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Abstract Recently, Sun defined a new kind of refined Eulerian polynomials, namely,

An(p, q) =
∑

π∈Sn

podes(π)qedes(π)

for n ≥ 1, where Sn is the set of all permutations on {1, 2, . . . , n}, odes(π) and edes(π) enumerate

the number of descents of permutation π in odd and even positions, respectively. In this paper,

we obtain an exponential generating function for An(p, q) and give an explicit formula for An(p, q)

in terms of Eulerian polynomials An(q) and C(q), the generating function for Catalan numbers.

In certain cases, we establish a connection between An(p, q) and An(p, 0) or An(0, q), and express

the coefficients of An(0, q) by Eulerian numbers An,k. Consequently, this connection discovers a

new relation between Euler numbers En and Eulerian numbers An,k.

Keywords Eulerian polynomial; Eulerian number; Euler number; descent; alternating permu-

tation; Catalan number
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1. Introduction

Let Sn denote the set of all permutations on [n] = {1, 2, . . . , n}. For a permutation π =

a1a2 . . . an ∈ Sn, an index i ∈ [n−1] is called a descent of π if ai > ai+1, and des(π) denotes the

number of descents of π. It is well known that An,k, the Eulerian number [1, A008292], counts

the number of permutations π ∈ Sn with k descents and obeys the following recurrence [2]

An,k =(n− k)An−1,k−1 + (k + 1)An−1,k, n > k ≥ 0

with An,0 = 1 for n ≥ 0 and An,k = 0 for 1 ≤ n ≤ k or k < 0. The exponential generating

function [2] for An,k is

E(q; t) = 1 +
∑
n≥1

An(q)
tn

n!
= 1 +

∑
n≥1

n−1∑
k=0

An,kq
k t

n

n!
=

1− q

et(q−1) − q
, (1.1)
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where

An(q) =
∑

π∈Sn

qdes(π) =
n−1∑
k=0

An,kq
k,

is the classical Eulerian polynomial [3]. The Eulerian polynomials have a rich history and appear

in a large number of contexts in combinatorics; see [4] for a detailed exposition.

Recently, Sun [5] introduced a new kind of refined Eulerian polynomials defined by

An(p, q) =
∑

π∈Sn

podes(π)qedes(π)

for n ≥ 1, where odes(π) and edes(π) enumerate the number of descents of permutation π in odd

and even positions, respectively. The polynomial An(p, q) is a bivariate polynomial of degree

n− 1, and the monomial with degree n− 1 is exactly p⌊
n
2 ⌋q⌊

n−1
2 ⌋, where ⌊x⌋ denotes the largest

integer ≤ x. When p = q, An(p, q) reduces to the Eulerian polynomial An(q).

For convenience, define

Ãn(p, q) =

 An(p, q), if n = 2m+ 1,

(1 + q)An(p, q), if n = 2m+ 2,

for n ≥ 1 and Ã0(p, q) = A0(p, q) = 1. Sun [5] showed that the (modified) refined Eulerian

polynomial Ãn(p, q) is palindromic (symmetric) of darga ⌊n
2 ⌋. She also provided certain explicit

formulas for special cases, namely,

An(p, 1) =
n!

2⌊
n
2 ⌋ (1 + p)⌊

n
2 ⌋, (1.2)

An(1, q) =
n!

2⌊
n−1
2 ⌋

(1 + q)⌊
n−1
2 ⌋. (1.3)

Note that a permutation π ∈ Sn such that odes(π) = ⌊n
2 ⌋ and edes(π) = 0 (or odes(π) = 0

and edes(π) = ⌊n−1
2 ⌋ ) is exactly an alternating (or reverse alternating) permutation. Recall that

a permutation π = a1a2 · · · an ∈ Sn is alternating (or reverse alternating) [6] if a1 > a2 < a3 >

· · · (or a1 < a2 > a3 < · · · ). It is well known that the Euler number En (see [1, A000111]) counts

the (reverse) alternating permutations in Sn, which has the remarkable generating function [6],∑
n≥0

En
tn

n!
= tan(t) + sec(t)

=1 + t+
t2

2!
+ 2

t3

3!
+ 5

t4

4!
+ 16

t5

5!
+ 61

t6

6!
+ 272

t7

7!
+ 1385

t8

8!
+ · · · .

