
Journal of Mathematical Research with Applications

Sept., 2019, Vol. 39, No. 5, pp. 540–550

DOI:10.3770/j.issn:2095-2651.2019.05.010

Http://jmre.dlut.edu.cn

On Some Generalized Countably Compact Spaces

Erguang YANG

School of Mathematics & Physics, Anhui University of Technology, Anhui 243032, P. R. China

Abstract We first give alternative expressions of some generalized countably compact spaces

such as quasi-γ spaces, quasi-Nagata spaces, M#-spaces and wM -spaces with g-functions. Then

by means of these expressions, we present some characterizations of the corresponding spaces

with real-valued functions.

Keywords real-valued functions; g-functions; quasi-γ spaces; quasi-Nagata spaces; wN -spaces;

M#-spaces; wM -spaces

MR(2010) Subject Classification 54C08; 54C30; 54E18; 54E99

1. Introduction

Throughout, a space always means a Hausdorff topological space unless otherwise stated.

Let X be a space. Denote by CX (SX) the family of all compact (sequentially compact)

subsets of X. τ and τ c denote the topology of X and the families of all closed subsets of X,

respectively. F0(X) denotes the family of all decreasing sequences of closed subsets of X with

empty intersection. The set of all positive integers is denoted by N while ⟨xn⟩ denotes a sequence.

A real-valued function f on a space X is called lower (upper) semi-continuous [1] if for any

real number r, the set {x ∈ X : f(x) > r} ({x ∈ X : f(x) < r}) is open. We write L(X) (U(X))

for the set of all lower (upper) semi-continuous functions from X into the unit interval [0, 1].

A g-function for a space X is a map g : N × X → τ such that for each x ∈ X and n ∈ N,
x ∈ g(n, x) and g(n + 1, x) ⊂ g(n, x). For a subset A ⊂ X, let g(n,A) = ∪{g(n, x) : x ∈ A}.
Consider the following conditions.

(q) If xn ∈ g(n, x) for all n ∈ N, then ⟨xn⟩ has a cluster point.

(quasi-γ) If xn ∈ g(n, yn) for all n ∈ N and yn → x, then ⟨xn⟩ has a cluster point.

(β) If x ∈ g(n, xn) for all n ∈ N, then ⟨xn⟩ has a cluster point.

(quasi-Nagata) If yn ∈ g(n, xn) for all n ∈ N and yn → x, then ⟨xn⟩ has a cluster point.

(kβ) For each K ∈ CX , if K ∩ g(n, xn) ̸= ∅ for all n ∈ N, then ⟨xn⟩ has a cluster point.

(wN) If g(n, x) ∩ g(n, xn) ̸= ∅ for all n ∈ N, then ⟨xn⟩ has a cluster point.

A space that has a g-function satisfying condition (q) ((quasi-γ), (β), (quasi-Nagata), (kβ),

(wN)) is called a q-space [2] (quasi-γ space [3], β-space [4], quasi-Nagata space [5], kβ-space [6],

wN -space [7]). The g-function satisfying condition (q) is called a q-function. The others are
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defined analogously. β-spaces were also called monotonically countably metacompact spaces

in [8]. kβ-spaces were also called monotonically countably mesocompact spaces in [9] and k-

MCM spaces in [10].

It is known that a space X is countably compact if and only if every sequence in X has a

cluster point. Thus for a countably compact space X, if we let g(n, x) = X for each x ∈ X and

n ∈ N, then we get a g-function for X which clearly satisfies all the conditions listed above. Thus

all these spaces can be viewed as generalizations of countably compact spaces. On the other hand,

they are also natural generalizations of some corresponding generalized metric spaces. Actually,

if we replace ‘⟨xn⟩ has a cluster point’ in condition (q) ((quasi-γ), (β), (quasi-Nagata), (wN))

with ‘x is a cluster point of ⟨xn⟩’, then we get the g-function for first countable spaces (γ-spaces,

semi-stratifiable spaces, k-semi-stratifiable spaces, Nagata-spaces). In [11], it was shown that

most of generalized metric spaces such as γ-spaces, Nagata-spaces, semi-metrizable spaces and

quasi-metrizable spaces can be characterized with real-valued functions. A natural question is

that, as generalizations of the corresponding generalized metric spaces, whether the generalized

countably compact spaces mentioned above can also be characterized with real-valued functions.

With the question in mind, in this paper, we shall show that many classes of generalized countably

compact spaces such as the spaces mentioned above as well as M#-spaces, wM -spaces can be

characterized analogously to the corresponding generalized metric spaces.

