Mixed-Type Reverse Order Laws Associated to $\{1,3,4\}$-Inverse

Haiyan ZHANG ${ }^{1, *}$, Chunyuan DENG ${ }^{2}$
1. School of Mathematics and Statistics, Shangqiu Normal University, Henan 476000, P. R. China;
2. School of Mathematics Sciences, South China Normal University, Guangdong 510631, P. R. China

Abstract

In this paper, we study the mixed-type reverse order laws to $\{1,3,4\}$-inverses for closed range operators A, B and $A B$. It is shown that $B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,3\}$ if and only if $R\left(A^{*} A B\right) \subseteq R(B)$. For every $A^{(134)} \in A\{1,3,4\}$, it has $\left(A^{(134)} A B\right)\{1,3,4\} A\{1,3,4\}=$ $(A B)\{1,3,4\}$ if and only if $R\left(A A^{*} A B\right) \subseteq R(A B)$. As an application of our results, some new characterizations of the mixed-type reverse order laws associated to the Moore-Penrose inverse and the $\{1,3,4\}$-inverse are established.

Keywords $\{1,3,4\}$-inverse; reverse order law; generalized inverse; block-operator matrix
MR(2010) Subject Classification 47A05; 47A62

1. Introduction

Let \mathcal{H} and \mathcal{K} be complex Hilbert spaces and $\mathcal{B}(\mathcal{H}, \mathcal{K})$ be the set of all bounded linear operators from \mathcal{H} into \mathcal{K}, and abbreviate $\mathcal{B}(\mathcal{H}, \mathcal{K})$ to $\mathcal{B}(\mathcal{H})$ if $\mathcal{H}=\mathcal{K}$. For $A \in \mathcal{B}(\mathcal{H}, \mathcal{K}), N(A)$ and $R(A)$ are the null space and the range of A, respectively. A generalized inverse of A is an operator $G \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ satisfying some of the following four equations, which is said to be the MoorePenrose conditions:
(1) $A G A=A$, (2) $G A G=G$, (3) $(A G)^{*}=A G$, (4) $(G A)^{*}=G A$.

Let $A\{i, j, \ldots, l\}$ denote the set of all operators $G \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ which satisfy equation $(i),(j)$, $\ldots,(l)$ from the above equations. An operator $G \in A\{i, j, \ldots, l\}$ is called an $\{i, j, \ldots, l\}$-inverse of A, denoted by $A^{(i j \cdots l)}$. The unique $\{1,2,3,4\}$-inverse of A is denoted by A^{\dagger}, which is called the Moore-Penrose inverse of A. As is well known, A is the Moore-Penrose invertible if and only if $R(A)$ is closed.

The reverse order law for many types of generalized inverses has been the subject of intensive research since 1960s, and many interesting results have been obtained. For the Moore-Penrose inverse, Greville gave a classical result

$$
(A B)^{+}=B^{\dagger} A^{\dagger} \Longleftrightarrow R\left(A^{*} A B\right) \subset R(B), \quad R\left(B B^{*} A^{*}\right) \subset R\left(A^{*}\right)
$$

for any complex matrices A and B in [1]. This result was extended to bounded linear operators on Hilbert spaces by Izumino [2] and Bouldin [3]. Following these, reverse order laws for different

[^0]types of generalized inverses have been studied [4-12]. The mixed-type reverse-order laws for $A B$ like
$$
\left(A^{\dagger} A B\right)^{\dagger} A^{\dagger}=(A B)^{\dagger}, \quad B^{\dagger}\left(A B B^{\dagger}\right)^{\dagger}=(A B)^{\dagger}
$$
have been considered in [2] and [13]. Many scholars also discussed Mixed-type reverse order laws for $(A B)^{(13)},(A B)^{(123)},(A B)^{(124)}$ and $(A B)^{(134)}$ (see [14-18]). In [17], the author considered the equivalent condition for $B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,3\}$ in matrix algebra. By the block operator matrix technique, the author studied the equivalent condition for $B\{1,3,4\} A\{1,3,4\} \subseteq$ $(A B)\{1,3,4\}$ in [12]. Using the similar space decompositions method in [12], Liu, et al. established the necessary and sufficient conditions for the mixed-type reverse-order laws for $B\{1,3,4\}$ $\left(A B B^{(134)}\right)\{1,3,4\} \subseteq(A B)\{1,3,4\}$ (see [14]). However, this method is not suitable for studying $\left(A^{(134)} A B\right)\{1,3,4\} A\{1,3,4\}=(A B)\{1,3,4\}$.

In this paper, we shall improve the space decompositions method in $[11,12]$ and study the mixed-type reverse order laws associated to $\{1,3,4\}$-inverse. In Section 2 , some preliminaries are given and the $\{1,3,4\}$-inverse for a class of triangular matrix is obtained. In Section 3, we derive the necessary and sufficient condition for $B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,3\}$ when $R(A)$, $R(B)$ and $R(A B)$ are closed. A new equivalent condition for $B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,3,4\}$ is obtained. Moreover, the necessary and sufficient condition for $\left(A^{(134)} A B\right)\{1,3,4\} A\{1,3,4\}=$ $(A B)\{1,3,4\}$ is given. As an application of our results, the mixed-type reverse order laws associated to the Moore-Penrose inverse are considered.

In this section, we mainly discuss representations for generalized inverses of triangular operator matrices. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ have closed range. It is well known that A, as an operator from $\mathcal{H}=R\left(A^{*}\right) \oplus N(A)$ into $\mathcal{K}=R(A) \oplus N\left(A^{*}\right)$, has the diagonal matrix form $A=A_{1} \oplus 0$, where $A_{1} \in \mathcal{B}\left(R\left(A^{*}\right), R(A)\right)$ is invertible. In this case, the Moore-Penrose inverse A^{\dagger} of A can be represented by $A^{\dagger}=A_{1}^{-1} \oplus 0$. In general, we have the following results.

