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Abstract In this paper, we study the mixed-type reverse order laws to {1, 3, 4}-inverses for

closed range operators A, B and AB. It is shown that B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3} if and

only if R(A∗AB) ⊆ R(B). For every A(134) ∈ A{1, 3, 4}, it has (A(134)AB){1, 3, 4}A{1, 3, 4} =

(AB){1, 3, 4} if and only if R(AA∗AB) ⊆ R(AB). As an application of our results, some new

characterizations of the mixed-type reverse order laws associated to the Moore-Penrose inverse

and the {1, 3, 4}-inverse are established.
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1. Introduction

LetH and K be complex Hilbert spaces and B(H,K) be the set of all bounded linear operators

from H into K, and abbreviate B(H,K) to B(H) if H = K. For A ∈ B(H,K), N(A) and R(A)

are the null space and the range of A, respectively. A generalized inverse of A is an operator

G ∈ B(K,H) satisfying some of the following four equations, which is said to be the Moore-

Penrose conditions:

(1) AGA = A, (2) GAG = G, (3) (AG)∗ = AG, (4) (GA)∗ = GA.

Let A{i, j, . . . , l} denote the set of all operators G ∈ B(K,H) which satisfy equation (i), (j),

. . . , (l) from the above equations. An operator G ∈ A{i, j, . . . , l} is called an {i, j, . . . , l}-inverse
of A, denoted by A(ij···l). The unique {1, 2, 3, 4}-inverse of A is denoted by A†, which is called

the Moore-Penrose inverse of A. As is well known, A is the Moore-Penrose invertible if and only

if R(A) is closed.

The reverse order law for many types of generalized inverses has been the subject of intensive

research since 1960s, and many interesting results have been obtained. For the Moore-Penrose

inverse, Greville gave a classical result

(AB)+ = B†A† ⇐⇒ R(A∗AB) ⊂ R(B), R(BB∗A∗) ⊂ R(A∗)

for any complex matrices A and B in [1]. This result was extended to bounded linear operators

on Hilbert spaces by Izumino [2] and Bouldin [3]. Following these, reverse order laws for different
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types of generalized inverses have been studied [4–12]. The mixed-type reverse-order laws for

AB like

(A†AB)†A† = (AB)†, B†(ABB†)† = (AB)†

have been considered in [2] and [13]. Many scholars also discussed Mixed-type reverse order laws

for (AB)(13), (AB)(123), (AB)(124) and (AB)(134) (see [14–18]). In [17], the author considered

the equivalent condition for B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3} in matrix algebra. By the block

operator matrix technique, the author studied the equivalent condition for B{1, 3, 4}A{1, 3, 4} ⊆
(AB){1, 3, 4} in [12]. Using the similar space decompositions method in [12], Liu, et al. estab-

lished the necessary and sufficient conditions for the mixed-type reverse-order laws for B{1, 3, 4}
(ABB(134)){1, 3, 4} ⊆ (AB){1, 3, 4} (see [14]). However, this method is not suitable for studying

(A(134)AB){1, 3, 4}A{1, 3, 4} = (AB){1, 3, 4}.
In this paper, we shall improve the space decompositions method in [11, 12] and study the

mixed-type reverse order laws associated to {1, 3, 4}-inverse. In Section 2, some preliminaries

are given and the {1, 3, 4}-inverse for a class of triangular matrix is obtained. In Section 3, we

derive the necessary and sufficient condition for B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3} when R(A),

R(B) and R(AB) are closed. A new equivalent condition for B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3, 4}
is obtained. Moreover, the necessary and sufficient condition for (A(134)AB){1, 3, 4}A{1, 3, 4} =

(AB){1, 3, 4} is given. As an application of our results, the mixed-type reverse order laws asso-

ciated to the Moore-Penrose inverse are considered.

In this section, we mainly discuss representations for generalized inverses of triangular op-

erator matrices. Let A ∈ B(H,K) have closed range. It is well known that A, as an operator

from H = R(A∗) ⊕ N(A) into K = R(A) ⊕ N(A∗), has the diagonal matrix form A = A1 ⊕ 0,

where A1 ∈ B(R(A∗), R(A)) is invertible. In this case, the Moore-Penrose inverse A† of A can

be represented by A† = A−1
1 ⊕ 0. In general, we have the following results.