It produces that ∑
n≥0

E2n
t2n

(2n)!
= sec(t),

∑
n≥0

E2n+1
t2n+1

(2n+ 1)!
= tan(t).

For this reason E2n is sometimes called a secant number and E2n+1 a tangent number. See [6] for

a survey of alternating permutations. The following associated generating functions are useful,∑
n≥0

(−1)nE2n
t2n

(2n)!
=

2

et + e−t
=

2et

e2t + 1
= E(−1; t)e−t,
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n≥0

(−1)nE2n+1
t2n+1

(2n+ 1)!
=
et − e−t

et + e−t
=

e2t − 1

e2t + 1
= E(−1; t)− 1.

which establishes a connection between Eulerian numbers and Euler numbers, that is,

E2n+1 =(−1)nA2n+1(−1), (1.4)

E2n+3 =(−1)n2A′
2n+2(−1), (1.5)

where A′
n(q) is the derivative of An(q) with respect to q.

The remainder of this paper is organized as follows. The next section will be devoted to

building an exponential generating function for An(p, q) and to establishing an explicit formula

for An(p, q) in terms of Eulerian polynomials An(q) and C(q) = 1−
√
1−4q
2q . The third section will

set up a connection between An(p, q) and An(p, 0) or An(0, q), and express the coefficients of

An(0, q) by Eulerian numbers An,k.

2. The explicit formula for An(p, q)

In this section, we consider the bivariate polynomials An(p, q) and find an explicit formula

for An(p, q). First, we need the following lemma.

Lemma 2.1 For any integer n ≥ 1, there holds

A2n(p, q) =(1 + p)A2n−1(p, q) + (p+ q)

n−1∑
i=1

(
2n− 1

2i− 1

)
A2i−1(p, q)A2n−2i(p, q), (2.1)

A2n+1(p, q) =A2n(p, q) + p

n−1∑
i=0

(
2n

2i

)
A2i(p, q)A2n−2i(q, p)+

q
n∑

i=1

(
2n

2i− 1

)
A2i−1(p, q)A2n−2i+1(p, q). (2.2)

Proof For any π = a1a2 · · · a2n ∈ S2n, if ak = 2n, then π can be partitioned into π = π1(2n)π2

with π1 = a1a2 . . . ak−1 and π2 = ak+1ak+2 · · · a2n. Let S = {a1, a2, . . . , ak−1}. Then S is a

(k − 1)-subset of [2n− 1] and π2 is a certain permutation of [2n− 1]− S. If π2 is empty, that is

a2n = 2n, then π1 ∈ S2n−1, which are totally counted by A2n−1(p, q) according to odes(π1) and

edes(π1). If π2 is not empty, that is 1 ≤ k < 2n, then

odes(π) = odes(π1) + odes(π2), edes(π) = edes(π1) + edes(π2) + 1, when k even,

odes(π) = odes(π1) + edes(π2) + 1, edes(π) = edes(π1) + odes(π2), when k odd.

Therefore, there are
(
2n−1
k−1

)
choices to choose S ∈ [2n−1], all permutations π1 of S are counted by

Ak−1(p, q) and all permutations π2 of [2n−1]−S are counted by A2n−k(p, q), so all permutations

π = π1(2n)π2 are counted by A2i−1(p, q)qA2n−2i(p, q) when k = 2i for 1 ≤ i < n, and counted

by A2n−2i(p, q)pA2i−1(q, p) when k = 2(n − i) + 1 for 1 ≤ i ≤ n. Note that Ak(p, q) = Ak(q, p)

when k is odd. To summarize all these cases, we obtain (2.1).

Similarly, one can prove (2.2), the details are omitted. �
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Let A(e)(p, q; t) and A(o)(p, q; t) be the exponential generating functions for A2n(p, q) and

A2n+1(p, q), respectively, i.e.,

A(e)(p, q; t) =
∑
n≥1

A2n(p, q)
t2n

(2n)!
,

A(o)(p, q; t) =
∑
n≥0

A2n+1(p, q)
t2n+1

(2n+ 1)!
.