For undefined terminologies, we refer the readers to [1].

2. Alternative expressions of some corresponding spaces

In this section, we give alternative expressions of some corresponding spaces with g-functions

which will be used in Section 3.

Lemma 2.1 If ⟨Fn⟩ ∈ F0(X) and xn ∈ Fn for each n ∈ N, then ⟨xn⟩ has no cluster point.

Proof Since ⟨Fn⟩ is decreasing and xn ∈ Fn, we have that {xm : m ≥ n} ⊂ Fn for each n ∈ N.
Thus {xm : m ≥ n} ⊂ Fn because Fn is closed. It follows that

∩
n∈N {xm : m ≥ n} ⊂

∩
n∈N Fn =

∅. This implies that ⟨xn⟩ has no cluster point. �

Proposition 2.2 g is a q-function for a space X if and only if for each ⟨Fn⟩ ∈ F0(X) and

x ∈ X, Fn ∩ g(n, x) = ∅ for some n ∈ N.

Proof Let g be a q-function for X, ⟨Fn⟩ ∈ F0(X) and x ∈ X. Assume that Fn ∩ g(n, x) ̸= ∅
for each n ∈ N and choose xn ∈ Fn ∩ g(n, x). Since g is a q-function, ⟨xn⟩ has a cluster point, a

contradiction to Lemma 2.1.

Conversely, suppose that xn ∈ g(n, x) and let Fn = {xm : m ≥ n} for each n ∈ N. Then

Fn ∩ g(n, x) ̸= ∅ for each n ∈ N. By the condition,
∩

n∈N Fn ̸= ∅ which implies that ⟨xn⟩ has a
cluster point. Therefore, g is a q-function. �

Proposition 2.3 For a space X, the following are equivalent.
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(a) g is a quasi-γ function for X;

(b) For each S ∈ SX , if xn ∈ g(n, S) for each n ∈ N, then ⟨xn⟩ has a cluster point;

(c) For each S ∈ SX and ⟨Fn⟩ ∈ F0(X), Fn ∩ g(n, S) = ∅ for some n ∈ N.

Proof (a) ⇒ (b). Let g be a quasi-γ function for X and S ∈ SX . Suppose that xn ∈ g(n, S)

for each n ∈ N. Then there exists yn ∈ S such that xn ∈ g(n, yn) for each n ∈ N. Since S ∈ SX ,

⟨yn⟩ has a convergent subsequence ⟨ynk
⟩ which clearly also converges in X. Since xnk

∈ g(k, ynk
)

and g is a quasi-γ function, ⟨xnk
⟩ has a cluster point which is clearly also a cluster point of ⟨xn⟩.

(b) ⇒ (c). Let g be the g-function in (b) and ⟨Fn⟩ ∈ F0(X). Let S ∈ SX and suppose that

Fn ∩ g(n, S) ̸= ∅ for each n ∈ N. Choose xn ∈ Fn ∩ g(n, S) for each n ∈ N. By (b), ⟨xn⟩ has a

cluster point, a contradiction to Lemma 2.1.

(c) ⇒ (a). Let g be the g-function in (c). Suppose that xn ∈ g(n, yn) for all n ∈ N and

yn → x. Let S = {yn : n ∈ N} ∪ {x} and let Fn = {xm : m ≥ n} for each n ∈ N. Then S ∈ SX

and Fn ∩ g(n, S) ̸= ∅ for each n ∈ N. By (c),
∩

n∈N Fn ̸= ∅ which implies that ⟨xn⟩ has a cluster

point. Therefore, g is a quasi-γ function. �

Proposition 2.4 g is a β-function for a space X if and only if for each ⟨Fn⟩ ∈ F0(X) and

x ∈ X, x /∈ g(n, Fn) for some n ∈ N.

Proof Similar to the proof of Proposition 2.2. �

Proposition 2.5 For a space X, the following are equivalent.

(a) g is a quasi-Nagata function for X;

(b) For each S ∈ SX , if S ∩ g(n, xn) ̸= ∅ for each n ∈ N, then ⟨xn⟩ has a cluster point;

(c) For each S ∈ SX and ⟨Fn⟩ ∈ F0(X), S ∩ g(n, Fn) = ∅ for some n ∈ N.

Proof Similar to the proof of Proposition 2.3. �
Since kβ-function can be obtained by replacing S ∈ SX in (b) of Proposition 2.5 withK ∈ CX ,

with a similar argument, we have the following.

