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1. Introduction

The exact controllability is of great importance in both theory and applications. Thanks

to Russell [1] and Lions [2, 3], a complete theory has been established for linear hyperbolic

systems, in particular, for linear wave equations. There have also been some results for semilinear

wave equations [4–6]. For quasilinear hyperbolic systems which have numerous applications in

mechanics, physics and other applied sciences, a simple and efficient constructive method with

modular structure has been suggested by the author of this paper and Rao Bopeng in recent

years [7–11] to get the exact boundary controllability in one-space-dimensional case. Let me first

recall briefly the related results as follows.

Consider the general 1-D first order quasilinear hyperbolic system

∂u

∂t
+A(u)

∂u

∂x
= B(u), (1.1)

where u = (u1, . . . , un)
T is the unknown vector function of (t, x), A(u) is a given n × n matrix

with C1 elements aij(u) (i, j = 1, . . . , n), and B(u) = (b1(u), . . . , bn(u))
T is a given C1 vector

function of u, such that

B(0) = 0, (1.2)

which means that u = 0 is an equilibrium of system (1.1).

By hyperbolicity, for any given u on the domain under consideration, A(u) possesses n real

eigenvalues λ1(u), . . . , λn(u) and a complete set of left eigenvectors li(u) = (li1(u), . . . , lin(u)) (i =
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1, . . . , n):

li(u)A(u) = λi(u)li(u). (1.3)

We suppose that all λi(u) and li(u) (i = 1, . . . , n) have the same C1 regularity as A(u) = (aij(u)).

Suppose that on the domain under consideration there are no zero eigenvalues:

λr(u) < 0 < λs(u), r = 1, . . . ,m; s = m+ 1, . . . , n. (1.4)

Let

vi = li(u)u, i = 1, . . . , n. (1.5)

vi is called the diagonalizable variable corresponding to the i-th characteristic

dx

dt
= λi(u). (1.6)

On the domain {(t, x)|t ≥ 0, 0 ≤ x ≤ L} we consider the forward mixed initial-boundary

value problem for system (1.1) with the initial condition

t = 0 : u = φ(x), 0 ≤ x ≤ L (1.7)

and the following boundary conditions

x = 0 : vs = Gs(t, v1, . . . , vm) +Hs(t), s = m+ 1, . . . , n, (1.8)

x = L : vr = Gr(t, vm+1, . . . , vn) +Hr(t), r = 1, . . . ,m, (1.9)

where φ,Gi and Hi (i = 1, . . . , n) are all C1 functions with respect to their arguments and,

without loss of generality, we assume that

Gi(t, 0, . . . , 0) ≡ 0, i = 1, . . . , n. (1.10)

We point out that (1.8) and (1.9) are the most general nonlinear boundary conditions to

guarantee the well-posedness for the forward mixed problem [12]. In order to illustrate the

characters of boundary conditions (1.8) and (1.9), we say that those characteristics which reach

the corresponding boundary from the interior of the domain are called the coming characteristics,

while, all other characteristics which enter the domain from the corresponding boundary are

called the departing characteristics (see Figure 1).

Figure 1 Coming characteristics and departing characteristics
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Thus, it is easy to see from boundary conditions (1.8) and (1.9) that:

(1) The number of boundary conditions on x = 0 (resp., on x = L) is equal to the number

of positive (resp., negative) eigenvalues, namely, to the number of coming characteristics on it.

(2) The boundary conditions on x = 0 (resp., on x = L) are written in the form that all the

diagonalizable variables corresponding to the coming characteristics are explicitly expressed by

other diagonalizable variables corresponding to the departing characteristics.

We always suppose that the conditions of C1 compatibility are satisfied at the point (t, x) =

(0, 0) and (0, L), respectively, then the forward mixed problem (1.1) and (1.7)–(1.9) admits at

least a unique C1 solution u = u(t, x) locally in time.

For any given C1 initial state φ(x) (0 ≤ x ≤ L) at t = 0 and any given C1 final state at

t = T :

t = T : u = Φ(x), 0 ≤ x ≤ L, (1.11)

we hope to choose suitable boundary controlsHi(t) (i = 1, . . . , n) or a part ofHi(t) (i = 1, . . . , n),

such that the corresponding mixed initial-boundary value problem (1.1) and (1.7)–(1.9) admits

a unique C1 solution u = u(t, x) on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, which
satisfies exactly the final condition (1.11). If we can do so, then the exact boundary controllability

is realized [8].

