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1. Introduction

In this paper, we are concerned with the applications of Binet formula of recursive sequences

of order 2 and the following Girard-Waring identities to pseudoprimes:

xn + yn =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k

k

)
(x+ y)n−2k(xy)k (1.1)

and
xn+1 − yn+1

x− y
=

∑
0≤k≤[n/2]

(−1)k
(
n− k

k

)
(x+ y)n−2k(xy)k. (1.2)

Albert Girard published these identities in Amsterdam in 1629 and Edward Waring published

similar material in Cambridge in 1762–1782. These may be derived from the earlier work of Sir

Isaac Newton. It is worth noting that (−1)k n
n−k

(
n−k
k

)
is an integer because

n

n− k

(
n− k

k

)
=

(
n− k

k

)
+

(
n− k − 1

k − 1

)
= 2

(
n− k

k

)
−

(
n− k − 1

k

)
.

The proofs of formulas (1.1) and (1.2) can be seen in Comtet [1, p. 198] and the survey paper by

Gould [2]. Recently, Shapiro and one of the authors [3] gave a different proof of (1.2) by using

Riordan arrays.
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The following result was shown in authors’ paper [4]

Proposition 1.1 Let {an} be a sequence of order 2 satisfying linear recurrence relation

an = pan−1 + qan−2, n ≥ 2, (1.3)

for some non-zero constants p and q and initial conditions a0 and a1, and let α and β be two

roots of of quadratic equation x2 − px− q = 0. Then

an =

{
(a1−βa0

α−β )αn − (a1−αa0

α−β )βn, if α ̸= β;

na1α
n−1 − (n− 1)a0α

n, if α = β.

If p = q = 1, a0 = 0, and a1 = 1, then (1.3) yields the Fibonacci sequence (Fn). The roots

of the characteristic polynomial x2 − x− 1 = 0 are

α =
1 +

√
5

2
and β =

1−
√
5

2
.

From Proposition 1.1 we have the expression of Fn as

Fn+1 =
αn+1 − βn+1

α− β
=

1√
5

(
(
1 +

√
5

2
)n+1 − (

1−
√
5

2
)n+1

)
.

The Lucas numbers are defined by

Ln = αn + βn = (
1 +

√
5

2
)n + (

1−
√
5

2
)n.

A composite number n is called a Fibonacci pseudoprime number (or simply Fpsp.) if it satisfies

Ln ≡ 1 (modn) (1.4)

(see, for example, André-Jeannin [5]). Noting α + β = 1 and αβ = −1, from Girard-Waring

identity,

Ln =
∑

0≤k≤[n/2]

n

n− k

(
n− k

k

)
= 1 + n

∑
1≤k≤[n/2]

1

n− k

(
n− k

k

)
. (1.5)

Hence, n is a Lucas pseudoprime if and only if
∑

1≤k≤[n/2]
1

n−k

(
n−k
k

)
is an integer.

In next section, we discuss the construction of Fermat pseudoprimes by using linear recursive

sequences of order 2. The corresponding discussion for the Fibonacci pseudoprimes and Dickson

pseudoprimes are given in Sections 3 and 4, respectively.

2. Fermat pseudoprimes and recursive sequences

For an integer a > 1, if a composite number n, gcd(a, n) = 1, divides an−1 − 1, then n is

called a Fermat pseudoprime in base a.

Let the sequence (an) be defined by

an = (α+ 1)an−1 − αan−2 (2.1)

for n ≥ 2 with α ̸= 0, 1 and initial conditions a0 = 0 and a1 = 1. Then Proposition 1.1 implies

an =
αn − 1

α− 1
. (2.2)
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We may have the following result connecting the linear recurrence relations of order 2 and Fermat

pseudoprimes.

Proposition 2.1 If a composite number n is a Fermat pseudoprime in base α, where (α−1, n) =

1. Then (an) defined by (2.1), or equivalently, (2.2), is also a Fermat pseudoprime in base α.

Particularly, if n is a Fermat pseudoprime in base 2, then 2n − 1 is also a Fermat pseudoprime

in base 2.