Lemma 2.1 For a given operator $C \in \mathcal{B}(\mathcal{H})$, let $M_{0}=\left(\begin{array}{cc}C & 0 \\ 0 & 0\end{array}\right) \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$. Then the following statements hold.
(1) ([14]) If C is invertible, then the $\{1,3\}$-inverse $M_{0}^{(13)}$ and the $\{1,3,4\}$-inverse $M_{0}^{(134)}$ of M_{0} can be represented by

$$
M_{0}^{(13)}=\left(\begin{array}{cc}
C^{-1} & 0 \\
G_{21} & G_{22}
\end{array}\right) \quad \text { and } \quad M_{0}{ }^{(134)}=\left(\begin{array}{cc}
C^{-1} & 0 \\
0 & G_{22}
\end{array}\right)
$$

respectively, where $G_{21} \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and $G_{22} \in \mathcal{B}(\mathcal{K})$ are arbitrary.
(2) If C^{*} is surjective, then the $\{1,3,4\}$-inverse $M_{0}^{(134)}$ of M_{0} can be represented by

$$
M_{0}^{(134)}=\left(\begin{array}{cc}
C^{\dagger} & 0 \tag{2.1}\\
G_{21} & G_{22}
\end{array}\right)
$$

where $G_{22} \in \mathcal{B}(\mathcal{K})$ is arbitrary. $G_{21}=X\left(I_{\mathcal{H}}-C C^{\dagger}\right)$ for arbitrary $X \in \mathcal{B}(\mathcal{H}, \mathcal{K})$.
Proof We only need to prove the statement (2). Since C^{*} is surjective, M_{0} can be represented
by

$$
M_{0}=\left(\begin{array}{cc}
C_{1} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right):\binom{\mathcal{H}}{\mathcal{K}} \rightarrow\left(\begin{array}{c}
R(C) \\
N\left(C^{*}\right) \\
\mathcal{K}
\end{array}\right)
$$

where $C=\binom{C_{1}}{0}$ such that C_{1} is invertible. By the statement (1), the $\{1,3,4\}$-inverse $M_{0}^{(134)}$ of M_{0} has the matrix form as

$$
M_{0}{ }^{(134)}=\left(\begin{array}{ccc}
C_{1}{ }^{-1} & 0 & 0 \\
0 & G_{21}^{\prime \prime} & G_{22}
\end{array}\right):\left(\begin{array}{c}
R(C) \\
N\left(C^{*}\right) \\
\mathcal{K}
\end{array}\right) \rightarrow\binom{\mathcal{H}}{\mathcal{K}}
$$

in which $G_{21}^{\prime \prime} \in \mathcal{B}\left(N\left(C^{*}\right), \mathcal{K}\right), G_{22} \in \mathcal{B}(\mathcal{K})$ are arbitrary. Here $\left(C_{1}^{-1} 0\right)=C^{\dagger}$ and

$$
G_{21}=\left(\begin{array}{ll}
0 & G_{21}^{\prime \prime}
\end{array}\right)=X\left(I_{\mathcal{H}}-C C^{\dagger}\right), \quad \forall X \in \mathcal{B}(\mathcal{H}, \mathcal{K})
$$

Therefore, (2.1) holds. The proof is completed.
Moreover, for given operators $C \in \mathcal{B}(\mathcal{H})$ and $D \in \mathcal{B}(\mathcal{K})$, denote by $M_{F}=\left(\begin{array}{ll}C & 0 \\ F & D\end{array}\right)$, where $F \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. Then we have the following results.

Lemma 2.2 Let $C \in \mathcal{B}(\mathcal{H})$ and $D \in \mathcal{B}(\mathcal{K})$ be given such that C is invertible and D^{*} is surjective. Then the $\{1,3,4\}$-inverse $M_{F}^{(134)}$ is unique and can be formulated by

$$
M_{F}^{(134)}=M_{F}^{+}=\left(\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right)
$$

where

$$
\left\{\begin{array}{l}
G_{11}=C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F^{*}\left(I_{\mathcal{K}}-D D^{\dagger}\right) F C^{-1}\right)^{-1} \tag{2.2}\\
G_{12}=C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F^{*}\left(I_{\mathcal{K}}-D D^{\dagger}\right) F C^{-1}\right)^{-1} C^{*-1} F^{*}\left(I_{\mathcal{K}}-D D^{\dagger}\right) \\
G_{21}=-D^{\dagger} F C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F^{*}\left(I_{\mathcal{K}}-D D^{\dagger}\right) F C^{-1}\right)^{-1} \\
G_{22}=D^{\dagger}-D^{\dagger} F G_{12}
\end{array}\right.
$$

Moreover, $G_{12}=0$ if and only if $R(F) \subseteq R(D)$.
Proof Since the range of M_{F}^{*} is surjective, by Lemma 2.1(2), we have the $\{1,3,4\}$-inverse $M_{F}^{(134)}$ of M_{F} must be equal to the Moore-Penrose inverse M_{F}^{+}. Set $\mathcal{K}=R(D) \oplus N\left(D^{*}\right)$. Then M_{F} has the matrix form

$$
M_{F}=\left(\begin{array}{cc}
C & 0 \\
F_{1} & D_{1} \\
F_{2} & 0
\end{array}\right):\binom{\mathcal{H}}{\mathcal{K}} \rightarrow\left(\begin{array}{c}
\mathcal{H} \\
R(D) \\
N\left(D^{*}\right)
\end{array}\right)
$$

where C, D_{1} are invertible. Let M_{F}^{+}have the matrix form

$$
M_{F}^{+}=\left(\begin{array}{ccc}
G_{11} & G_{12}^{\prime} & G_{12}^{\prime \prime} \\
G_{21} & G_{22}^{\prime} & G_{22}^{\prime \prime}
\end{array}\right):\left(\begin{array}{c}
\mathcal{H} \\
R(D) \\
N\left(D^{*}\right)
\end{array}\right) \rightarrow\binom{\mathcal{H}}{\mathcal{K}}
$$

where $\left(G_{12}^{\prime} G_{12}^{\prime \prime}\right)=G_{12}$ and $\left(G_{22}^{\prime} G_{22}^{\prime \prime}\right)=G_{22}$. Set $A=\left(\begin{array}{cc}C & 0 \\ F_{1} & D_{1}\end{array}\right)$ and $B=\left(\begin{array}{ll}F_{2} & 0\end{array}\right)$, then $A^{-1}=\left(\begin{array}{cc}C^{-1} & 0 \\ -D_{1}^{-1} F_{1} C^{-1} & D_{1}^{-1}\end{array}\right)$ and $B A^{-1}=\left(F_{2} C^{-1} 0\right)$. We have