Since the hyperbolic wave has a finite speed of propagation, in order to get the exact boundary

controllability, T > 0 should be suitably large.

Thus, in order to realize the exact boundary controllability, we need the C1 solution u =

u(t, x) to the mixed problem on a domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, where T > 0

is a preassigned and possibly quite large number. This kind of C1 solution, which is neither a

local C1 solution nor a global C1 solution, is called a semi-global C1 solution [8, 13]. In order

to guarantee the existence of semi-global C1 solution, some smallness hypotheses are needed. In

other words, we should consider the solution in a neighbourhood of the equilibrium u = 0, and

the obtained controllability is then called the local exact boundary controllability.

When all the boundary functions Hi(t) (i = 1, . . . , n) acting on both ends x = 0 and x = L,

respectively, are used to realize the exact boundary controllability, we get the two-sided exact

boundary controllability, while, if, for instance, only the boundary functions Hs(t) (s = m +

1, . . . , n) acting on one end x = 0 are used to realize the exact boundary controllability, we get

the corresponding one-sided exact boundary controllability.

For fixing the idea, in what follows we consider only the one-sided exact boundary controlla-

bility. In this case we have the following result [8].

Proposition 1.1 Suppose that the number of negative eigenvalues is not bigger than that of

positive ones:

m ≤ n−m, i.e., n ≥ 2m. (1.12)

Suppose furthermore that boundary conditions (1.9) on x = L can be equivalently rewritten in
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a neighbourhood of u = 0 as

x = L : vs̄ = Ḡs̄(t, v1, . . . , vm, vm+1, . . . , vn−m) + H̄s̄(t), s̄ = n−m+ 1, . . . , n, (1.13)

where

Ḡs̄(t, 0, . . . , 0) ≡ 0, s̄ = n−m+ 1, . . . , n. (1.14)

If

T > L
(

max
r=1,...,m

1

|λr(0)|
+ max

s=m+1,...,n

1

λs(0)

)
, (1.15)

then, for any given Hr(t) (r = 1, . . . ,m) with small C1[0, T ] norm, satisfying the conditions of C1

compatibility at the points (t, x) = (0, L) and (T, L), respectively, there exist boundary controls

Hs(t) (s = m+ 1, . . . , n) at x = 0 with small C1[0, T ] norm, such that the corresponding mixed

initial-boundary value problem (1.1) and (1.7)–(1.9) admits a unique semi-global C1 solution

u = u(t, x) with small C1 norm on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, which
verifies exactly the final condition (1.11) (Figure 2).

On the other hand, stimulated by some practical applications, Gugat et al. [14] proposed in

2010 another kind of exact boundary controllability, called the nodal profile control. Differently

from the usual exact boundary controllability, this kind of controllability does not ask to exactly

attain any given final state at a suitable time t = T by means of boundary controls, instead it

asks the state to exactly fit any given profile on a node after a suitable time t = T by means

of boundary controls. The author of this paper almost immediately understood the significance

of this kind of controllability, called it the exact boundary controllability of nodal profile, and

deeply studied it in the general situation [15].

More precisely, the exact boundary controllability of nodal profile on a boundary node x = L

can be defined as follows: For any given C1 initial data φ(x) and any given C1 boundary

functions Hr(t) (r = 1, . . . ,m) on x = L, satisfying the conditions of C1 compatibility at the

point (t, x) = (0, L), for any given C1 vector function ¯̄u, if there exist T > 0 and C1 boundary

controls Hs(t) (s = m + 1, . . . , n) on x = 0, such that the C1 solution u = u(t, x) to the mixed

initial-boundary value problem (1.1) and (1.7)–(1.9) fits exactly ¯̄u on x = L for t ≥ T , then we

have the exact boundary controllability of nodal profile on the boundary node x = L.