Proof Let n be a Fermat psp. to the base of α, i.e., n|(αn−1 − 1). Hence αn−1 − 1 = kn for

some positive integer k. Denote N = (αn − 1)/(α− 1). Then

N − 1 = α
αn−1 − 1

α− 1
.

We write N = x− 1, where the integer

x = N + 1 =
αn + α− 2

α− 1
,

which implies αn = x(α − 1) − α + 2. Using this equation, (α − 1, n) = 1, αn−1 − 1 = kn and

the above (1.3), we may write the integer

αN−1 − 1 = αα(αn−1−1)/(α−1) − 1 = ααkn/(α−1) − 1

= (x(α− 1)− α+ 2)αk/(α−1) − 1 =: f(x),

a function of integer. Since (x − 1)|f(x) due to f(1) = 0 (here x = 1 implies N = 0, or

equivalently, αn = 1), we obtain N |(αN−1 − 1), i.e., N = (αn − 1)/(α − 1) is a Fermat psp. to

the base α. �

Remark 2.2 Steuerwald [6] (see also in [7]) give a different approach to prove that f(n) :=

(αn − 1)/(α − 1) is a Fermat pseudoprime in base α when (α − 1, n) = 1. His process and

our Proposition 2.1 lead to an infinite increasing sequence of Fermat pseudoprimes in base α,

n < f(n) < f(f(n)) < f(f(f(n))) < · · · , which grows as n, αn, ααn

, αααn

, . . . . Janjić [8] gives a

combinatorial explanation to the function f(n) = (bn−1)/(b−1) and its special case 2n−1. An

interesting question might be raised: What is a combinatorial explanation of the composition of

f(n) with itself?

Proposition 2.3 If a composite number n is an odd Fermat pseudoprime in base α, where

α ̸= 0, 1 and (α+ 1, n) = 1. Then (bn) defined by bn+2 = (α− 1)bn+1 + αbn for n ≥ 2 with the

initial conditions b0 = 0 and b1 = 1, or equivalently,

bn =
αn + 1

α+ 1
,

is also a Fermat pseudoprime in base α.

Proof Proposition 2.3 can be proved using a similar argument in the proof of Proposition 2.1

and is omitted. �

Remark 2.4 Dubner and Granlund [9] test the numbers bn = (αn + 1)/(α + 1) for primality
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or probable primality for 2 ≤ α ≤ 200 and large n. Since bn can be prime only if n is an old

prime, Proposition 2.3 discusses the primality for the case that odd integer n is not a prime but

a pseudoprime.

Remark 2.5 Propositions 2.1 and 2.3 can be proved by using another way. We demonstrate

the proof by using the former one. This proof is an analogy to the proof of Problem 7 shown on

Page 219 of Koblitz [10] and the proof of Example 2 shown on Page 124 of Yu and Shiue [11].

For the sake of readers convenience, we present a modified proof below.

Since n is a pseudoprime with respect to base α, n is an odd composite number satisfying

(α, n) = 1. In addition, 2 ̸ |n. Hence,

2 ̸ |N :=
αn − 1

α− 1
= αn−1 + αn−2 + · · ·+ 1.

If n = kl, k, l > 1, then 2 ̸ |k and 2 ̸ |l. Therefore,

N =
αkl − 1

α− 1
= (αl−1 + αl−2 + · · ·+ 1)(αl(k−1) + αl(k−1)−1 + · · ·+ 1),

which implies N is an odd composite number. Noting

N − 1 =
αn − 1

α− 1
− 1 = α

αn−1 − 1

α− 1
,

we have

(α− 1)(N − 1) = α(αn−1 − 1).

Since n|(αn−1 − 1) and (α− 1, n) = 1, we have n|(N − 1). Hence, we have N − 1 = nu for some

integer u. Furthermore, from

αn − 1 = N(α− 1) ≡ 0 (modN),

we have αn ≡ 1 (modN), which implies αn = Nv+1 for some integer v. Combining N −1 = nu

and αn = Nv + 1, we obtain

αN−1 − 1 = αnu − 1 = (Nv + 1)u − 1 = Nw

for some integer w, or equivalently,

αN−1 ≡ 1 (modN),

i.e., N = (αn − 1)/(α− 1) is a pseudoprime with respect to base α.