Proposition 2.6 g is a kβ-function for a space X if and only if for each K ∈ CX and ⟨Fn⟩ ∈
F0(X), K ∩ g(n, Fn) = ∅ for some n ∈ N.

A space X is called an M#-space [12] if there exists a sequence {Fn}n∈N of closure preserving

closed covers of X such that if xn ∈ st(x,Fn) for each n ∈ N, then ⟨xn⟩ has a cluster point.

Proposition 2.7 For a space X, the following are equivalent.

(a) X is an M#-space;

(b) There exists a g-function g for X such that (1) if g(n, x) ∩ g(n, xn) ̸= ∅ for all n ∈ N,
then ⟨xn⟩ has a cluster point; (2) if y ∈ g(n, x), then g(n, y) ⊂ g(n, x);

(c) There exists a g-function g for X such that (1) for each ⟨Fn⟩ ∈ F0(X) and x ∈ X,

g(n, x) ∩ g(n, Fn) = ∅ for some n ∈ N; (2) if y ∈ g(n, x), then g(n, y) ⊂ g(n, x).

Proof (a) ⇒ (b). Let {Fn}n∈N be a sequence of closure preserving closed covers of X satisfying
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the condition of an M#-space. For each x ∈ X and n ∈ N, put h(n, x) = X \∪{F ∈ Fn : x /∈ F}
and g(n, x) = ∩i≤nh(i, x). Then g is a g-function for X and it is clear that g satisfies (2).

Suppose that yn ∈ g(n, x) ∩ g(n, xn) ⊂ h(n, x) ∩ h(n, xn) for each n ∈ N. Since Fn covers X,

there is Fn ∈ Fn such that yn ∈ Fn. Thus x, xn ∈ Fn from which it follows that xn ∈ st(x,Fn)

for each n ∈ N. Therefore, ⟨xn⟩ has a cluster point.

(b) ⇒ (c). Let g be the g-function in (b), ⟨Fn⟩ ∈ F0(X) and x ∈ X. Assume that g(n, x) ∩
g(n, Fn) ̸= ∅ for each n ∈ N. Then there exists xn ∈ Fn such that g(n, x)∩ g(n, xn) ̸= ∅ for each

n ∈ N. By (1) of (b), ⟨xn⟩ has a cluster point, a contradiction to Lemma 2.1.

(c) ⇒ (b). Let g be the g-function in (c). Suppose that g(n, x) ∩ g(n, xn) ̸= ∅ for all n ∈ N.
Let Fn = {xm : m ≥ n} for each n ∈ N. Then g(n, x) ∩ g(n, Fn) ̸= ∅ for each n ∈ N. Thus∩

n∈N Fn ̸= ∅ which implies that ⟨xn⟩ has a cluster point.

(b) ⇒ (a). Let g be the g-function in (b). For each x ∈ X and n ∈ N, let Gn(x) = ∪{g(n, y) :
y ∈ X,x /∈ g(n, y)}. For each n ∈ N, let Fn = {X \Gn(x) : x ∈ X}. Then Fn is a closed cover

of X.

To show that Fn is closure preserving, let A ⊂ X. We show that ∩{Gn(x) : x ∈ A} is open.

Let y ∈ ∩{Gn(x) : x ∈ A}. Then for each x ∈ A, y ∈ Gn(x) and thus there exists z ∈ X

such that y ∈ g(n, z) and x /∈ g(n, z). By (2) of (b), we have that g(n, y) ⊂ g(n, z) and thus

x /∈ g(n, y). This implies that g(n, y) ⊂ Gn(x) and thus g(n, y) ⊂ ∩{Gn(x) : x ∈ A}. It follows

that ∩{Gn(x) : x ∈ A} is open. Therefore, ∪{X \ Gn(x) : x ∈ A} is closed which implies that

Fn is closure preserving.

Now, suppose that xn ∈ st(x,Fn) for each n ∈ N. Then there exists yn ∈ X such that

xn, x ∈ X \ Gn(yn). Thus for each y ∈ X, if yn /∈ g(n, y), then xn, x /∈ g(n, y). It follows that

yn ∈ g(n, xn) and yn ∈ g(n, x) and thus g(n, x) ∩ g(n, xn) ̸= ∅. By (1) of (b), ⟨xn⟩ has a cluster

point. Therefore, X is an M#-space. �
A cover P of a space X is called a quasi-(mod k)-network [13] if there is a closed cover H

of X by countably compact subsets such that whenever H ⊂ U with H ∈ H and U ∈ τ , then

H ⊂ P ⊂ U for some P ∈ P. X is called a Σ#-space [13] if it has a σ-closure-preserving closed

quasi-(mod k)-network.