Lemma 2.1 For a given operator C ∈ B(H), let M0 =
(
C 0
0 0

)
∈ B(H⊕K). Then the following

statements hold.

(1) ( [14]) If C is invertible, then the {1, 3}-inverse M
(13)
0 and the {1, 3, 4}-inverse M

(134)
0 of

M0 can be represented by

M0
(13) =

(
C−1 0

G21 G22

)
and M0

(134) =

(
C−1 0

0 G22

)
,

respectively, where G21 ∈ B(H,K) and G22 ∈ B(K) are arbitrary.

(2) If C∗ is surjective, then the {1, 3, 4}-inverse M
(134)
0 of M0 can be represented by

M
(134)
0 =

(
C† 0

G21 G22

)
, (2.1)

where G22 ∈ B(K) is arbitrary. G21 = X(IH − CC†) for arbitrary X ∈ B(H,K).

Proof We only need to prove the statement (2). Since C∗ is surjective, M0 can be represented
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by

M0 =

 C1 0

0 0

0 0

 :

(
H
K

)
→

 R(C)

N(C∗)

K

 ,

where C =
(
C1

0

)
such that C1 is invertible. By the statement (1), the {1, 3, 4}-inverse M

(134)
0 of

M0 has the matrix form as

M0
(134) =

(
C1

−1 0 0

0 G
′′

21 G22

)
:

 R(C)

N(C∗)

K

→

(
H
K

)
,

in which G
′′

21 ∈ B(N(C∗),K), G22 ∈ B(K) are arbitrary. Here (C−1
1 0) = C† and

G21 =
(

0 G
′′

21

)
= X(IH − CC†), ∀X ∈ B(H,K).

Therefore, (2.1) holds. The proof is completed. �
Moreover, for given operators C ∈ B(H) and D ∈ B(K), denote by MF =

(
C 0
F D

)
, where

F ∈ B(H,K). Then we have the following results.

Lemma 2.2 Let C ∈ B(H) and D ∈ B(K) be given such that C is invertible and D∗ is surjective.

Then the {1, 3, 4}-inverse M
(134)
F is unique and can be formulated by

M
(134)
F = M+

F =

(
G11 G12

G21 G22

)
,

where 
G11 = C−1

(
IH + C∗−1F ∗(IK −DD†)FC−1

)−1
,

G12 = C−1
(
IH + C∗−1F ∗(IK −DD†)FC−1

)−1
C∗−1F ∗(IK −DD†),

G21 = −D†FC−1
(
IH + C∗−1F ∗(IK −DD†)FC−1

)−1
,

G22 = D† −D†FG12.

(2.2)

Moreover, G12 = 0 if and only if R(F ) ⊆ R(D).

Proof Since the range of M∗
F is surjective, by Lemma 2.1(2), we have the {1, 3, 4}-inverse

M
(134)
F of MF must be equal to the Moore-Penrose inverse M+

F . Set K = R(D)⊕N(D∗). Then

MF has the matrix form

MF =

 C 0

F1 D1

F2 0

 :

(
H
K

)
→

 H
R(D)

N(D∗)

 ,

where C, D1 are invertible. Let M+
F have the matrix form

M+
F =

(
G11 G

′

12 G
′′

12

G21 G
′

22 G
′′

22

)
:

 H
R(D)

N(D∗)

→

(
H
K

)
,
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where (G
′

12 G
′′

12) = G12 and (G
′

22 G
′′

22) = G22. Set A =
(

C 0
F1 D1

)
and B = (F2 0), then

A−1 =
(

C−1 0
−D−1

1 F1C
−1 D1

−1

)
and BA−1 = (F2C

−1 0). We have

MF
† =

[(
A∗ B∗

)( A

B

)]† (
A∗ B∗

)
= [A∗A+B∗B]

†
(

A∗ B∗
)

= A−1
[
IH⊕R(D) + (BA−1)∗(BA−1)

]† (
IH⊕R(D) (BA−1)∗

)
=

(
C−1 0

−D−1
1 F1C

−1 D1
−1

)( (
IH + C∗−1F ∗

2 F2C
−1

)−1
0

0 IR(D)

)(
IH 0 C−1∗F ∗

2

0 IR(D) 0

)

=

(
C−1

(
IH + C∗−1F ∗

2 F2C
−1

)−1
0 C−1

(
IH + C∗−1F ∗

2 F2C
−1

)−1
C∗−1F2

∗

−D1
−1F1C

−1
(
IH + C∗−1F ∗

2 F2C
−1

)−1
D1

−1 −D1
−1F1C

−1
(
IH + C∗−1F ∗

2 F2C
−1

)−1
C∗−1F2

∗

)
.