3. Fibonacci pseudoprimes of the mth kind and recursive sequences

If recursive relation (1.3) can be written as

an+2 = man+1 + an, (3.1)

where m is a natural number, then the generalized Fibonacci numbers Un(m) and the generalized

Lucas numbers an = Vn(m) (or simply Vn) are defined [12,13] by

Un+2 = mUn+1 + Un;U0 = 0, U1 = 1 (3.2)
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and

Vn+2 = mVn+1 + Vn;V0 = 2, V1 = m, (3.3)

respectively. These numbers can also be expressed in [13] by means of the closed forms, called

Binet forms,

Un =
αn − βn

∆
, Vn = Un−1 + Un+1 = αn + βn, (3.4)

where

∆ =
√
m2 + 4, α =

m+∆

2
, β =

m−∆

2
. (3.5)

The notations αm, βm and ∆m will be employed whenever the meaning of α, β and ∆ can be

misunderstood. By the above equations, it can be seen that α+β = m and αβ = −1. Moreover,

it can be noted that, letting m = 1 in (3.2) and (3.3), the classical Fibonacci numbers Fn, and

Lucas numbers Ln turn out, respectively. A further interesting expression for Vn is [14]

Vn =

[n/2]∑
i=0

Cn,im
n−2i, (3.6)

where Cn,0 = 2 and Cn,i = n
(
n−i
i

)
/(n− i). We may re-write Vn as

Vn = 2mn + n

[n/2]∑
i=1

Cn,i

n
mn−2i, n ≥ 1 (3.7)

and note that, if n is a prime, then
Cn,i

n is an integer, thus we may use Fermat’s little theorem

to establish the following fundamental property of Vn:

Vn(m) ≡ m (modn) (3.8)

for any natural numberm and prime number n. However, the converse is not true, i.e., there exist

odd composites that satisfy the above congruence. Thus, we may define Fibonacci Pseudoprimes

of the mth kind as follows [15].

Definition 3.1 Let Lucas numbers, Vn(m), be defined by (3.3), where m is an integer, and let

n be an odd composite integer. If n satisfies (3.8), then n is called a Fibonacci Pseudoprime of

the mth kind, or m-Fpsp. in short.

We denote all m-Fpsps. by sk(m) (k = 1, 2, . . .) (see [16,17]). The corresponding sets will be

denoted by Sm, while the sets of all m-Fpsps. not exceeding a given n will be denoted by Sm,n.

For example, s1(1) = 705 = 3 · 5 · 47, s1(2) = 169 = 132, s1(3) = 33 = 3 · 11, etc.
Let ℓ be any odd integer. We consider a recursive relation related to (3.1)

wn+2 = (αℓ + βℓ)wn+1 − αℓβℓwn, w0 = 2, w1 = αℓ + βℓ, (3.9)

where α and β are presented in (3.5). It is easy to see

wn = αℓn + βℓn. (3.10)

We now establish the following result.

Proposition 3.2 Let m and ℓ be a natural integer and an odd integer, respectively, and let
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α = αm and β = βm be defined as (3.5). If n is an m-Fpsp., then n is also αℓ + βℓ-Fpsp.

Furthermore, αℓ + βℓ can be evaluated by using

αℓ + βℓ =

[l/2]∑
i=0

ℓ

ℓ− i

(
ℓ− i

i

)
mℓ−2i. (3.11)

Proof Let wn be given by (3.10). By using Girard-Waring identity, we have

wn = (αn)ℓ + (βn)ℓ =

[l/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
(αnβn)i(αn + βn)ℓ−2i

=

[l/2]∑
i=0

ℓ

ℓ− i

(
ℓ− i

i

)
V ℓ−2i
n ,

where Vn is the nth Lucas number defined by (3.3). If n is an m-Fpsp., then Vn ≡ m (modn),

which implies that

wn ≡
[l/2]∑
i=0

ℓ

ℓ− i

(
ℓ− i

i

)
mℓ−2i (modn).