$$
\begin{aligned}
& M_{F}{ }^{\dagger}=\left[\left(\begin{array}{ll}
A^{*} & B^{*}
\end{array}\right)\binom{A}{B}\right]^{\dagger}\left(\begin{array}{ll}
A^{*} & B^{*}
\end{array}\right) \\
& \quad=\left[A^{*} A+B^{*} B\right]^{\dagger}\left(\begin{array}{cc}
A^{*} & B^{*}
\end{array}\right) \\
& \quad=A^{-1}\left[I_{\mathcal{H} \oplus R(D)}+\left(B A^{-1}\right)^{*}\left(B A^{-1}\right)\right]^{\dagger}\left(\begin{array}{cc}
I_{\mathcal{H} \oplus R(D)} & \left(B A^{-1}\right)^{*}
\end{array}\right) \\
& \\
& =\left(\begin{array}{cc}
C^{-1} & 0 \\
-D_{1}^{-1} F_{1} C^{-1} & D_{1}^{-1}
\end{array}\right)\left(\begin{array}{ccc}
\left(I_{\mathcal{H}}+C^{*-1} F_{2}^{*} F_{2} C^{-1}\right)^{-1} & 0 \\
0 & I_{R(D)}
\end{array}\right)\left(\begin{array}{ccc}
I_{\mathcal{H}} & 0 & C^{-1^{*}} F_{2}^{*} \\
0 & I_{R(D)} & 0
\end{array}\right) \\
& \quad=\left(\begin{array}{ccc}
C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F_{2}^{*} F_{2} C^{-1}\right)^{-1} & 0 & C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F_{2}^{*} F_{2} C^{-1}\right)^{-1} C^{*-1} F_{2}^{*} \\
-D_{1}^{-1} F_{1} C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F_{2}^{*} F_{2} C^{-1}\right)^{-1} & D_{1}^{-1} & -D_{1}{ }^{-1} F_{1} C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F_{2}^{*} F_{2} C^{-1}\right)^{-1} C^{*-1} F_{2}^{*}
\end{array}\right)
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
G_{11}=C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F^{*}\left(I_{\mathcal{K}}-D D^{\dagger}\right) F C^{-1}\right)^{-1} \\
G_{12}=\left(\begin{array}{ll}
0 & \left.C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F_{2}^{*} F_{2} C^{-1}\right)^{-1} C^{*-1} F_{2}^{*}\right) \\
= & C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F^{*}\left(I_{\mathcal{K}}-D D^{\dagger}\right) F C^{-1}\right)^{-1} C^{*-1} F^{*}\left(I_{\mathcal{K}}-D D^{\dagger}\right)
\end{array}, .\right.
\end{gathered}
$$

$G_{21}=-D_{1}^{-1} F_{1} C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F_{2}^{*} F_{2} C^{-1}\right)^{-1}=-D^{\dagger} F C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F^{*}\left(I_{\mathcal{K}}-D D^{\dagger}\right) F C^{-1}\right)^{-1}$
and

$$
\begin{aligned}
G_{22} & =\left(\begin{array}{ll}
G_{22}^{\prime} & G_{22}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ll}
D_{1}^{-1} & -D_{1}^{-1} F_{1} C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F_{2}^{*} F_{2} C^{-1}\right)^{-1} C^{*-1} F_{2}^{*}
\end{array}\right) \\
& =\left(\begin{array}{ll}
D_{1}^{-1} & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & D_{1}^{-1} F_{1} C^{-1}\left(I_{\mathcal{H}}+C^{*-1} F_{2}^{*} F_{2} C^{-1}\right)^{-1} C^{*-1} F_{2}^{*}
\end{array}\right) \\
& =D^{\dagger}-D^{\dagger} F G_{12} .
\end{aligned}
$$

This shows that equalities in (2.2) hold.
Moreover, $G_{12}=0$ if and only if $F^{*}\left(I_{\mathcal{K}}-D D^{\dagger}\right)=0$, which is equivalent to $R(F) \subseteq R(D)$.
The proof is completed.

3. Mixed-reverse order laws associated to $\{1,3,4\}$-inverse

Let \mathcal{H}, \mathcal{K} and \mathcal{J} be complex Hilbert spaces. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{J}), B \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and $A B$ have closed ranges. In this section, we will give necessary and sufficient conditions for

$$
B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,3\}
$$

and

$$
\left(A^{(134)} A B\right)\{1,3,4\} A\{1,3,4\}=(A B)\{1,3,4\}
$$

Firstly, we give some space decompositions. Denote

$$
\left\{\begin{array} { l }
{ \mathcal { H } _ { 1 } = R (A ^ { * }) \ominus (R (A ^ { * }) \cap N (B ^ { * })) , } \\
{ \mathcal { H } _ { 2 } = N (A) \ominus (N (A) \cap N (B ^ { * })) , } \\
{ \mathcal { H } _ { 3 } = R (A ^ { * }) \cap N (B ^ { * }) , } \\
{ \mathcal { H } _ { 4 } = N (A) \cap N (B ^ { * }) , }
\end{array} \left\{\left\{\begin{array} { l }
{ \mathcal { K } _ { 1 } = R (B ^ { * } A ^ { * }) , } \\
{ \mathcal { K } _ { 2 } = R (B ^ { * }) \ominus R (B ^ { * } A ^ { * }) , } \\
{ \mathcal { K } _ { 3 } = N (B) , }
\end{array} \left\{\begin{array}{l}
\mathcal{J}_{1}=\left(A^{*}\right)^{\dagger} \mathcal{H}_{3} \\
\mathcal{J}_{2}=R(A) \ominus\left(A^{*}\right)^{\dagger} \mathcal{H}_{3} \\
\mathcal{J}_{3}=N\left(A^{*}\right)
\end{array}\right.\right.\right.\right.
$$

Then

$$
\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \mathcal{H}_{3} \oplus \mathcal{H}_{4}, \quad \mathcal{K}=\mathcal{K}_{1} \oplus \mathcal{K}_{2} \oplus \mathcal{K}_{3} \quad \text { and } \quad \mathcal{J}=\mathcal{J}_{1} \oplus \mathcal{J}_{2} \oplus \mathcal{J}_{3}
$$