Therefore,

G11 = C−1
(
IH + C∗−1F ∗(IK −DD†)FC−1

)−1

,

G12 =
(

0 C−1
(
IH + C∗−1F ∗

2 F2C
−1
)−1

C∗−1F2
∗
)

= C−1
(
IH + C∗−1F ∗(IK −DD†)FC−1

)−1

C∗−1F ∗(IK −DD†),

G21 = −D1
−1F1C

−1
(
IH + C∗−1F ∗

2 F2C
−1
)−1

= −D†FC−1
(
IH + C∗−1F ∗(IK −DD†)FC−1

)−1

and

G22 =
(

G
′

22 G
′′

22

)
=
(

D−1
1 −D1

−1F1C
−1
(
IH + C∗−1F ∗

2 F2C
−1
)−1

C∗−1F2
∗
)

=
(

D−1
1 0

)
−
(

0 D1
−1F1C

−1
(
IH + C∗−1F ∗

2 F2C
−1
)−1

C∗−1F2
∗
)

= D† −D†FG12.

This shows that equalities in (2.2) hold.

Moreover, G12 = 0 if and only if F ∗(IK −DD†) = 0, which is equivalent to R(F ) ⊆ R(D).

The proof is completed. �

3. Mixed-reverse order laws associated to {1, 3, 4}-inverse

Let H, K and J be complex Hilbert spaces. Let A ∈ B(H,J ), B ∈ B(K,H) and AB have

closed ranges. In this section, we will give necessary and sufficient conditions for

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3}

and

(A(134)AB){1, 3, 4}A{1, 3, 4} = (AB){1, 3, 4}.
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Firstly, we give some space decompositions. Denote
H1 = R(A∗)⊖ (R(A∗) ∩N(B∗)),

H2 = N(A)⊖ (N(A) ∩N(B∗)),

H3 = R(A∗) ∩N(B∗),

H4 = N(A) ∩N(B∗),


K1 = R(B∗A∗),

K2 = R(B∗)⊖R(B∗A∗),

K3 = N(B),


J1 = (A∗)†H3,

J2 = R(A)⊖ (A∗)†H3,

J3 = N(A∗).

Then

H = H1 ⊕H2 ⊕H3 ⊕H4, K = K1 ⊕K2 ⊕K3 and J = J1 ⊕ J2 ⊕ J3.

Lemma 3.1 Let A ∈ B(H,J ) and B ∈ B(K,H) be such that all ranges R(A), R(B) and R(AB)

are closed. Suppose that AB ̸= {0}. The following statements hold.

(1) If H3 = R(A∗) ∩N(B∗) ̸= {0}, then A and B have the following matrix forms

A =

 0 0 A13 0

A21 0 A23 0

0 0 0 0

 :


H1

H2

H3

H4

→

 J1

J2

J3

 (3.1)

and

B =


B11 0 0

B21 B22 0

0 0 0

0 0 0

 :

 K1

K2

K3

→


H1

H2

H3

H4

 (3.2)

such that A13, A21, B11 are invertible and B∗
22 is surjective.

(2) If H3 = R(A∗) ∩N(B∗) = {0}, then A and B have the following matrix forms

A =

(
A21 0 0

0 0 0

)
:

 H1

H2

H4

→

(
J2

J3

)
, (3.3)

B =

 B11 0 0

B21 B22 0

0 0 0

 :

 K1

K2

K3

→

 H1

H2

H4

 (3.4)

such that A21, B11 are invertible and B∗
22 is surjective.

Proof (1) According to space decompositions of H and J , it is clear that A∗ has matrix form

as follows,

A∗ =


A∗

11 A∗
21 0

0 0 0

A∗
13 A∗

23 0

0 0 0

 :

 J1

J2

J3

→


H1

H2

H3

H4

 .