Using Girard-Waring identity yields

αℓ + βℓ =

[l/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
(αβ)i(α+ β)ℓ−2i =

[l/2]∑
i=0

ℓ

ℓ− i

(
ℓ− i

i

)
mℓ−2i,

we have proved (3.11) and obtain that

wn ≡ αℓ + βℓ (modn)

for an m-Fpsp. number n. In other words, (wn) are Lucas number sequence defined by (3.9).

From the definition of Fpsps., we immediately know that n is also an αℓ + βℓ-Fpsp. if it is an

m-Fpsp., which completes the proof. �

Remark 3.3 Our αℓ+βℓ test shown in Proposition 3.2 gives a different approach of Theorem 6

in [17]. Furthermore, our constructive result has an explicit form. By using the following example

demonstration, we will see how efficient our constructive approach is in the computation of high

order Fpsps.

Example 3.4 For m = 1, we have

α3
1 + β3

1 =
1∑

i=0

3

3− i

(
3− i

i

)
= 4, α5

1 + β5
1 =

2∑
i=0

5

5− i

(
5− i

i

)
= 11,

α7
1 + β7

1 =
3∑

i=0

7

7− i

(
7− i

i

)
= 29, α9

1 + β9
1 =

4∑
i=0

9

9− i

(
9− i

i

)
= 76,

α11
1 + β11

1 =
5∑

i=0

11

11− i

(
11− i

i

)
= 199,

α13
1 + β13

1 =
6∑

i=0

13

13− i

(
13− i

i

)
= 521,
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α15
1 + β15

1 =

7∑
i=0

15

15− i

(
15− i

i

)
= 1364.

Thus, if n is a 1-Fpsp., it is also 4, 11, 29, 76, 199, 521, 1364-, etc. Fpsps.

Similarly, if n is a 2-Fpsp., it is also 14, 82, 478, 2786, 16238, 94642, 551614-, etc. Fpsps.

If n is a 3-Fpsp., it is also 36, 393, 4287, 46764, 510117, 5564523, 60699636-, etc. Fpsps.

If n is a 4-Fpsp., it is also 76, 1364, 24476, 439204, 788196, 141422324, 2537720636-, etc.

Fpsps.

If n is a 5-Fpsp., it is also 140, 3775, 101785, 2744420, 73997555, 1995189565, 53796120700-,

etc. Fpsps.

If n is a 6-Fpsp., it is also 234, 8886, 337434, 12813606, 486579594, 18477210966, 701647437114-,

etc. Fpsps.

If n is a 7-Fpsp., it is also 364, 18557, 946043, 48229636, 2458765393, 125348805407, 6390330310364-,

etc. Fpsps.

If n is a 8-Fpsp., it is also 536, 35368, 2333752, 153992264, 10161155672, 670482282088,

44241669462136-, etc. Fpsps.

If n is a 9-Fpsp., it is also 756, 62739, 5206581, 432083484, 35857722591, 2975758891569,

246952130277636-, etc. Fpsps.

If n is a 10-Fpsp., it is also 1030, 105050, 10714070, 1092730090, 111447755110, 11366578291130,

1159279537940150-, etc. Fpsps.

If n is a 11-Fpsp., it is also 1364, 167761, 20633239, 2537720636, 312119004989, 38388099893011,

4721424167835364-, etc. Fpsps.

If n is a 12-Fpsp., it is also 1764, 257532, 37597908, 5489037036, 801361809348, 116993335127772,

17080225566845364-, etc. Fpsps.

If n is a 13-Fpsp., it is also 2236, 382343, 65378417, 11179326964, 1911599532427, 326872340718053,

55893258663254636-, etc. Fpsps.

If n is a 14-Fpsp., it is also 2786, 551614, 109216786, 21624372014, 4281516441986, 847718631141214,

167844007449518386-, etc. Fpsps.

If n is a 15-Fpsp., it is also 3420, 776325, 176222355, 40001698260, 9080209282665, 2061167505466695,

467875943531657100-, etc. Fpsps.

By using the above table, one may focus on smaller number Fpsps in the primality test of

Fpsps.