Lemma 3.1 Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{J})$ and $B \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ be such that all ranges $R(A), R(B)$ and $R(A B)$ are closed. Suppose that $A B \neq\{0\}$. The following statements hold.
(1) If $\mathcal{H}_{3}=R\left(A^{*}\right) \cap N\left(B^{*}\right) \neq\{0\}$, then A and B have the following matrix forms

$$
A=\left(\begin{array}{cccc}
0 & 0 & A_{13} & 0 \tag{3.1}\\
A_{21} & 0 & A_{23} & 0 \\
0 & 0 & 0 & 0
\end{array}\right):\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H}_{2} \\
\mathcal{H}_{3} \\
\mathcal{H}_{4}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathcal{J}_{1} \\
\mathcal{J}_{2} \\
\mathcal{J}_{3}
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccc}
B_{11} & 0 & 0 \tag{3.2}\\
B_{21} & B_{22} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right):\left(\begin{array}{c}
\mathcal{K}_{1} \\
\mathcal{K}_{2} \\
\mathcal{K}_{3}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H}_{2} \\
\mathcal{H}_{3} \\
\mathcal{H}_{4}
\end{array}\right)
$$

such that A_{13}, A_{21}, B_{11} are invertible and B_{22}^{*} is surjective.
(2) If $\mathcal{H}_{3}=R\left(A^{*}\right) \cap N\left(B^{*}\right)=\{0\}$, then A and B have the following matrix forms

$$
\begin{gather*}
A=\left(\begin{array}{ccc}
A_{21} & 0 & 0 \\
0 & 0 & 0
\end{array}\right):\left(\begin{array}{l}
\mathcal{H}_{1} \\
\mathcal{H}_{2} \\
\mathcal{H}_{4}
\end{array}\right) \rightarrow\binom{\mathcal{J}_{2}}{\mathcal{J}_{3}} \tag{3.3}\\
B=\left(\begin{array}{ccc}
B_{11} & 0 & 0 \\
B_{21} & B_{22} & 0 \\
0 & 0 & 0
\end{array}\right):\left(\begin{array}{l}
\mathcal{K}_{1} \\
\mathcal{K}_{2} \\
\mathcal{K}_{3}
\end{array}\right) \rightarrow\left(\begin{array}{l}
\mathcal{H}_{1} \\
\mathcal{H}_{2} \\
\mathcal{H}_{4}
\end{array}\right) \tag{3.4}
\end{gather*}
$$

such that A_{21}, B_{11} are invertible and B_{22}^{*} is surjective.
Proof (1) According to space decompositions of \mathcal{H} and \mathcal{J}, it is clear that A^{*} has matrix form as follows,

$$
A^{*}=\left(\begin{array}{ccc}
A_{11}^{*} & A_{21}^{*} & 0 \\
0 & 0 & 0 \\
A_{13}^{*} & A_{23}^{*} & 0 \\
0 & 0 & 0
\end{array}\right):\left(\begin{array}{c}
\mathcal{J}_{1} \\
\mathcal{J}_{2} \\
\mathcal{J}_{3}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H}_{2} \\
\mathcal{H}_{3} \\
\mathcal{H}_{4}
\end{array}\right)
$$

Since $A^{*} \mathcal{J}_{1}=A^{*} A^{*} \mathcal{H}_{3}=\mathcal{H}_{3}$, it is obvious that $A_{11}^{*}=0$ and A_{13}^{*} is surjective. Moreover, $N\left(A^{*}\right)=\mathcal{J}_{3}$, this implies that A_{13}^{*} is injective. So A_{13}^{*} is invertible. This infers A_{21}^{*} is surjective,
sine $R\left(A^{*}\right)=\mathcal{H}_{1} \oplus \mathcal{H}_{3}$. In fact, A_{21}^{*} is also injective. Otherwise there is a non-zero element $x \in \mathcal{J}_{2}$ such that $A_{21}^{*} x=0$. Then there exists an element $y \in \mathcal{J}_{1}$ such that $A_{13}^{*} y=-A_{23}^{*} x$ since A_{13}^{*} is invertible. This follows that $A^{*}(y \oplus x)=0$ which is a contradiction with $N\left(A^{*}\right)=\mathcal{J}_{3}$. Therefore, A_{21}^{*} is invertible. And then A has the matrix form (3.1) where A_{13} and A_{21} are invertible.

By space decompositions \mathcal{H} and \mathcal{K}, it is elementary that

$$
B^{*}=\left(\begin{array}{cccc}
B_{11}^{*} & B_{21}^{*} & 0 & 0 \\
0 & B_{22}^{*} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right):\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H}_{2} \\
\mathcal{H}_{3} \\
\mathcal{H}_{4}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathcal{K}_{1} \\
\mathcal{K}_{2} \\
\mathcal{K}_{3}
\end{array}\right)
$$

where B_{11}^{*} is invertible and B_{22}^{*} is surjective. So B has the matrix form (3.2). Similarly, the statement (2) holds. The proof is completed.

Theorem 3.2 Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{J})$ and $B \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ be such that all ranges $R(A), R(B)$ and $R(A B)$ are closed. Then

$$
B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,3\} \Longleftrightarrow R\left(A^{*} A B\right) \subset R(B)
$$

Proof The result naturally holds when $A B=0$, since $(A B)\{1,3\}=\mathcal{B}(\mathcal{J}, \mathcal{K})$ and $R\left(A^{*} A B\right)=$ $\{0\}$ in this case. Assume that $A B \neq 0$. We divide the proof into two cases.