Lemma 2.8 ([14]) X is a Σ#-space if and only if there exists a g-function g for X such that

(1) If x ∈ g(n, xn) for all n ∈ N, then ⟨xn⟩ has a cluster point;

(2) If y ∈ g(n, x), then g(n, y) ⊂ g(n, x).

The g-function in the above lemma is called a Σ#-function. We see that a Σ#-function is

precisely a β-function which satisfies an additional condition. Thus by Proposition 2.4, we have

the following.

Proposition 2.9 g is a Σ#-function for X if and only if

(1) For each ⟨Fn⟩ ∈ F0(X) and x ∈ X, x /∈ g(n, Fn) for some n ∈ N;
(2) y ∈ g(n, x), then g(n, y) ⊂ g(n, x).

A space X is called a wM -space [15] if there exists a sequence {Gn}n∈N of open covers of X
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such that if xn ∈ st2(x,Gn) for each n ∈ N, then ⟨xn⟩ has a cluster point. Notice that without

loss of generality, we may assume that Gn+1 ≺ Gn for each n ∈ N.

Proposition 2.10 For a space X, the following are equivalent.

(a) X is a wM -space.

(b) There exists a g-function g for X such that

(1) If g(n, x) ∩ g(n, xn) ̸= ∅ for all n ∈ N, then ⟨xn⟩ has a cluster point;

(2) For each x, y ∈ X and n ∈ N, y ∈ g(n, x) if and only if x ∈ g(n, y).

(c) There exists a g-function g for X such that

(1) For each ⟨Fn⟩ ∈ F0(X) and x ∈ X, g(n, x) ∩ g(n, Fn) = ∅ for some n ∈ N;
(2) For each x, y ∈ X and n ∈ N, y ∈ g(n, x) if and only if x ∈ g(n, y).

(d) There exists a g-function g for X such that

(1) For each ⟨Fn⟩ ∈ F0(X) and x ∈ X, x /∈ g(n, Fn) for some n ∈ N;
(2) For each x, y ∈ X and n ∈ N, y ∈ g(n, x) if and only if x ∈ g(n, y).

Proof (a) ⇒ (b). Let {Gn}n∈N be a sequence of open covers of X satisfying the condition of a

wM -space and Gn+1 ≺ Gn for each n ∈ N. For each x ∈ X and n ∈ N, let g(n, x) = st(x,Gn).

Then g is a g-function for X and it is clear that g satisfies (2). Suppose that g(n, x)∩g(n, xn) ̸= ∅
for each n ∈ N. Then xn ∈ st2(x,Gn) for each n ∈ N and thus ⟨xn⟩ has a cluster point.

(b) ⇒ (c) is similar to the proof of (b) ⇒ (c) of Proposition 2.7.

(c) ⇒ (d) is clear.

(d) ⇒ (a). Let g be the g-function in (d). For each n ∈ N, let Gn = {g(n, x), x ∈ X}. Then

{Gn}n∈N is a sequences of open covers of X.

Claim 1 If xn ∈ g(n, x) for all n ∈ N, then ⟨xn⟩ has a cluster point.

Proof of Claim 1 For each n ∈ N, let Fn = {xm : m ≥ n}. Assume that ⟨xn⟩ has no cluster

point. Then ⟨Fn⟩ ∈ F0(X). By (1), x /∈ g(k, Fk) ⊃ g(k, xk) for some k ∈ N. By (2), xk /∈ g(k, x),

a contradiction.

Claim 2 If g(n, x) ∩ g(n, xn) ̸= ∅ for all n ∈ N, then ⟨xn⟩ has a cluster point.

Proof of Claim 2 Choose yn ∈ g(n, x) ∩ g(n, xn) for each n ∈ N. By Claim 1, ⟨yn⟩ has a

cluster point p. For each n ∈ N, let Fn = {xm : m ≥ n}. Assume that ⟨xn⟩ has no cluster point.

Then ⟨Fn⟩ ∈ F0(X). By (1), p /∈ g(j, Fj) for some j ∈ N. Since p is a cluster point of ⟨yn⟩, there
exists i ≥ j such that yi /∈ g(j, Fj) ⊃ g(i, Fi) ⊃ g(i, xi), a contradiction.