Since A∗J1 = A∗A∗†H3 = H3, it is obvious that A∗
11 = 0 and A∗

13 is surjective. Moreover,

N(A∗) = J3, this implies that A∗
13 is injective. So A∗

13 is invertible. This infers A∗
21 is surjective,
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sine R(A∗) = H1 ⊕ H3. In fact, A∗
21 is also injective. Otherwise there is a non-zero element

x ∈ J2 such that A∗
21x = 0. Then there exists an element y ∈ J1 such that A∗

13y = −A∗
23x since

A∗
13 is invertible. This follows that A∗(y ⊕ x) = 0 which is a contradiction with N(A∗) = J3.

Therefore, A∗
21 is invertible. And then A has the matrix form (3.1) where A13 and A21 are

invertible.

By space decompositions H and K, it is elementary that

B∗ =

 B∗
11 B∗

21 0 0

0 B∗
22 0 0

0 0 0 0

 :


H1

H2

H3

H4

→

 K1

K2

K3

 ,

where B∗
11 is invertible and B∗

22 is surjective. So B has the matrix form (3.2). Similarly, the

statement (2) holds. The proof is completed. �

Theorem 3.2 Let A ∈ B(H,J ) and B ∈ B(K,H) be such that all ranges R(A), R(B) and

R(AB) are closed. Then

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3} ⇐⇒ R(A∗AB) ⊂ R(B).

Proof The result naturally holds when AB = 0, since (AB){1, 3} = B(J ,K) and R(A∗AB) =

{0} in this case. Assume that AB ̸= 0. We divide the proof into two cases.

Case 1. H3 ̸= {0}. By Lemma 3.1, A,B can be represented by (3.1) and (3.2), respectively,

where operators A13, A21, B11 are invertible and B∗
22 is surjective. This implies that

AB =

 0 0 0

A21B11 0 0

0 0 0

 :

 K1

K2

K3

→

 J1

J2

J3

 , (3.5)

and

A∗AB =


A∗

21A21B11 0 0

0 0 0

A∗
23A21B11 0 0

0 0 0

 :

 K1

K2

K3

→


H1

H2

H3

H4

 . (3.6)

For any A(134) ∈ A{1, 3, 4}, by Lemma 2.1(1), A(134) has the matrix form

A(134) =


−A−1

21 A23A
−1
13 A−1

21 0

0 0 G1

A−1
13 0 0

0 0 G2

 :

 J1

J2

J3

→


H1

H2

H3

H4

 , (3.7)

where G1 ∈ B(J3,H2) and G2 ∈ B(J3,H4). Combining Lemma 2.1(2) with Lemma 2.2, we
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conclude that the {1, 3, 4}-inverse B(134) of B has the matrix form as follows:

B(134) =

 G11 G12 0 0

G21 G22 0 0

G31 G32 G33 G34

 :


H1

H2

H3

H4

→

 K1

K2

K3

 , (3.8)

where G33 ∈ B(H3,K3), G43 ∈ B(H4,K3) and
G11 = B11

−1(IK1 +B∗
11

−1B21
∗(IH2 −B22B

†
22)B21B11

−1)−1,

G12 = B11
−1(IK1 +B∗

11
−1B21

∗(IH2 −B22B
†
22)B21B11

−1)−1B∗
11

−1B21
∗(IH2 −B22B

†
22),

G21 = −B+
22B21G11,

G22 = B†
22 −B†

22B21G12.

(3.9)

Then it follows from matrix forms of (3.7) and (3.8) that

B(134)A(134) =

 −G11A
−1
21 A23A

−1
13 G11A

−1
21 G12G1

−G21A
−1
21 A23A

−1
13 G21A

−1
21 G22G1

−G31A
−1
21 A23A

−1
13 +G32A

−1
13 G31A

−1
21 G32G1 +G34G2

 . (3.10)

Using Lemma 2.1(1), we get

(AB)(13) =

 0 B−1
11 A−1

21 0

M21 M22 M23

M31 M32 M33

 , (3.11)

where Mij ∈ B(Kj ,Ji), i ∈ {2, 3}, j ∈ {1, 2, 3}.
Assume that B{1, 3, 4}A{1, 3, 4} ⊆ AB{1, 3}, it follows from (3.10) and (3.11) that