Case 1. $\mathcal{H}_{3} \neq\{0\}$. By Lemma 3.1, A, B can be represented by (3.1) and (3.2), respectively, where operators A_{13}, A_{21}, B_{11} are invertible and B_{22}^{*} is surjective. This implies that

$$
A B=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{3.5}\\
A_{21} B_{11} & 0 & 0 \\
0 & 0 & 0
\end{array}\right):\left(\begin{array}{c}
\mathcal{K}_{1} \\
\mathcal{K}_{2} \\
\mathcal{K}_{3}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathcal{J}_{1} \\
\mathcal{J}_{2} \\
\mathcal{J}_{3}
\end{array}\right)
$$

and

$$
A^{*} A B=\left(\begin{array}{ccc}
A_{21}^{*} A_{21} B_{11} & 0 & 0 \tag{3.6}\\
0 & 0 & 0 \\
A_{23}^{*} A_{21} B_{11} & 0 & 0 \\
0 & 0 & 0
\end{array}\right):\left(\begin{array}{c}
\mathcal{K}_{1} \\
\mathcal{K}_{2} \\
\mathcal{K}_{3}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H}_{2} \\
\mathcal{H}_{3} \\
\mathcal{H}_{4}
\end{array}\right)
$$

For any $A^{(134)} \in A\{1,3,4\}$, by Lemma $2.1(1), A^{(134)}$ has the matrix form

$$
A^{(134)}=\left(\begin{array}{ccc}
-A_{21}^{-1} A_{23} A_{13}^{-1} & A_{21}^{-1} & 0 \tag{3.7}\\
0 & 0 & G_{1} \\
A_{13}^{-1} & 0 & 0 \\
0 & 0 & G_{2}
\end{array}\right):\left(\begin{array}{c}
\mathcal{J}_{1} \\
\mathcal{J}_{2} \\
\mathcal{J}_{3}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H}_{2} \\
\mathcal{H}_{3} \\
\mathcal{H}_{4}
\end{array}\right)
$$

where $G_{1} \in \mathcal{B}\left(\mathcal{J}_{3}, \mathcal{H}_{2}\right)$ and $G_{2} \in \mathcal{B}\left(\mathcal{J}_{3}, \mathcal{H}_{4}\right)$. Combining Lemma 2.1(2) with Lemma 2.2, we
conclude that the $\{1,3,4\}$-inverse $B^{(134)}$ of B has the matrix form as follows:

$$
B^{(134)}=\left(\begin{array}{cccc}
G_{11} & G_{12} & 0 & 0 \tag{3.8}\\
G_{21} & G_{22} & 0 & 0 \\
G_{31} & G_{32} & G_{33} & G_{34}
\end{array}\right):\left(\begin{array}{c}
\mathcal{H}_{1} \\
\mathcal{H}_{2} \\
\mathcal{H}_{3} \\
\mathcal{H}_{4}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathcal{K}_{1} \\
\mathcal{K}_{2} \\
\mathcal{K}_{3}
\end{array}\right)
$$

where $G_{33} \in \mathcal{B}\left(\mathcal{H}_{3}, \mathcal{K}_{3}\right), G_{43} \in \mathcal{B}\left(\mathcal{H}_{4}, \mathcal{K}_{3}\right)$ and

$$
\left\{\begin{array}{l}
G_{11}=B_{11}{ }^{-1}\left(I_{\mathcal{K}_{1}}+B_{11}^{*-1} B_{21}{ }^{*}\left(I_{\mathcal{H}_{2}}-B_{22} B_{22}^{\dagger}\right) B_{21} B_{11}{ }^{-1}\right)^{-1}, \tag{3.9}\\
G_{12}=B_{11}{ }^{-1}\left(I_{\mathcal{K}_{1}}+B_{11}^{*}{ }^{-1} B_{21}{ }^{*}\left(I_{\mathcal{H}_{2}}-B_{22} B_{22}^{\dagger}\right) B_{21} B_{11}{ }^{-1}\right)^{-1} B_{11}^{*}-1 B_{21}{ }^{*}\left(I_{\mathcal{H}_{2}}-B_{22} B_{22}^{\dagger}\right), \\
G_{21}=-B_{22}^{+} B_{21} G_{11}, \\
G_{22}=B_{22}^{\dagger}-B_{22}^{\dagger} B_{21} G_{12} .
\end{array}\right.
$$

Then it follows from matrix forms of (3.7) and (3.8) that

$$
B^{(134)} A^{(134)}=\left(\begin{array}{ccc}
-G_{11} A_{21}^{-1} A_{23} A_{13}^{-1} & G_{11} A_{21}^{-1} & G_{12} G_{1} \tag{3.10}\\
-G_{21} A_{21}^{-1} A_{23} A_{13}^{-1} & G_{21} A_{21}^{-1} & G_{22} G_{1} \\
-G_{31} A_{21}^{-1} A_{23} A_{13}^{-1}+G_{32} A_{13}^{-1} & G_{31} A_{21}^{-1} & G_{32} G_{1}+G_{34} G_{2}
\end{array}\right)
$$

Using Lemma 2.1(1), we get

$$
(A B)^{(13)}=\left(\begin{array}{ccc}
0 & B_{11}^{-1} A_{21}^{-1} & 0 \tag{3.11}\\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right)
$$

where $M_{i j} \in \mathcal{B}\left(\mathcal{K}_{j}, \mathcal{J}_{i}\right), i \in\{2,3\}, j \in\{1,2,3\}$.
Assume that $B\{1,3,4\} A\{1,3,4\} \subseteq A B\{1,3\}$, it follows from (3.10) and (3.11) that

$$
G_{11}=B_{11}^{-1}, \quad A_{23}=0, \quad G_{12} G_{1}=0
$$

since $M_{i j}, i \in\{2,3\}, j \in\{1,2,3\}$ are arbitrary. Combining $G_{11}=B_{11}^{-1}$ with the equality $G_{11}=B_{11}^{-1}-G_{12} B_{21} B_{11}^{-1}$ in (3.9), we can obtain that $G_{12} B_{21}=0$, and consequently $R\left(G_{12}^{*}\right) \subseteq$ $N\left(B_{21}^{*}\right)$. From the relation $G_{12} B_{22}=0$ in (3.9), we can infer that $R\left(G_{12}^{*}\right) \subseteq N\left(B_{22}^{*}\right)$. This shows $R\left(G_{12}^{*}\right) \subseteq N\left(B_{22}^{*}\right) \cap N\left(B_{21}^{*}\right)$ and so $G_{12}=0$ by the definition of \mathcal{H}_{2}. From Lemma 2.2 again, it is obvious that $R\left(B_{21}\right) \subseteq R\left(B_{22}\right)$. This infers that $N\left(B_{22}^{*}\right) \subseteq N\left(B_{21}^{*}\right)$ and so B_{22}^{*} is injective since $N\left(B_{22}^{*}\right) \cap N\left(B_{21}^{*}\right)=\{0\}$. Therefore, B_{22} is invertible. Combining (3.6) with (3.2), we have $R\left(A^{*} A B\right)=\mathcal{H}_{1} \subseteq R(B)$ since $A_{23}=0$ and B_{22} is invertible.