Now, suppose that xn ∈ st2(x,Gn) for each n ∈ N. Then there exist yn, zn, wn ∈ X such that

x ∈ g(n, zn), wn ∈ g(n, yn) ∩ g(n, zn) and xn ∈ g(n, yn) for each n ∈ N. By (2), zn ∈ g(n, x)

and zn ∈ g(n,wn) from which it follows that g(n, x) ∩ g(n,wn) ̸= ∅ for all n ∈ N. By Claim 2,

⟨wn⟩ has a cluster point p. Then there is a subsequence ⟨wnk
⟩ of ⟨wn⟩ such that wnk

∈ g(k, p)

for all k ∈ N. Since wnk
∈ g(k, ynk

), we have that g(k, p)∩ g(k, ynk
) ̸= ∅ for all k ∈ N. By Claim

2, ⟨ynk
⟩ has a cluster point q which is also a cluster point of ⟨yn⟩. Then there is a subsequence



On some generalized countably compact spaces 545

⟨ymj ⟩ of ⟨yn⟩ such that ymj ∈ g(j, q) for all j ∈ N. Since xn ∈ g(n, yn) for each n ∈ N, by (2),

ymj ∈ g(j, xmj ) for each j ∈ N. It follows that g(j, q) ∩ g(j, xmj ) ̸= ∅ for all j ∈ N. By Claim 2,

⟨xmj ⟩ has a cluster point which is also a cluster point of ⟨xn⟩. Therefore, X is a wM -space. �

3. Main results

In this section, we present characterizations of some generalized countably compact spaces

such as q-spaces, quasi-Nagata spaces, quasi-γ spaces, wN -spaces, M#-spaces and wM -spaces

with real-valued functions. To shorten the expressions of the corresponding results, we introduce

the following notations.

Let A be a family of subsets of X, F a family of real-valued functions on X and f : A → F .

For A ∈ A, we write fA instead of f(A). For a singleton {x}, we write fx instead of f{x}.

Consider the following conditions.

(cA) A ⊂ f−1
A (0).

(mA) If A1 ⊂ A2, then fA1 ≥ fA2 .

(iA⟨Fn⟩) For each ⟨Fn⟩ ∈ F0(X), there is m ∈ N such that inf{fA(x) : x ∈ Fm} > 0.

(i⟨Fn⟩A) For each ⟨Fn⟩ ∈ F0(X), there is m ∈ N such that inf{fFm(x) : x ∈ A} > 0.

Theorem 3.1 X is a q-space if and only if for each x ∈ X, there exists fx ∈ U(X) satisfying

(c{x}) and (i{x}⟨Fn⟩).

Proof Let g be the g-function in Proposition 2.2. For each x ∈ X, let

fx = 1−
∞∑

n=1

1

2n
χ

g(n,x)
.

Then fx ∈ U(X) and fx(x) = 0.

Let ⟨Fn⟩ ∈ F0(X). By Proposition 2.2, there is m ∈ N such that Fm ∩ g(n, x) = ∅ for all

n > m. Thus for each y ∈ Fm,

fx(y) = 1−
m∑

n=1

1

2n
χ

g(n,x)
(y) ≥ 1−

m∑
n=1

1

2n
=

1

2m
.

This implies that inf{fx(y) : y ∈ Fm} > 0.

Conversely, for each x ∈ X and n ∈ N, let g(n, x) = {y ∈ X : fx(y) < 1
n}. Then g(n, x)

is open, x ∈ g(n, x) and g(n + 1, x) ⊂ g(n, x) which implies that g is a g-function for X. Let

⟨Fn⟩ ∈ F0(X) and x ∈ X. By (i{x}⟨Fn⟩), there exists m ∈ N such that inf{fx(y) : y ∈ Fm} > 0.

Then there exists k ≥ m such that fx(y) >
1
k for each y ∈ Fm. Thus for each y ∈ Fk, fx(y) >

1
k

which implies that Fk ∩ g(k, x) = ∅. By Proposition 2.2, X is a q-space. �

Theorem 3.2 X is a quasi-γ space if and only if for each S ∈ SX , there exists fS ∈ U(X)

satisfying (cS), (mS) and (iS⟨Fn⟩).
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Proof Let g be the g-function in Proposition 2.3 (c). For each S ∈ SX , let

fS = 1−
∞∑

n=1

1

2n
χ

g(n,S)
.

Then fS ∈ U(X) satisfies (cS) and (mS).

Let ⟨Fn⟩ ∈ F0(X). By Proposition 2.3 (c), there is m ∈ N such that Fm ∩ g(n, S) = ∅ for all

n > m. Thus for each x ∈ Fm,

fS(x) = 1−
m∑

n=1

1

2n
χ

g(n,S)
(x) ≥ 1−

m∑
n=1

1

2n
=

1

2m
.