In this definition, when t ≥ T , the given value of solution u = ¯̄u on x = L should satisfy

the boundary conditions (1.9), in which vi = ¯̄vi(t)
def.
= li(¯̄u(t))¯̄u(t) (i = 1, . . . , n). Hence, the

requirement that the solution u = u(t, x) fits exactly the given value ¯̄u(t) on x = L for t ≥ T is

equivalent to ask that vs (s = m+ 1, . . . , n) fit exactly the given values ¯̄vs(t) (s = m+ 1, . . . , n)

on x = L for t ≥ T , then the value of vr (r = 1, . . . ,m) on x = L for t ≥ T can be determined

by the boundary conditions (1.9) as follows:

vr = ¯̄vr(t)
def.
= Gr(t, ¯̄vm+1(t), . . . , ¯̄vn(t)) +Hr(t), r = 1, . . . ,m. (1.16)

We have the following

Proposition 1.2 ([15,16]) Let

T > L max
s=m+1,...,n

1

λs(0)
(1.17)
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and T̄ be an arbitrarily given number such that

T̄ > T. (1.18)

For any given initial data φ(x) with small C1 norm ∥φ∥C1[0,L] and any given boundary functions

Hr(t) (r = 1, . . . ,m) with small C1 norms ∥Hr∥C1[0,T̄ ] (r = 1, . . . ,m), satisfying the conditions of

C1 compatibility at the point (t, x) = (0, L), suppose that the given values ¯̄vs(t) (s = m+1, . . . , n)

on x = L for T ≤ t ≤ T̄ possess small C1 norms ∥¯̄vs∥C1[T,T̄ ] (s = m+ 1, . . . , n), then there exist

boundary controls Hs(t) (s = m+1, . . . , n) with small C1 norms ∥Hs∥C1[0,T̄ ] (s = m+1, . . . , n),

such that the mixed initial-boundary value problem (1.1) and (1.7)–(1.9) admits a unique C1

solution u = u(t, x) with small C1 norm on the domain R(T̄ ) = {(t, x)|0 ≤ t ≤ T̄ , 0 ≤ x ≤ L},
which fits exactly the given values vs = ¯̄vs(t) (s = m+1, . . . , n), namely, the given value u = ¯̄u(t),

on the boundary node x = L for T ≤ t ≤ T̄ (Figure 3).

Figure 2 Exact boundary controllability Figure 3 Exact boundary controllability of nodal profile

Both Propositions 1.1 and 1.2 can be proved by the constructive method with modular

structure mentioned before [8, 16].

From the corresponding definitions and Propositions 1.1 and 1.2, it is easy to see that the

exact boundary controllability of nodal profile can be regarded as a kind of weaker exact boundary

controllability by the following reasons:

(1) The exact boundary controllability asks to fit n final states at time t = T , while the exact

boundary controllability of nodal profile asks to fit (n −m) boundary values on the end x = L

since time T , where (n−m) is only the number of positive eigenvalues (namely, the number of

departing characteristics on x = L), which is in general much less than n, the number of state

variables.

(2) In order to realize the one-sided exact boundary controllability, the boundary controls

should be acted on the end where the number of coming characteristics is bigger than or equal to

the number of departing characteristics, moreover, the boundary conditions on the end without

controls should satisfy certain solvability condition as shown in (1.13), however, there are no

such restrictions for the exact boundary controllability of nodal profile.
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(3) The controllability time (1.17) for the exact boundary controllability of nodal profile is

essentially smaller than the controllability time (1.15) for the one-sided exact boundary control-

lability.

Both the exact boundary controllability and the exact boundary controllability of nodal

profile can be also realized on a tree-like network with general topology. Since the interface

conditions on any given multiple nodal of the network should be described according to the

corresponding physical meanings, in order to study the exact boundary controllability and the

exact boundary controllability of nodal profile on a network, we have to choose a suitable physical

model, for instance, Saint-Venant system for the study.

On the other hand, both the exact boundary controllability and the exact boundary control-

lability of nodal profile can be also similarly studied for 1-D quasilinear wave equations

utt − (K(u, ux))x = F (u, ux, ut), (1.19)

where u is a scalar unknown function of t and x, K = K(u, v) is a given C2 function with

Kv(u, v) > 0, (1.20)

and F = F (u, v, w) is a given C1 function, satisfying

F (0, 0, 0) = 0. (1.21)

All the obtained results on the exact boundary controllability and the exact boundary con-

trollability of nodal profile for first order quasilinear hyperbolic systems (1.1) and 1-D quasilinear

wave equations (1.19) can be found in monographs [8] and [16], respectively.

2. Further studies on the exact boundary controllability of nodal profile

The exact boundary controllability of nodal profile for hyperbolic systems can be further

studied in the following directions.