On the contrary, suppose that $R\left(A^{*} A B\right) \subseteq R(B)$. It is evident from the formula (3.6) that $A_{23}^{*} A_{21} B_{11}=0$, and so $A_{23}=0$. This infers $R\left(A^{*} A B\right)=\mathcal{H}_{1}=R\left(B_{11}\right) \subseteq R\left(\begin{array}{cc}B_{11} & 0 \\ B_{21} & B_{22}\end{array}\right)$. It follows that $R\left(B_{21}\right) \subseteq R\left(B_{22}\right)$ and then $N\left(B_{22}^{*}\right) \subseteq N\left(B_{21}^{*}\right)$. Thus B_{22}^{*} is injective by the definition of \mathcal{H}_{2} and so B_{22} is invertible. From Lemma 2.1 again, $G_{11}=B_{11}^{-1}, G_{12}=0$ in (3.8). Combining formulae (3.10) with (3.11), we infer that

$$
B\{1,3,4\} A\{1,3,4\} \subseteq A B\{1,3\}
$$

by the arbitrariness of $M_{2 i}, M_{3 i}, i \in\{1,2,3\}$.
Case 2. $\mathcal{H}_{3}=\{0\}$. In this case, A, B can be represented by (3.3) and (3.4), respectively, by Lemma 3.1. Similar to Case 1, it is clear that $B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,3\}$ if and only if
$R\left(A^{*} A B\right) \subseteq R(B)$. The proof is completed.
In view of the relationship of $\{1,3\}$-inverse and $\{1,4\}$-inverse, we have the following result.
Corollary 3.3 Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{J})$ and $B \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ be such that all ranges $R(A), R(B)$ and $R(A B)$ are closed. Then

$$
B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,4\} \Longleftrightarrow R\left(B B^{*} A^{*}\right) \subseteq R\left(A^{*}\right)
$$

Proof For any $E \in A\{1,3,4\}$ and $F \in B\{1,3,4\}$, then $E^{*} \in A^{*}\{1,3,4\}$ and $F^{*} \in B^{*}\{1,3,4\}$. It is clear that $F E \in(A B)\{1,4\}$ if and only if $E^{*} F^{*} \in\left(B^{*} A^{*}\right)\{1,3\}$ by Moore-Penrose equations (1), (3) and (4). Therefore, $B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,4\}$ if and only if $A^{*}\{1,3,4\} B^{*}\{1,3,4\} \subseteq$ $\left(B^{*} A^{*}\right)\{1,3\}$. Moreover, from Theorem 3.2, we have that

$$
A^{*}\{1,3,4\} B^{*}\{1,3,4\} \subseteq\left(B^{*} A^{*}\right)\{1,3\} \Longleftrightarrow R\left(B B^{*} A^{*}\right) \subseteq R\left(A^{*}\right)
$$

Hence,

$$
B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,4\} \Longleftrightarrow R\left(B B^{*} A^{*}\right) \subseteq R\left(A^{*}\right)
$$

The proof is completed.
Corollary 3.4 Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{J})$ and $B \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ be such that all ranges $R(A), R(B)$ and $R(A B)$ are closed. Then the following statements are equivalent,
(1) $B\{1,3,4\} A\{1,3,4\} \subseteq(A B)\{1,3,4\}$;
(2) $R\left(A^{*} A B\right) \subseteq R(B)$ and $R\left(B B^{*} A^{*}\right) \subseteq R\left(A^{*}\right)$;
(3) $B B^{\dagger} A^{*} A B=A^{*} A B$ and $A B B^{*} A^{\dagger} A=A B B^{*}$.

Proof From Theorem 3.2 and Corollary 3.3, it is easy to get that statements (1) and (2) are equivalent. It follows from matrix forms of $A^{*} A B, B B^{*} A^{*}, A^{*}$ and B that

$$
R\left(A^{*} A B\right) \subseteq R(B), \quad R\left(B B^{*} A^{*}\right) \subseteq R\left(A^{*}\right) \Longleftrightarrow A_{23}=0, \quad B_{21}=0
$$

While $A_{23}=0, B_{21}=0$ is equivalent to $B B^{\dagger} A^{*} A B=A^{*} A B, A B B^{*} A^{\dagger} A=A B B^{*}$.
The reverse order law for $\{1,3,4\}$-inverse was considered in [12]. Under the premise condition in Corollary 3.4, it was given therein

$$
B\{1,3,4\} A\{1,3,4\} \subseteq A B\{1,3,4\}
$$

if and only if

$$
R\left(A^{*} A B\right)=R(B) \ominus(R(B) \cap N(A)) \text { and } B^{*}(R(B) \cap N(A))=B^{\dagger}(R(B) \cap N(A))
$$

which is equivalent to the statement (2) in Corollary 3.4 from Lemma 3.1 and matrix forms of $A^{*} A B$ and $B B^{*} A^{*}$. Moreover, the statement (3) was also obtained by Cvetković -Ilić in [5] for

$$
B\{1,3,4\} A\{1,3,4\} \subseteq A B\{1,3,4\}
$$

under the condition $A, B, A B, A\left(I-B B^{\dagger}\right)$ and $\left(I-A^{\dagger} A\right) B$ are generalized invertible. Here, Corollary 3.4 is a refinement of the related result in [5].

Theorem 3.5 Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{J})$ and $B \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ be such that all ranges $R(A), R(B)$ and $R(A B)$ are closed. Then the following statements are equivalent:
(1) $\left(A^{(134)} A B\right)\{1,3,4\} A\{1,3,4\}=(A B)\{1,3,4\}$ for any $A^{(134)} \in A\{1,3,4\}$;
(2) $R\left(A A^{*} A B\right) \subseteq R(A B)$.