This implies that inf{fS(x) : x ∈ Fm} > 0.

Conversely, define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1
n} for each

x ∈ X and n ∈ N. Let ⟨Fn⟩ ∈ F0(X) and S ∈ SX . By (iS⟨Fn⟩), there exists k ∈ N such

that fS(x) > 1
k for each x ∈ Fk. Thus for each y ∈ S, fy(x) ≥ fS(x) > 1

k which implies that

x /∈ g(k, S). It follows that Fk ∩ g(k, S) = ∅. By Proposition 2.3 (c), X is a quasi-γ space. �

Theorem 3.3 X is a β-space if and only if for each F ∈ τ c, there exists fF ∈ U(X) satisfying

(cF ), (mF ) and (i⟨Fn⟩{x}).

Proof Let g be the g-function in Proposition 2.4. For each F ∈ τ c, let

fF = 1−
∞∑

n=1

1

2n
χ

g(n,F )
.

Then fF ∈ U(X) satisfies (cF ) and (mF ).

Let ⟨Fn⟩ ∈ F0(X) and x ∈ X. By Proposition 2.4, there is m ∈ N such that x /∈ g(n, Fm) for

all n > m. Thus,

fFm(x) = 1−
m∑

n=1

1

2n
χ

g(n,Fm)
(x) ≥ 1−

m∑
n=1

1

2n
=

1

2m
> 0.

Conversely, define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1
n} for each

x ∈ X and n ∈ N. Let ⟨Fn⟩ ∈ F0(X) and x ∈ X. By (i⟨Fn⟩{x}), there exist m ∈ N and k ≥ m

such that fFm(x) > 1
k . Thus for each y ∈ Fk, fy(x) ≥ fFk

(x) ≥ fFm(x) > 1
k which implies that

x /∈ g(k, Fk). By Proposition 2.4, X is a β-space. �

Theorem 3.4 X is a quasi-Nagata space if and only if for each F ∈ τ c, there exists fF ∈ U(X)

satisfying (cF ), (mF ) and (i⟨Fn⟩S) with S ∈ SX .

Proof Let g be the g-function in Proposition 2.5 (c). For each F ∈ τ c, let

fF = 1−
∞∑

n=1

1

2n
χ

g(n,F )
.

Then fF ∈ U(X) satisfies (cF ) and (mF ).

Let ⟨Fn⟩ ∈ F0(X) and S ∈ SX . By Proposition 2.5 (c), there is m ∈ N such that S ∩
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g(n, Fm) = ∅ for all n > m. Thus for each x ∈ S,

fFm(x) = 1−
m∑

n=1

1

2n
χ

g(n,Fm)
(x) ≥ 1−

m∑
n=1

1

2n
=

1

2m
.

This implies that inf{fFm(x) : x ∈ S} > 0.

Conversely, define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1
n} for each

x ∈ X and n ∈ N. Let ⟨Fn⟩ ∈ F0(X) and S ∈ SX . By (i⟨Fn⟩S), there exist m ∈ N and k ≥ m

such that fFm(x) > 1
k for each x ∈ S. Thus for each y ∈ Fk, fy(x) ≥ fFk

(x) ≥ fFm(x) > 1
k

which implies that x /∈ g(k, Fk). It follows that S ∩ g(k, Fk) = ∅. By Proposition 2.5 (c), X is a

quasi-Nagata space. �

Theorem 3.5 X is a kβ-space if and only if for each F ∈ τ c, there exists fF ∈ U(X) satisfying

(cF ), (mF ) and (i⟨Fn⟩K) with K ∈ CX .

Proof Similar to the proof of Theorem 3.4 by using Proposition 2.6. �
For the definition of an MCP -space i.e., monotonically countably paracompact space [8].

Lemma 3.6 ([16]) X is an MCP -space if and only if there exists a g-function g for X such

that for each ⟨Fn⟩ ∈ F0(X) and x ∈ X, x /∈ g(n, Fn) for some n ∈ N.
In the following some theorems, the following notation is used: (⋆) For each ⟨Fn⟩ ∈ F0(X)

and x ∈ X, there is an open neighborhood V of x and m ∈ N such that inf{fFm(y) : y ∈ V } > 0.

Theorem 3.7 For a space X, the following are equivalent.