G11 = B−1
11 , A23 = 0, G12G1 = 0,

since Mij , i ∈ {2, 3}, j ∈ {1, 2, 3} are arbitrary. Combining G11 = B−1
11 with the equality

G11 = B−1
11 −G12B21B

−1
11 in (3.9), we can obtain that G12B21 = 0, and consequently R(G∗

12) ⊆
N(B∗

21). From the relation G12B22 = 0 in (3.9), we can infer that R(G∗
12) ⊆ N(B∗

22). This shows

R(G∗
12) ⊆ N(B∗

22) ∩ N(B∗
21) and so G12 = 0 by the definition of H2. From Lemma 2.2 again,

it is obvious that R(B21) ⊆ R(B22). This infers that N(B∗
22) ⊆ N(B∗

21) and so B∗
22 is injective

since N(B∗
22)∩N(B∗

21) = {0}. Therefore, B22 is invertible. Combining (3.6) with (3.2), we have

R(A∗AB) = H1 ⊆ R(B) since A23 = 0 and B22 is invertible.

On the contrary, suppose that R(A∗AB) ⊆ R(B). It is evident from the formula (3.6) that

A∗
23A21B11 = 0, and so A23 = 0. This infers R(A∗AB) = H1 = R(B11) ⊆ R

(
B11 0
B21 B22

)
. It follows

that R(B21) ⊆ R(B22) and then N(B∗
22) ⊆ N(B∗

21). Thus B∗
22 is injective by the definition of

H2 and so B22 is invertible. From Lemma 2.1 again, G11 = B−1
11 , G12 = 0 in (3.8). Combining

formulae (3.10) with (3.11), we infer that

B{1, 3, 4}A{1, 3, 4} ⊆ AB{1, 3}

by the arbitrariness of M2i, M3i, i ∈ {1, 2, 3}.
Case 2. H3 = {0}. In this case, A, B can be represented by (3.3) and (3.4), respectively, by

Lemma 3.1. Similar to Case 1, it is clear that B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3} if and only if
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R(A∗AB) ⊆ R(B). The proof is completed. �
In view of the relationship of {1, 3}-inverse and {1, 4}-inverse, we have the following result.

Corollary 3.3 Let A ∈ B(H,J ) and B ∈ B(K,H) be such that all ranges R(A), R(B) and

R(AB) are closed. Then

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 4} ⇐⇒ R(BB∗A∗) ⊆ R(A∗).

Proof For any E ∈ A{1, 3, 4} and F ∈ B{1, 3, 4}, then E∗ ∈ A∗{1, 3, 4} and F ∗ ∈ B∗{1, 3, 4}.
It is clear that FE ∈ (AB){1, 4} if and only if E∗F ∗ ∈ (B∗A∗){1, 3} by Moore-Penrose equations

(1), (3) and (4). Therefore, B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 4} if and only ifA∗{1, 3, 4}B∗{1, 3, 4} ⊆
(B∗A∗){1, 3}. Moreover, from Theorem 3.2, we have that

A∗{1, 3, 4}B∗{1, 3, 4} ⊆ (B∗A∗){1, 3} ⇐⇒ R(BB∗A∗) ⊆ R(A∗).

Hence,

B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 4} ⇐⇒ R(BB∗A∗) ⊆ R(A∗).

The proof is completed. �

Corollary 3.4 Let A ∈ B(H,J ) and B ∈ B(K,H) be such that all ranges R(A), R(B) and

R(AB) are closed. Then the following statements are equivalent,

(1) B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3, 4};
(2) R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗);

(3) BB†A∗AB = A∗AB and ABB∗A†A = ABB∗.

Proof From Theorem 3.2 and Corollary 3.3, it is easy to get that statements (1) and (2) are

equivalent. It follows from matrix forms of A∗AB, BB∗A∗, A∗ and B that

R(A∗AB) ⊆ R(B), R(BB∗A∗) ⊆ R(A∗) ⇐⇒ A23 = 0, B21 = 0.

