(∥u0,x∥2L2 + 2∥u0,x∥L2), t ∈ [0, T ),

and the lemma is proved. 2
Using the method of characteristics, we obtain a sufficient condition for the wave breaking

in the Cauchy problem (1.5) that is different from the sufficient condition of Theorem 2.4.
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Theorem 3.3 Let ϵ > 0 and let u0(x) ∈ Hs(S), s ≥ 2. Let T1 be the smallest positive root of

2T1[∥u0∥L∞ + T1(∥u0,x∥2L2 + 2∥u0,x∥L2)]1/2 = ln(1 +
2

ϵ
),

and assume that there is a x0 ∈ S such that

u′
0(x0) ≤ −(1 + ϵ)[∥u0∥L∞ + T1(∥u0,x∥2L2 + 2∥u0,x∥L2)]1/2. (3.3)

Then the solution u(t, x) blows up in a finite time T ∈ (0, T1) in the sense of Theorem 2.3.

Proof Define V (x, t) = ux(t,X(t, ξ)). By the well-posedness Theorem 2.1 and Lemma 2.1,

V (t, ξ) is absolutely continuous on [0, T )× S and a.e., differentiable on (0, T )× S, so that

V̇ = (uxt + 2uuxx)|x=X(t,ξ) = (u− u2
x)|x=X(t,ξ) = −V 2 + U a.e., ξ ∈ S, t ∈ (0, T ).

By Lemma 3.2, we obtain the a priori differential estimate

V̇ = −V 2 + U ≤ −V 2 + [∥u0∥L∞ + t(∥u0,x∥2L2 + 2∥u0,x∥L2)] a.e., ξ ∈ S, t ∈ [0, T ). (3.4)

Since u′
0(x) is a continuous, mean-zero, periodic function of x on S, and assumption (3.3) is

satisfied for fixed ϵ > 0, there exists x̃0 such that

V (0, x̃0) = −(1 + ϵ)h(T1),

where

h(T1) = [∥u0∥L∞ + T1(∥u0,x∥2L2 + 2∥u0,x∥L2)]1/2.

Thanks to the a priori estimate (3.4), V (t) := V (t, x̃0) satisfies{
V̇ (t) ≤ −V 2 + h2(T1), a.e., t ∈ [0, T1) ∩ (0, T ),

V (0) = −(1 + ϵ)h(T1).

By the comparison principle for ODES, we have

V (t) ≤ V+(t) < 0, t ∈ [0, T1) ∩ (0, T ),

where V+(t) solves the equation{
V̇+(t) ≤ −V 2

+(t) + h2(T1), t ∈ [0, T1),

V+(0) = V (0).

The above equation admits an implicit solution:

V+(t) + h(T1)

V+(t)− h(T1)
=

V (0) + h(T1)

V (0)− h(T1)
e2h(T1)t, t ∈ [0, T1).

If T1 is the smallest positive root of

2T1[∥u0∥L∞ + T1(∥u0,x∥2L2 + 2∥u0,x∥L2 ]1/2 = ln(1 +
2

ϵ
),

then
V+(t) + h(T1)

V+(t)− h(T1)
=

ϵ

2 + ϵ
e2h(T1)t ↑ 1, as t ↑ T1,

so that lim
t↑T1

V+(t) = −∞. Thus there is T ∈ (0, T1) such that lim
t↑T

V (t) = −∞. 2
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Remark 3.4 Note that if ϵ → ∞ and the assumption of Theorem 3.1 still holds, then T → 0.

This means that the steeper the slope of the initial data u0(x), the quicker the solution u(t, x)

blows up.

Finally, we specifies the wave breaks rate in the Cauchy problem (3.1). By the well-posedness

result, the initial data u0(x) can be considered in H3(S).

Theorem 3.5 Let u0(x) ∈ H3(S), and let T ∈ (0,∞) be the finite blow-up time of the solution

u(t, x) in the local well-posedness Theorem 2.1. Then we have

lim
t↑T

((T − t) inf
x∈S

ux(t, x)) = −1 (3.5)

and

lim
t↑T

((T − t) sup
x∈S

ux(t, x)) = 0. (3.6)

Proof Let m(t) = inf
x∈S

ux(t, x). By Lemma 2.1, for every t ∈ [0, T ), there exists at least one point

ξ(t) ∈ S such that m(t) := ux(t, ξ(t)) and uxx(t, ξ(t)) = 0. Moreover, m(t) and ξ(t) is absolutely

continuous on [0, T ), is a.e., differentiable on (0, T ), and satisfies

d

dt
m(t) = uxt(t, ξ(t)) = −m2(t) + u(t, ξ(t)), a.e., t ∈ (0, T ).

Set N(t) = ∥u0∥L∞ + T1

(
∥u0,x∥2L2 + 2∥u0,x∥L2

)
(> 0). By Lemma 3.2, we get

−m2(t)−N(T ) ≤ d

dt
m(t) ≤ −m2(t) +N(T ), a.e., t ∈ (0, T ).

Let us choose ϵ ∈ (0, 1). From Theorem 2.2, there exists t0 ∈ (0, T ) such that

m(t0) < −
√
N(T ) +

N(T )

ϵ
.

Notice that m(t) is absolutely continuous on [0, T ), it then follows from the above inequality that

m(t) is decreasing on [t0, T ) and satisfies that

m(t) ≤ m(t0) < −
√
N(T ) +

N(T )

ϵ
< −

√
N(T )

ϵ
, t ∈ [t0, T ).

It then follows that lim
t↑T

m(t) = −∞, and

1− ϵ ≤ d

dt

1

m(t)
= − 1

m2(t)

dm(t)

dt
≤ 1 + ϵ.

Integrating the above relation on (t, T ) with t ∈ [t0, T ), and noticing that lim
t↑T

m(t) = −∞, we

can get

(1− ϵ)(T − t) ≤ − 1

m(t)
≤ (1 + ϵ)(T − t).

Since ϵ ∈ (0, 1) is arbitrary, in view of the definition of m(t), the above inequality in the limit

ϵ → 0 implies the desired result (3.5).

Now let M(t) := sup
x∈S

ux(t, x). By the same Lemma 2.1, for every t ∈ [0, T ), there exists at

least one point η(t) ∈ S such that M(t) = ux(t, η(t)) and uxx(t, η(t)) = 0. Repeating the same
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arguments, we have

d

dt
M(t) = −M2(t) + u(t, η(t)) ≤ ∥u0∥L∞ + t(∥u0,x∥2L2 + 2∥u0,x∥L2)t, t ∈ (0, T ),

so that

M(t) ≤ sup
x∈S

u0,x(x) + T∥u0∥L∞ +
T 2

2
(∥u0,x∥2L2 + 2∥u0,x∥L2) < +∞. (3.7)

Consider u(t, x) is periodic on S for all t ∈ [0, T ) and belongs to C([0, T );H3(S)), there exists

ξ0(t) ∈ S for every t ∈ [0, T ) such that ux(t, ξ0(t)) = 0. Therefore, M(t) ≥ ux(t, x) = 0 for all

t ∈ [0, T ), so that bound (3.7) yields the desired result (3.6). This completes the proof of the

theorem. 2
Acknowledgements We thank the referees for their time and comments.
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