(a) X is an MCP -space;

(b) For each F ∈ τ c, there exist hF ∈ L(X) and fF ∈ U(X) with hF ≤ fF such that fF

satisfies (cF ), (mF ) and hF satisfies (i⟨Fn⟩{x});

(c) For each F ∈ τ c, there exists fF ∈ U(X) satisfying (cF ), (mF ) and (⋆).

Proof (a) ⇒ (b). Let g be the g-function in Lemma 3.6. For each F ∈ τ c, let

hF = 1−
∞∑

n=1

1

2n
χ

g(n,F )
, fF = 1−

∞∑
n=1

1

2n
χ

g(n,F )
.

Then hF ∈ L(X), fF ∈ U(X) and hF ≤ fF . It is clear that fF satisfies (cF ) and (mF ). With a

similar argument to the proof of the necessity of Theorem 3.3, one readily shows that hF satisfies

(i⟨Fn⟩{x}).

(b) ⇒ (c). Assume (b). Let ⟨Fn⟩ ∈ F0(X) and x ∈ X. Then there is m ∈ N and r > 0 such

that hFm(x) > r. Let V = {x ∈ X : hFm(x) > r}. Then V is an open neighborhood of x. For

each y ∈ V , fFm(y) ≥ hFm(y) > r. This implies that inf{fFm(y) : y ∈ V } > 0.

(c) ⇒ (a). Define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1
n} for each

x ∈ X and n ∈ N. Let ⟨Fn⟩ ∈ F0(X) and x ∈ X. By (⋆), there exist an open neighborhood

V of x and m ∈ N and k ≥ m such that fFm(y) > 1
k for each y ∈ V . Thus for each z ∈ Fk,

fz(y) ≥ fFk
(y) ≥ fFm(y) > 1

k which implies that x /∈ g(k, Fk). By Lemma 3.6, X is an MCP -

space. �
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Lemma 3.8 ([16]) X is a wN -space if and only if there exists a g-function g for X such that

for each ⟨Fn⟩ ∈ F0(X) and x ∈ X, g(n, x) ∩ g(n, Fn) = ∅ for some n ∈ N.
It is clear that the g-function in Lemma 3.8 satisfies both the condition in Proposition 2.2

and that in Lemma 3.6. Thus combining Theorems 3.1 and 3.7, we have the following.

Theorem 3.9 For a space X, the following are equivalent.

(a) X is a wN -space;

(b) For each F ∈ τ c, there exist hF ∈ L(X) and fF ∈ U(X) with hF ≤ fF such that fF

satisfies (cF ), (mF ) and (i{x}⟨Fn⟩), hF satisfies (i⟨Fn⟩{x});

(c) For each F ∈ τ c, there exists fF ∈ U(X) satisfying (cF ), (mF ), (i{x}⟨Fn⟩) and (⋆).

Proof (a) ⇒ (b). Let g be the g-function in Lemma 3.8. For each F ∈ τ c, define hF ∈ L(X),

fF ∈ U(X) as that in the proof of (a) ⇒ (b) of Theorem 3.7. Since g satisfies the conditions in

Lemma 3.6 and Proposition 2.2, with similar arguments to the proofs of (a) ⇒ (b) of Theorem

3.7 and the necessity of Theorem 3.1, one readily shows that hF , fF satisfy all the conditions.

(b) ⇒ (c) is similar to the proof of (b) ⇒ (c) of Theorem 3.7.

(c) ⇒ (a). Assume (c). By Theorem 3.1, X is a q-space. By Theorem 3.7, X is an MCP -

space. Therefore X is a wN -space [8]. �
In the following two theorems, the following notation is used: (U) For each x, y, z ∈ X,

fx(z) ≤ max{fx(y), fy(z)}.

Theorem 3.10 For a space X, the following are equivalent.

(a) X is an M#-space;

(b) For each F ∈ τ c, there exist hF ∈ L(X) and fF ∈ U(X) with hF ≤ fF such that fF

satisfies (cF ), (mF ), (U) and (i{x}⟨Fn⟩), hF satisfies (i⟨Fn⟩{x});

(c) For each F ∈ τ c, there exists fF ∈ U(X) satisfying (cF ), (mF ), (U), (i{x}⟨Fn⟩) and (⋆).

Proof (a) ⇒ (b). Let g be the g-function in Proposition 2.7 (c). For each F ∈ τ c, define

hF ∈ L(X), fF ∈ U(X) as that in the proof of (a) ⇒ (b) of Theorem 3.9. Then fF satisfies

(cF ), (mF ) and (i{x}⟨Fn⟩), hF satisfies (i⟨Fn⟩{x}). That fF satisfies (U) has been shown in [11].