While A23 = 0, B21 = 0 is equivalent to BB†A∗AB = A∗AB, ABB∗A†A = ABB∗. �
The reverse order law for {1, 3, 4}-inverse was considered in [12]. Under the premise condition

in Corollary 3.4, it was given therein

B{1, 3, 4}A{1, 3, 4} ⊆ AB{1, 3, 4}

if and only if

R(A∗AB) = R(B)⊖ (R(B) ∩N(A)) and B∗(R(B) ∩N(A)) = B†(R(B) ∩N(A)),

which is equivalent to the statement (2) in Corollary 3.4 from Lemma 3.1 and matrix forms of

A∗AB and BB∗A∗. Moreover, the statement (3) was also obtained by Cvetković -Ilić in [5] for

B{1, 3, 4}A{1, 3, 4} ⊆ AB{1, 3, 4}

under the condition A, B, AB, A(I − BB†) and (I − A†A)B are generalized invertible. Here,

Corollary 3.4 is a refinement of the related result in [5].

Theorem 3.5 Let A ∈ B(H,J ) and B ∈ B(K,H) be such that all ranges R(A), R(B) and

R(AB) are closed. Then the following statements are equivalent:
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(1) (A(134)AB){1, 3, 4}A{1, 3, 4} = (AB){1, 3, 4} for any A(134) ∈ A{1, 3, 4};
(2) R(AA∗AB) ⊆ R(AB).

Proof If AB = 0, the conclusion holds. Suppose that AB ̸= 0. In the case of H3 ̸= {0}, A, B
and A(134) have the matrix forms (3.1), (3.2) and (3.7), respectively. Direct computation yields

A(134)AB =


B11 0 0

0 0 0

0 0 0

0 0 0

 ,

which gives by Lemma 2.1(1) that

(AB)(134) =

 0 B−1
11 A−1

21 0

M1 0 M2

M3 0 M4

 , (A(134)AB)(134) =

 B−1
11 0 0 0

0 F1 F2 F3

0 F4 F5 F6

 , (3.12)

where Mi, i = 1, 2, 3, 4, Fk, k = 1, 2, . . . , 6 are arbitrary. Then

(A(134)AB)(134)A(134) =

 −B−1
11 A−1

21 A23A
−1
13 B−1

11 A−1
21 0

F2A
−1
13 0 F1G1 + F3G2

F5A
−1
13 0 F3G1 + F6G2

 . (3.13)

Compare (3.12) and (3.13), we get

(A(134)AB){1, 3, 4}A{1, 3, 4} = (AB){1, 3, 4} ⇐⇒ A23 = 0

by the arbitrariness of G1, G2, Mi, i = 1, 2, 3, 4 and Fk, k = 1, 2, . . . , 6. Moreover,

AA∗AB =

 A13A
∗
23A21B11 0 0

A21A
∗
21A21B11 +A23A

∗
23A21B11 0 0

0 0 0

 :

 K1

K2

K3

→

 J1

J2

J3

 .

This shows that

R(AA∗AB) ⊆ R(AB) ⇐⇒ A23 = 0,

since A13, A21 and B11 are all invertible. Therefore,

(A(134)AB){1, 3, 4}A{1, 3, 4} = (AB){1, 3, 4} ⇐⇒ R(AA∗AB) ⊆ R(AB).

In the similar way, the conclusion also holds in the case of H3 = {0}. The proof is completed. �
Next, we will study the mixed-type reverse order laws associated to the Moore-Penrose inverse

and the {1, 3, 4}-inverse.

Theorem 3.6 Let A ∈ B(H,K) and B ∈ B(K,H) be such that all ranges R(A), R(B) and

R(AB) are closed. Then the following statements are equivalent:

(1) (A†AB)†A† = (AB)†;

(2) (A†AB)†A† ∈ (AB){1, 3, 4};
(3) R(AA∗AB) ⊆ R(AB).