(A) In Proposition 1.2, the exact boundary controllability of nodal profile is considered in the

case that the nodal profile is given on a finite time interval [T, T̄ ], where T̄ > 0 is an arbitrarily

given and possibly quite large number. This requirement is suitable and convenient for many

practical applications, however, it restricts the possibility to study the asymptotic behaviour of

the solution as well as the corresponding boundary controls to the exact boundary controllability

of nodal profile. Therefore, it is worthwhile to consider the case that the nodal profile is given

on a semi-bounded time interval [T,+∞) with certain asymptotic properties as t → +∞. The

most important situations in practice can be as follows:

(i) The nodal profile given on [T,+∞) tends to a limit with polynomial decaying property

as t → +∞;

(ii) The nodal profile given on [T,+∞) tends to a limit with exponential decaying property

as t → +∞;

(iii) The nodal profile given on [T,+∞) is time-periodic with a period T0 > 0.

For the exact boundary controllability of nodal profile on a single space interval [0, L], when
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the nodal profile is given on the semi-bounded time interval [T,+∞), the constructive method

with modular structure previously used in the finite time interval case [T, T̄ ] still works, however,

after having changed the roles of t and x, the corresponding problem then reduces to get the semi-

global C1 solution along the x-direction from 0 to L for a leftward or rightward mixed problem

on a semi-bounded initial axis from T to +∞, which can be realized under the assumption

that the C1 norm of the nodal profile on the time interval [T,+∞) is small enough, moreover,

it can be proved that the solution keeps the corresponding property as mentioned in (i)–(iii),

respectively [17].

For the exact boundary controllability of nodal profile on a tree-like network, when the

nodal profile is given on the semi-bounded time interval [T,+∞), according to the constructive

method with modular structure, we have to not only change the roles of t and x and solve a

corresponding leftward or rightward mixed problem on certain individual x-intervals, but also

solve the forward mixed problem on each subnetwork composed of other x-intervals [16]. Thus,

we should prove the global existence of piecewise C1 solutions on these subnetworks, respectively,

moreover, the asymptotic behaviours of these global piecewise C1 solutions should be carefully

considered. These requirements cause certain new problems in the study of the global existence

of C1 or piecewise C1 solutions and of the corresponding asymptotic behaviours, in which the

time-periodic case is more challenging and difficult [18].

The corresponding study should also be done for 1-D quasilinear wave equations (1.19) (see

[19]).

(B) We know that the exact boundary controllability can not be realized in general on

a network with loops [20], however, we do have the exact boundary controllability of nodal

profile for Saint-Venant system on some special networks with loops [21]. In order to get a more

general theory on it, we have to give a unified and effective method to treat the exact boundary

controllability of nodal profile on a network with loops. The basic idea is to cut the network

with loops under consideration in a suitable way such that the network becomes some tree-like

networks (i.e., without loops), then one can sufficiently apply the result on the exact boundary

controllability of nodal profile on a tree-like network to achieve the exact boundary controllability

of nodal profile for the original network with loops. Hopefully, this method can be applied to

much more networks with loops [22].

(C) A careful analysis shows that the constructive method with modular structure, orig-

inally proposed for classical solutions, can be essentially applied, under certain hypotheses, to

entropy solutions to quasilinear hyperbolic systems of conservation (or balance) laws, therefore,

the exact boundary controllability has been generalized from classical or piecewise classical so-

lutions of quasilinear hyperbolic systems to entropy solutions of quasilinear hyperbolic systems

of conservation (or balance) laws [23–25]. It is then significant to similarly consider the exact

boundary controllability of nodal profile for entropy solutions to quasilinear hyperbolic systems

of conservation (or balance) laws on a single space interval or on a tree-like network for the

case that the nodal profile is given on a bounded time interval [T, T̄ ] or on a semi-bounded time

interval [T,+∞) with some asymptotic properties [26].
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(D) A new concept, namely, the exact boundary controllability of partial nodal profile, has

been introduced [27], in which only partial information of nodal profile is given. In this way it

is possible to reduce the number of boundary controls and the controllability time, increase the

number of charged nodes on which the nodal profiles are given, and a node can be simultaneously

with a control and with partial nodal profile. Deeply studying the corresponding problems

mentioned before for this new concept will be significant and interesting.
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