Proof If $A B=0$, the conclusion holds. Suppose that $A B \neq 0$. In the case of $\mathcal{H}_{3} \neq\{0\}, A, B$ and $A^{(134)}$ have the matrix forms (3.1), (3.2) and (3.7), respectively. Direct computation yields

$$
A^{(134)} A B=\left(\begin{array}{ccc}
B_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

which gives by Lemma 2.1(1) that

$$
(A B)^{(134)}=\left(\begin{array}{ccc}
0 & B_{11}^{-1} A_{21}^{-1} & 0 \tag{3.12}\\
M_{1} & 0 & M_{2} \\
M_{3} & 0 & M_{4}
\end{array}\right), \quad\left(A^{(134)} A B\right)^{(134)}=\left(\begin{array}{cccc}
B_{11}^{-1} & 0 & 0 & 0 \\
0 & F_{1} & F_{2} & F_{3} \\
0 & F_{4} & F_{5} & F_{6}
\end{array}\right)
$$

where $M_{i}, i=1,2,3,4, F_{k}, k=1,2, \ldots, 6$ are arbitrary. Then

$$
\left(A^{(134)} A B\right)^{(134)} A^{(134)}=\left(\begin{array}{ccc}
-B_{11}^{-1} A_{21}^{-1} A_{23} A_{13}^{-1} & B_{11}^{-1} A_{21}^{-1} & 0 \tag{3.13}\\
F_{2} A_{13}^{-1} & 0 & F_{1} G_{1}+F_{3} G_{2} \\
F_{5} A_{13}^{-1} & 0 & F_{3} G_{1}+F_{6} G_{2}
\end{array}\right)
$$

Compare (3.12) and (3.13), we get

$$
\left(A^{(134)} A B\right)\{1,3,4\} A\{1,3,4\}=(A B)\{1,3,4\} \Longleftrightarrow A_{23}=0
$$

by the arbitrariness of $G_{1}, G_{2}, M_{i}, i=1,2,3,4$ and $F_{k}, k=1,2, \ldots, 6$. Moreover,

$$
A A^{*} A B=\left(\begin{array}{ccc}
A_{13} A_{23}^{*} A_{21} B_{11} & 0 & 0 \\
A_{21} A_{21}^{*} A_{21} B_{11}+A_{23} A_{23}^{*} A_{21} B_{11} & 0 & 0 \\
0 & 0 & 0
\end{array}\right):\left(\begin{array}{c}
\mathcal{K}_{1} \\
\mathcal{K}_{2} \\
\mathcal{K}_{3}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\mathcal{J}_{1} \\
\mathcal{J}_{2} \\
\mathcal{J}_{3}
\end{array}\right)
$$

This shows that

$$
R\left(A A^{*} A B\right) \subseteq R(A B) \Longleftrightarrow A_{23}=0
$$

since A_{13}, A_{21} and B_{11} are all invertible. Therefore,

$$
\left(A^{(134)} A B\right)\{1,3,4\} A\{1,3,4\}=(A B)\{1,3,4\} \Longleftrightarrow R\left(A A^{*} A B\right) \subseteq R(A B)
$$

In the similar way, the conclusion also holds in the case of $\mathcal{H}_{3}=\{0\}$. The proof is completed.
Next, we will study the mixed-type reverse order laws associated to the Moore-Penrose inverse and the $\{1,3,4\}$-inverse.

Theorem 3.6 Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and $B \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ be such that all ranges $R(A), R(B)$ and $R(A B)$ are closed. Then the following statements are equivalent:
(1) $\left(A^{\dagger} A B\right)^{\dagger} A^{\dagger}=(A B)^{\dagger}$;
(2) $\left(A^{\dagger} A B\right)^{\dagger} A^{\dagger} \in(A B)\{1,3,4\}$;
(3) $R\left(A A^{*} A B\right) \subseteq R(A B)$.

Proof By Theorem 3.5, $(1) \Rightarrow(2)$ and $(3) \Rightarrow(2)$ hold. Next, we prove the implications $(2) \Rightarrow(1)$
and $(2) \Rightarrow(3)$. It needs only to consider the case when $A B \neq 0$ and $\mathcal{H}_{3} \neq\{0\}$. Here $A, B, A B$ and $(A B)^{(134)}$ have matrix forms as in (3.1),(3.2), (3.5) and (3.12), respectively. It is easy to know that Moore-Penrose inverses A^{\dagger} and $(A B)^{\dagger}$ have matrix forms

$$
A^{\dagger}=\left(\begin{array}{ccc}
-A_{21}^{-1} A_{23} A_{13}^{-1} & A_{21}^{-1} & 0 \tag{3.14}\\
0 & 0 & 0 \\
A_{13}^{-1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and }(A B)^{\dagger}=\left(\begin{array}{ccc}
0 & B_{11}^{-1} A_{21}^{-1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

respectively. By direct computation, we have

$$
A^{\dagger} A B=\left(\begin{array}{ccc}
B_{11} & 0 & 0 \tag{3.15}\\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and }\left(A^{\dagger} A B\right)^{\dagger}=\left(\begin{array}{cccc}
B_{11}^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore,

$$
\left(A^{\dagger} A B\right)^{\dagger} A^{\dagger}=\left(\begin{array}{ccc}
-B_{11}^{-1} A_{21}^{-1} A_{23} A_{13}^{-1} & B_{11}^{-1} A_{21}^{-1} & 0 \tag{3.16}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Suppose that the statement (2) of this theorem holds. Comparing (3.16) and the matrix form of $(A B)^{(134)}$ in (3.12), we have $B_{11}^{-1} A_{21}^{-1} A_{23} A_{13}^{-1}=0$ and so $A_{23}=0$. Thus combining (3.16) with the matrix form of $(A B)^{\dagger}$ in (3.14), we have $\left(A^{\dagger} A B\right)^{\dagger} A^{\dagger}=(A B)^{\dagger}$. So the statement (1) holds. Moreover, it follows from $A_{23}=0$ that $A A^{*} A B$ has the matrix form as follows:

$$
A A^{*} A B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
A_{21} A_{21}^{*} A_{21} B_{11} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

This shows that $R\left(A A^{*} A B\right) \subseteq R(A B)$. Therefore, the statement (3) holds. The proof is completed.

Theorem 3.7 Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and $B \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ be such that all ranges $R(A), R(B)$ and $R(A B)$ are closed. Then the following statements are equivalent:
(1) $B^{\dagger} A\{1,3,4\} \subseteq(A B)\{1,3,4\}$;
(2) $B^{\dagger} A^{\dagger} \in(A B)\{1,3,4\}$;
(3) $R\left(B B^{*} A^{*}\right) \subseteq R\left(A^{*}\right)$ and $R\left(A^{*} A B\right) \subseteq R(B)$.