4. Dickson pseudoprimes and recursive sequences

We now extend the results about the number recursive sequences shown in Proposition 3.2

to the Dickson pseudoprimes (D-Psps). The sequence of Dickson polynomials of the first kind,

(Dn(x, a)) with a in a commutative ring or a finite field, is defined by

Dn+2(x, a) = xDn+1(x, a)− aDn(x, a), n ≥ 0, (4.1)

and D0(x, a) = 2 and D1(x, a) = x. Two roots of the characterized polynomial of the recursive
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relation (4.1) are

α =
x+

√
x2 − 4a

2
, β =

x−
√
x2 − 4a

2
. (4.2)

From Proposition 1.1, we may present Dn(x, a) as

Dn(x, a) = αn + βn =

[n/2]∑
i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i. (4.3)

Noting that the coefficients of Dn are integers of a ∈ Z.
For a survey of many properties of Dickson polynomials including applications to cryptogra-

phy and number theory [18–20].

From Lidl and Müller [15], we have the following definition of Dickson pseudoprimes.

Definition 4.1 An odd composite integer n satisfying

Dn(b, a) ≡ b (modn) (4.4)

for b ∈ N and a ∈ Z is called a Dickson pseudoprime (Dpsp) of the kind (b, a), or Dpsp(b, a) in

short.

Many pseudoprimes can be considered as special cases of Dpsps. For instance, if a = 0 and

(b, n) = 1, then Dn(b, 0) = bn, and the Dpsps defined in (4.4) is reduced to

bn ≡ b (modn),

i.e., n is a Fermat pseudoprime to the base b.

If b = 1 and a = −1, then (4.4) reduces to

Ln = Dn(1,−1) ≡ 1 (modn),

i.e., n is a Lucas psp.

If b = m and a = −1, then (4.4) reduces to

Fn(m) = Dn(m,−1) ≡ m (modn),

i.e., n is m-Fpsp.

Proposition 4.2 Let b and ℓ be a natural integer and an odd integer, respectively, and let

α = α(x) and β = β(x) be defined as (4.2). If n is an Dpsp(b, a), where an ≡ a (modn), then

Dnℓ(b, a) ≡ Dℓ(b, a) (modn), (4.5)

where Dn(x, a) is defined by (4.3). Particularly, for a = 1, we have

Dnℓ(b, 1) ≡ Dℓ(b, 1) (modn). (4.6)

And when a = −1 and n is odd, we have

Dnℓ(b,−1) ≡ Dℓ(b,−1) (modn). (4.7)
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Furthermore, Dℓ(b, a) = αℓ + βℓ can be evaluated by using

Dℓ(b,−1) = α(b)ℓ + β(b)ℓ =

[l/2]∑
i=0

ℓ

ℓ− i

(
ℓ− i

i

)
bℓ−2i. (4.8)

Proof Let α and β be two roots of the characterized polynomial of the recursive relation (4.1),

which are shown in (4.2), and let ℓ be any odd integer. By using Girard-Waring identity, we have

(αn)ℓ + (βn)ℓ =

[l/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
(αnβn)i(αn + βn)ℓ−2i,

which implies

Dnℓ(x, a) =

[l/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
(an)i(Dn(x, a))

ℓ−2i. (4.9)

Similarly,

Dℓ(x, a) =

[l/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
aixℓ−2i. (4.10)

From (4.9) and (4.10), for Fpsp. number n with respect to base b we have

Dnℓ(b, a) =

[l/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
(an)i(Dn(b, a))

ℓ−2i

≡
[l/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
(an)ibℓ−2i (modn) (4.11)

and

Dℓ(b, a) =

[l/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
aibℓ−2i, (4.12)

respectively. If an ≡ a (modn), then

Dnℓ(b, a) ≡ Dℓ(b, a) (modn),

where Dℓ(b, a) satisfies (4.5). When a = 1, then an ≡ a (modn), (4.6) holds. When a = −1,

noticing n is odd, we know (4.11) and (4.12) are equivalent. Namely,

Dnℓ(b,−1) =

[l/2]∑
i=0

ℓ

ℓ− i

(
ℓ− i

i

)
bℓ−2i ≡ Dℓ(b,−1) (modn), (4.13)

which completes the proof. �

Remark 4.3 The case of (4.11) is shown in Lidl and Müller [15].