We sketch the proof as follows.

For each pair x, y of distinct points of X, let mxy = min{n ∈ N : y /∈ g(n, x)}. Then

fx(y) =
1

2mxy−1 .

Let x, y, z be distinct points of X. Assume that max{fx(y), fy(z)} < fx(z). Then mxz < mxy

and mxz < myz. From mxz < mxy it follows that y ∈ g(mxz, x) and thus g(mxz, y) ⊂ g(mxz, x).

From mxz < myz it follows that z ∈ g(mxz, y). Thus z ∈ g(mxz, x), a contradiction.

(b) ⇒ (c) is similar to the proof of (b) ⇒ (c) of Theorem 3.9.

(c) ⇒ (a). Assume (c). Define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) <
1
n}

for each x ∈ X and n ∈ N. Let ⟨Fn⟩ ∈ F0(X) and x ∈ X. Assume that g(n, x) ∩ g(n, Fn) ̸= ∅
for each n ∈ N and choose xn ∈ g(n, x) ∩ g(n, Fn). By (i{x}⟨Fn⟩) and the proof of the sufficiency

of Theorem 3.1, g is a q-function for X. Since xn ∈ g(n, x) for each n ∈ N, ⟨xn⟩ has a cluster
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point p. By (⋆) and the proof of (c) ⇒ (a) of Theorem 3.7, p /∈ g(k, Fk) for some k ∈ N. Since

p is a cluster point of ⟨xn⟩, there exists i ≥ k such that xi /∈ g(k, Fk) ⊃ g(i, Fi), a contradiction.

By (U), we have that if y ∈ g(n, x), then g(n, y) ⊂ g(n, x). By Proposition 2.7 (c), X is an

M#-space. �

Theorem 3.11 X is a Σ#-space if and only if for each F ∈ τ c, there exists fF ∈ U(X) satisfying

(cF ), (mF ), (U) and (i⟨Fn⟩{x}).

Proof Let g be the g-function in Proposition 2.9. For each F ∈ τ c, define fF ∈ U(X) as that in

the proof of the sufficiency of Theorem 3.3. Then fF satisfies (cF ), (mF ) and (i⟨Fn⟩{x}). That

fF satisfies (U) has been shown in (a) ⇒ (b) of Theorem 3.10.

Conversely, define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1
n} for each

x ∈ X and n ∈ N. By the proof of the sufficiency of Theorem 3.3, we have that for each

⟨Fn⟩ ∈ F0(X) and x ∈ X, x /∈ g(n, Fn) for some n ∈ N. By (U), we have that if y ∈ g(n, x),

then g(n, y) ⊂ g(n, x). By Proposition 2.9, X is a Σ#-space. �
In the following theorem, the following notation is used: (S) For each x, y ∈ X, fx(y) = fy(x).

Theorem 3.12 For a space X, the following are equivalent.

(a) X is a wM -space;

(b) For each F ∈ τ c, there exist hF ∈ L(X) and fF ∈ U(X) with hF ≤ fF such that fF

satisfies (cF ), (mF ) and (S), hF satisfies (i⟨Fn⟩{x});

(c) For each F ∈ τ c, there exists fF ∈ U(X) satisfying (cF ), (mF ), (S) and (⋆).

Proof (a) ⇒ (b). Let g be the g-function in Proposition 2.10 (d). For each F ∈ τ c, define

hF ∈ L(X), fF ∈ U(X) as that in the proof of (a) ⇒ (b) of Theorem 3.7. Then fF satisfies (cF )

and (mF ), hF satisfies (i⟨Fn⟩{x}). Let x, y ∈ X. Then for each n ∈ N, y ∈ g(n, x) if and only if

x ∈ g(n, y). It follows that χ
g(n,x)

(y) = χ
g(n,y)

(x) for each n ∈ N and thus fx(y) = fy(x).

(b) ⇒ (c) is similar to the proof of (b) ⇒ (c) of Theorem 3.7.

(c) ⇒ (a). Assume (c). Define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) <
1
n}

for each x ∈ X and n ∈ N. Let ⟨Fn⟩ ∈ F0(X) and x ∈ X. By (⋆) and the proof of (c) ⇒ (a)

of Theorem 3.7, p /∈ g(k, Fk) for some k ∈ N. By (S), we have that y ∈ g(n, x) if and only if

x ∈ g(n, y). By Proposition 2.10 (d), X is a wM -space. �
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