Proof By Corollary 3.4, $(1) \Rightarrow(2)$ and $(3) \Rightarrow(1)$ hold. We need only to prove $(2) \Rightarrow(3)$ when $A B \neq 0$ and the case $\mathcal{H}_{3} \neq\{0\}$, since the case $\mathcal{H}_{3}=\{0\}$ is similar. Here A, A^{\dagger} and B have the matrix form as in (3.1), (3.14) and (3.2), respectively. The Moore-Penrose inverse B^{\dagger} can be represented by

$$
B^{\dagger}=\left(\begin{array}{cccc}
G_{11} & G_{12} & 0 & 0 \tag{3.17}\\
G_{21} & G_{22} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where $G_{i j}, i \in\{1,2\}, j \in\{1,2\}$ satisfy the system of equations (3.9) by Lemma 2.2. Combining (3.14) with (3.17), we get

$$
B^{\dagger} A^{\dagger}=\left(\begin{array}{ccc}
-G_{11} A_{21}^{-1} A_{23} A_{13}^{-1} & G_{11} A_{21}^{-1} & 0 \tag{3.18}\\
-G_{21} A_{21}^{-1} A_{23} A_{13}^{-1} & G_{21} A_{21}^{-1} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

If $B^{\dagger} A^{\dagger} \in(A B)\{1,3,4\}$ holds, then from (3.18) and (3.12), we obtain $-G_{11} A_{21}^{-1} A_{23} A_{13}^{-1}=0$, $G_{11} A_{21}^{-1}=B_{11}^{-1} A_{21}^{-1}$ and $G_{21} A_{21}^{-1}=0$. This shows that $A_{23}=0, G_{11}=B_{11}^{-1}$ and $G_{21}=0$. Using the same technique in the proof of theorem 3.2, we know that $R\left(A^{*} A B\right) \subseteq R(B)$ and B_{22} is invertible. Notice that $G_{21}=-B_{22}^{-1} B_{21} B_{11}^{-1}$, it follows that $B_{21}=0$. This means that $R\left(B B^{*} A^{*}\right) \subseteq R\left(A^{*}\right)$ by (3.1) and (3.2). The proof is completed.

Acknowledgements We thank the referees for their time and comments.

References

[1] T. N. E. GREVILLE. Note on the generalized inverse of a matrix product. SIAM Rev., 1966, 8(4): 518-521.
[2] S. IZUMINO. The product of operators with closed range and an extension of the reverse order law. Tohoku Math. J., 1982, 34(1): 43-52.
[3] R. H. BOULDIN. The pseudo-inverse of a product. SIAM J. Appl. Math., 1973, 24(4): $489-495$.
[4] D. S. CVETKOVIĆ-ILIĆ, R. HARTE. Reverse order law in C^{*}-algebras. Linear Algebra Appl., 2011, 434(5): 1388-1394.
[5] D. S. CVETKOVIĆ-ILIĆ. Reverse order laws for $\{1,3,4\}$-generalized inverses in C*-algebras. Appl. Math. Lett., 2011, 24(2): 210-213.
[6] D. S. CVETKOVIĆ-ILIĆ, M. DJIKIĆ. Various solutions to reverse order law problems. Linear Multilinear A., 2016, 64(6): 1207-1219.
[7] Chunyuan DENG. Reverse order law for the group inverses. J. Math. Anal. Appl., 2011, 382(2): 663-671.
[8] D. S. DJORDJEVIĆ. Further results on the reverse order law for generalized inverses. SIAM J. Matrix Anal. Appl., 2007, 29(4): 1242-1246.
[9] D. S. DJORDJEVIĆ, N. Č. DINČIĆ. Reverse order law for the Moore-Penrose inverse. J. Math. Anal. Appl., 2010, 361(1): 252-261.
[10] D. S. DJORDJEVIĆ. New conditions for the reverse order laws for $\{1,3\}$ and $\{1,4\}$-generalized inverses. Electron. J. Linear Algebra, 2012, 23: 231-241.
[11] D. MOSIĆ, D. S. DJORDJEVIĆ. Reverse order law in C^{*}-algebras. Appl. Math. Comput., 2011, 218(7): 3934-3941.
[12] Jie WANG, Haiyan ZHANG, Guoxing JI. A generalized reverse order law for the products of two operators. J. Shaanxi Normal Univ. 2010, 38(4): 13-17.
[13] Yongge TIAN. On mixed-type reverse-order laws for the Moore-Penrose inverse of a matrix product. Int. J. Math. Math. Sci., 2004, 58: 3103-3116.
[14] Xiaoji LIU, Shujuan HUANG, D. S. DJORDJEVIĆ. Mixed-type reverse-order laws for $\{1,3,4\}$-generalized inverses over Hilbert spaces. Appl. Math. Comput., 2012, 218(17): 8570-8577.
[15] Minghui WANG, Musheng WEI, Zhigang JIA. Mixed-type reverse-order law of $(A B)^{13}$. Linear Algebra Appl., 2009, 430(5-6): 1691-1699.
[16] Long WANG, Jianlong CHEN. Mixed-type reverse-order laws of $(A B)^{(1,3)},(A B)^{(1,2,3)}$ and $(A B)^{(1,3,4)}$. Appl. Math. Comput., 2013, 222: 42-52.
[17] Zhiping XIONG. The Mixed-type reverse order laws for generalized inverses of the product of two matrices. Filomat, 2013, 27(5): 937-947.
[18] Hu YANG, Xifu LIU. Mixed-type reverse-order laws $(A B)^{(1,2,3)}$ and $(A B)^{(1,2,4)}$. Appl. Math. Comput., 2011, 217: 10361-10367.

[^0]: Received December 16, 2018; Accepted May 26, 2019
 Supported by the National Natural Science Foundation of China (Grant Nos. 11501345; 11671261) and the Youth Backbone Teacher Training Program of Henan Province (Grant No. 2017GGJS140).

 * Corresponding author

 E-mail address: csqam@163.com (Haiyan ZHANG); cydeng@scnu.edu.cn (Chunyuan DENG)