In [15], Theorem 1.5 gives the following result: If an odd composite integer n passes the

(b, r)-test for being an (b, r)-Dpsp and the (r, 0)-test for being a base r pseudoprime, then it

passes also the (D2k+1(b, r); r
2k+1)-tests, for k = 1, 2, . . . . We will present here an alternative

proof of this result by using our linear recurrence method shown above. More precisely, for any

b ∈ N and r ∈ Z, we define

α =
b+

√
b2 − 4r

2
, β =

b−
√
b2 − 4r

2
, (4.14)
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and the recursive sequence (an) generated by

an+2 = ban+1 − an, (4.15)

a0 = 2 and a1 = b. Thus, we have α+ β = b and αβ = r, and an = Dn(b, r). From Proposition

1.1, we have

an = Dn(b, r) = αn + βn.

Now, we consider the sequence

wn+2 = (αℓ + βℓ)wn+1 − rℓwn, (4.16)

w0 = 2, and w1 = αℓ +βℓ, where α and β are given in (4.14) and r = αβ, and ℓ ∈ N. From (4.3)

for r = αβ we have

wn = Dn(α
ℓ + βℓ, rℓ) = (αℓ)n + (βℓ)n = (αn)ℓ + (βn)ℓ

=

[ℓ/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
(αnβn)i(αn + βn)ℓ−2i

=

[ℓ/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
(rn)i(Dn(b, r))

ℓ−2i. (4.17)

From the assumption of that n is a (b, r)-Dpsp we have

Dn(b, r) ≡ b (modn).

Hence, the last equation of (4.17) implies

wn ≡
[ℓ/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
(rn)ibℓ−2i (modn), (4.18)

where b = α+ β. Since n passes the (r, 0)-test for being a base r pseudoprime, there exists

rn ≡ r (modn),

which devotes to the following change of (4.18):

wn ≡
[ℓ/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
ribℓ−2i (modn). (4.19)

On the other hand, from (4.3) we have

αℓ + βℓ =

[ℓ/2]∑
i=0

(−1)i
ℓ

ℓ− i

(
ℓ− i

i

)
ribℓ−2i, b = α+ β, and r = αβ. (4.20)

Combining (4.19) and (4.20) yields

wn = Dn(α
ℓ + βℓ, rℓ) = Dn(Dℓ(b, r), r

ℓ) ≡ αℓ + βℓ (modn)

≡ Dℓ(b, r) (modn)

for all ℓ ∈ N. Hence, for odd integer ℓ = 2k + 1 wn passes the (D2k+1(b, r), r
2k+1)-test for

k = 1, 2, . . . . (Actually, wn passes (Dℓ(b, r), r
ℓ)-test for all ℓ ∈ N.)
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The recursive sequence defined by (4.16) can be written as

wn = Dn(α
ℓ + βℓ, rℓ) = Dn(Dℓ(b, r), r

ℓ),

where b = α+ β and r = αβ. Since

wn = (αℓ)n + (βℓ)n = (αn)ℓ + (βn)ℓ,

the sequence (wn) can be considered to be defined by

wℓ+2 = (αn + βn)wℓ+1 − rnwℓ,

w0 = 2, w1 = αn + βn, where r = αβ. Similarly, we may write

wℓ = Dℓ(α
n + βn, rn) = Dℓ(Dn(b, r), r

n),

where b = α + β and r = αβ. Thus we have the following result for the Dickson polynomial

sequence.

Proposition 4.4 Let (Dn(x, a)) be the Dickson polynomial sequence defined by (4.1). Then it

has a kind of commutative law with respect to the composition in the sense of

Dn(Dℓ(x, a), a
ℓ) = Dℓ(Dn(x, a), a

n),

where n, ℓ ∈ N.
By using Proposition 4.4, we may construct an endless chain of Dickson pseudoprime se-

quences.
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