Then Lemma 2.1 suggests that

∂A(e)(p, q; t)

∂t
=A(o)(p, q; t)

(
(1 + p) + (p+ q)A(e)(p, q; t)

)
, (2.3)

∂A(o)(p, q; t)

∂t
=1 +A(e)(p, q; t) + p(A(e)(p, q; t) + 1)A(e)(q, p; t) + qA(o)(p, q; t)2. (2.4)

Noting that (1 + q)A2n(p, q) = (1+ p)A2n(q, p) and A2n−1(p, q) = A2n−1(q, p) for n ≥ 1, one

has A(e)(q, p; t) = 1+q
1+pA

(e)(p, q; t) and A(o)(q, p; t) = A(o)(p, q; t). Then after simplification, (2.4)

produces

∂A(o)(p, q; t)

∂t
=
1

2

∂(A(o)(p, q; t) +A(o)(q, p; t))

∂t

=1 + (1 + q)A(e)(p, q; t) +
(1 + q)(p+ q)

2(1 + p)
A(e)(p, q; t)2 +

p+ q

2
A(o)(p, q; t)2. (2.5)

Let y = p+q
2(1+pq) and x = yC(y2), where C(y) = 1−

√
1−4y
2y is the generating function of the

Catalan numbers Cn = 1
n+1

(
2n
n

)
for n ≥ 0. By the relation C(y) = 1+yC(y)2, we have y = x

1+x2 ,
2x

1+x2 = p+q
1+pq ,

2x
(1+x)2 = p+q

(1+p)(1+q) and (1+x)2

1+x2 = (1+p)(1+q)
1+pq . Define

B(e)(p, q; t) =
1 + x

1 + q

{E(x;
√

1+pq
1+x2 t) + E(x;−

√
1+pq
1+x2 t)

2
− 1

}
,

B(o)(p, q; t) =
E(x;

√
1+pq
1+x2 t)− E(x;−

√
1+pq
1+x2 t)

2
√

1+pq
1+x2

.

Now taking partial derivative for B(e)(p, q; t) and B(o)(p, q; t) with respect to t, we obtain

∂B(e)(p, q; t)

∂t
=
(1 + x)

(1 + q)

(1 + pq)

(1 + x2)
B(o)(p, q; t)

(
(1 + x) +

2x(1 + q)

1 + x
B(e)(p, q; t)

)
,

=B(o)(p, q; t)
(
(1 + p) + (p+ q)B(e)(p, q; t)

)
, (2.6)

and

∂B(o)(p, q; t)

∂t
=1 + (1 + q)B(e)(p, q; t)+

x(1 + q)2

(1 + x)2
B(e)(p, q; t)2 +

x(1 + pq)

1 + x2
B(o)(p, q; t)2,

=1 + (1 + q)B(e)(p, q; t) +
(1 + q)(p+ q)

2(1 + p)
B(e)(p, q; t)2 +

p+ q

2
B(o)(p, q; t)2. (2.7)

By (2.3), (2.4), (2.6) and (2.7), one can see that A(e)(p, q; t), A(o)(p, q; t) and B(e)(p, q; t),

B(o)(p, q; t) satisfy the same differential equations of order one. On the other hand, it is routine
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to verify that for 1 ≤ n ≤ 3 the coefficients of t2n in A(e)(p, q; t) and B(e)(p, q; t) coincide, as well

as the ones of t2n−1 in A(o)(p, q; t) and B(o)(p, q; t). Hence we obtain the exponential generating

functions of A2n(p, q) and A2n−1(p, q) for n ≥ 1 as follows.

Theorem 2.2 There hold

A(e)(p, q; t) =
1 + x

1 + q

{E(x;
√

1+pq
1+x2 t) + E(x;−

√
1+pq
1+x2 t)

2
− 1

}
, (2.8)

A(o)(p, q; t) =
E(x;

√
1+pq
1+x2 t)− E(x;−

√
1+pq
1+x2 t)

2
√

1+pq
1+x2

, (2.9)

where x = yC(y2), y = p+q
2(1+pq) and C(y) = 1−

√
1−4y
2y .