Proof By Theorem 3.5, (1)⇒(2) and (3)⇒(2) hold. Next, we prove the implications (2)⇒(1)
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and (2)⇒(3). It needs only to consider the case when AB ̸= 0 and H3 ̸= {0}. Here A, B, AB

and (AB)(134) have matrix forms as in (3.1) ,(3.2), (3.5) and (3.12), respectively. It is easy to

know that Moore-Penrose inverses A† and (AB)† have matrix forms

A† =


−A−1

21 A23A
−1
13 A−1

21 0

0 0 0

A−1
13 0 0

0 0 0

 and (AB)† =

 0 B−1
11 A−1

21 0

0 0 0

0 0 0

, (3.14)

respectively. By direct computation, we have

A†AB =


B11 0 0

0 0 0

0 0 0

0 0 0

 and (A†AB)† =

 B−1
11 0 0 0

0 0 0 0

0 0 0 0

. (3.15)

Therefore,

(A†AB)†A† =

 −B−1
11 A−1

21 A23A
−1
13 B−1

11 A−1
21 0

0 0 0

0 0 0

 . (3.16)

Suppose that the statement (2) of this theorem holds. Comparing (3.16) and the matrix form of

(AB)(134) in (3.12), we have B−1
11 A−1

21 A23A
−1
13 = 0 and so A23 = 0. Thus combining (3.16) with

the matrix form of (AB)† in (3.14), we have (A†AB)†A† = (AB)†. So the statement (1) holds.

Moreover, it follows from A23 = 0 that AA∗AB has the matrix form as follows:

AA∗AB =

 0 0 0

A21A
∗
21A21B11 0 0

0 0 0

 .

This shows that R(AA∗AB) ⊆ R(AB). Therefore, the statement (3) holds. The proof is com-

pleted. �

Theorem 3.7 Let A ∈ B(H,K) and B ∈ B(K,H) be such that all ranges R(A), R(B) and

R(AB) are closed. Then the following statements are equivalent:

(1) B†A{1, 3, 4} ⊆ (AB){1, 3, 4};
(2) B†A† ∈ (AB){1, 3, 4};
(3) R(BB∗A∗) ⊆ R(A∗) and R(A∗AB) ⊆ R(B).

Proof By Corollary 3.4, (1)⇒(2) and (3)⇒(1) hold. We need only to prove (2)⇒(3) when

AB ̸= 0 and the case H3 ̸= {0}, since the case H3 = {0} is similar. Here A, A† and B have

the matrix form as in (3.1), (3.14) and (3.2), respectively. The Moore-Penrose inverse B† can be

represented by

B† =

 G11 G12 0 0

G21 G22 0 0

0 0 0 0

 , (3.17)
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where Gij , i ∈ {1, 2}, j ∈ {1, 2} satisfy the system of equations (3.9) by Lemma 2.2. Combining

(3.14) with (3.17), we get

B†A† =

 −G11A
−1
21 A23A

−1
13 G11A

−1
21 0

−G21A
−1
21 A23A

−1
13 G21A

−1
21 0

0 0 0

 . (3.18)

If B†A† ∈ (AB){1, 3, 4} holds, then from (3.18) and (3.12), we obtain −G11A
−1
21 A23A

−1
13 = 0,

G11A
−1
21 = B−1

11 A−1
21 and G21A

−1
21 = 0. This shows that A23 = 0, G11 = B−1

11 and G21 = 0.

Using the same technique in the proof of theorem 3.2, we know that R(A∗AB) ⊆ R(B) and

B22 is invertible. Notice that G21 = −B−1
22 B21B

−1
11 , it follows that B21 = 0. This means that

R(BB∗A∗) ⊆ R(A∗) by (3.1) and (3.2). The proof is completed. �
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[14] Xiaoji LIU, Shujuan HUANG, D. S. DJORDJEVIĆ. Mixed-type reverse-order laws for {1, 3, 4}-generalized
inverses over Hilbert spaces. Appl. Math. Comput., 2012, 218(17): 8570–8577.

[15] Minghui WANG, Musheng WEI, Zhigang JIA. Mixed-type reverse-order law of (AB)13. Linear Algebra

Appl., 2009, 430(5-6): 1691–1699.

[16] Long WANG, Jianlong CHEN. Mixed-type reverse-order laws of (AB)(1,3), (AB)(1,2,3) and (AB)(1,3,4).

Appl. Math. Comput., 2013, 222: 42–52.

[17] Zhiping XIONG. The Mixed-type reverse order laws for generalized inverses of the product of two matrices.

Filomat, 2013, 27(5): 937–947.

[18] Hu YANG, Xifu LIU. Mixed-type reverse-order laws (AB)(1,2,3) and (AB)(1,2,4). Appl. Math. Comput.,

2011, 217: 10361–10367.