Comparing the coefficient of tn

n! on both sides of (2.8) and (2.9), we have the following explicit

formula for An(p, q).

Corollary 2.3 For any integer n ≥ 0, there hold

A2n+1(p, q) =A2n+1

( p+ q

2(1 + pq)
C
( (p+ q)2

4(1 + pq)2
))( 1 + pq

C
( (p+q)2

4(1+pq)2

))n, (2.10)

A2n+2(p, q) =
1 + p+q

2(1+pq)C
( (p+q)2

4(1+pq)2

)
1 + q

A2n+2

( p+ q

2(1 + pq)
C
( (p+ q)2

4(1 + pq)2
))

( 1 + pq

C
( (p+q)2

4(1+pq)2

))n+1
, (2.11)

where C(y) = 1−
√
1−4y
2y .

In the case q = 1 in (2.10) and (2.11), by C( 14 ) = 2 and An(1) = n!, one has

A2n+1(p, 1) =
(2n+ 1)!

2n
(1 + p)n,

A2n+2(p, 1) =
(2n+ 2)!

2n+1
(1 + p)n+1,

which is equivalent to (1.2).

Similarly, the case p = 1 in (2.10) and (2.11) also generates an equivalent form to (1.3).

3. The special case p = 0 or q = 0

In this section, we concentrate on the special case p = 0 or q = 0.

By the symmetry of Ãn(p, q) for n ≥ 1, there is

An(p, 0) =

 An(0, p), if n = 2m+ 1,

(1 + p)An(0, p), if n = 2m+ 2.
(3.1)

In fact, one can represent Ãn(p, q) in terms of An(p, 0) or An(0, q).
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Theorem 3.1 For any integer n ≥ 1, there holds

Ãn(p, q) = (1 + pq)⌊
n
2 ⌋An

( p+ q

1 + pq
, 0
)
. (3.2)

Equivalently, for n ≥ 0 there are

A2n+1(p, q) =(1 + pq)nA2n+1

(
0,

p+ q

1 + pq

)
, (3.3)

A2n+2(p, q) =(1 + p)(1 + pq)nA2n+2

(
0,

p+ q

1 + pq

)
. (3.4)

Proof The case q = 0 in Corollary 2.3 gives rise to

A2n+1(p, 0) =A2n+1

(p
2
C(

p2

4
)
)
C
(p2
4

)−n
, (3.5)

A2n+2(p, 0) =
(
1 +

p

2
C(

p2

4
)
)
A2n+2

(p
2
C(

p2

4
)
)
C
(p2
4

)−n−1
. (3.6)

Then resetting p := p+q
1+pq , by Corollary 2.3, we get

A2n+1

( p+ q

1 + pq
, 0
)
=A2n+1(p, q)(1 + pq)−n = Ã2n+1(p, q)(1 + pq)−n,

A2n+2

( p+ q

1 + pq
, 0
)
=(1 + q)A2n+2(p, q)(1 + pq)−n−1 = Ã2n+2(p, q)(1 + pq)−n−1,

which is equivalent to (3.2), or by (3.1), equivalent to (3.3) and (3.4). �

Remark 3.2 As stated by Sun [5], the refined Eulerian polynomials Ãn(p, q) can be expanded

in terms of gamma basis, that is,

Ãn(p, q) =

⌊n
2 ⌋∑

j=0

cn,j(p+ q)j(1 + pq)⌊
n
2 ⌋−j ,

and she conjectured that for any n ≥ 1, all cn,j are positive integers. From Theorem 3.1,

An(p, 0) =

⌊n
2 ⌋∑

j=0

cn,jp
j ,

it is obvious that cn,j are positive because cn,j counts the number of permutations π ∈ Sn with

j odd descents and with no even descents, and one can easily construct such a permutation

π = π1(2j + 1)(2j + 2) · · ·n, where π1 is an alternating permutation on [2j].

Let an,k be the number of permutations π ∈ Sn with k even descents and with no odd

descents. Then

An(0, q) =

⌊n−1
2 ⌋∑

k=0

an,kq
k, n ≥ 1.

By (3.1), it is clear that cn,k = an,k when n is odd and cn,k = an,k +an,k−1 when n is even. Now

we can establish several connections between Eulerian numbers An,k and an,k.

Corollary 3.3 For any integers n ≥ k ≥ 0, there hold

A2n+1,k =

⌊ k
2 ⌋∑

i=0

(
n− k + 2i

i

)
2k−2ia2n+1,k−2i, (3.7)
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A2n+2,k =
∑

2i+j=k or k−1
i,j≥0

(
n− j

i

)
2ja2n+2,j . (3.8)

Equivalently,

a2n+1,k =
1

2k

⌊ k
2 ⌋∑

i=0

(−1)i
n− k + 2i

n− k + i

(
n− k + i

i

)
A2n+1,k−2i, (3.9)

a2n+2,k =
1

2k

∑
2i+j+r=k
i,j,r≥0

(−1)r+in− k + 2i

n− k + i

(
n− k + i

i

)
A2n+2,j . (3.10)

Specially, Euler numbers can be represented by Eulerian numbers as follows

E2n+1 =a2n+1,n =
1

2n

(
−A2n+1,n + 2

⌊n
2 ⌋∑

i=0

(−1)iA2n+1,n−2i

)
, (3.11)

E2n+2 =a2n+2,n =
1

2n

(
−

n∑
j=0

(−1)n−jA2n+2,j + 2
∑

0≤2i+j≤n
i,j≥0

(−1)n−i−jA2n+2,j

)
. (3.12)

Proof By (3.3) and (3.4), the case p = q produces

A2n+1(q) =(1 + q2)nA2n+1

(
0,

2q

1 + q2
)
=

n∑
j=0

a2n+1,j(2q)
j(1 + q2)n−j , (3.13)

A2n+2(q) =(1 + q)(1 + q2)nA2n+2

(
0,

2q

1 + q2
)
= (1 + q)

n∑
j=0

a2n+2,j(2q)
j(1 + q2)n−j . (3.14)

Comparing the coefficients of qk on both sides of (3.13) and (3.14), we get (3.7) and (3.8).

By (3.1) and (3.6), using the series expansion [7],

C(t)α =
∑
i≥0

α

2i+ α

(
2i+ α

i

)
ti,

we have

A2n+1(0, q) =A2n+1(q, 0) = A2n+1

(q
2
C
(q2
4

))
C
(q2
4

)−n

=

2n∑
j=0

A2n+1,j

(q
2

)j

C
(q2
4

)j−n

=
2n∑
j=0

A2n+1,j

∑
i≥0

j − n

2i+ j − n

(
2i+ j − n

i

)(q
2

)2i+j

=
2n∑
j=0

∑
i≥0

A2n+1,j(−1)i
n− j

n− i− j

(
n− i− j

i

)(q
2

)2i+j

, (3.15)

and

A2n+2(0, q) =
A2n+2(q, 0)

1 + q
=

1 + q
2C

(
q2

4

)
1 + q

A2n+2

(q
2
C
(q2
4

))
C
(q2
4

)−n−1
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=
1

1 + q
2C

(
q2

4

)A2n+2

(q
2
C
(q2
4

))
C
(q2
4

)−n

=
2n+1∑
j=0

A2n+2,j

∑
r≥0

(−1)r
(q
2

)j+r

C
(q2
4

)r+j−n

=

2n+1∑
j=0

A2n+2,j

∑
r≥0

(−1)r
∑
i≥0

r + j − n

2i+ j + r − n

(
2i+ r + j − n

i

)(q
2

)2i+j+r

=

2n+1∑
j=0

∑
r,i≥0

A2n+2,j(−1)r+i n− j − r

n− i− j − r

(
n− i− j − r

i

)(q
2

)2i+j+r

. (3.16)

Then taking the coefficients of tk on both sides of (3.15) and (3.16), we get (3.9) and (3.10).

Note that an,⌊n−1
2 ⌋ is the number of permutations π ∈ Sn with ⌊n−1

2 ⌋ even descents and with

no odd descents, such π are exactly the reverse alternating permutations and vice versa. Clearly,

an,⌊n−1
2 ⌋ = En for n ≥ 1. Setting k = n in (3.9) and (3.10), we obtain (3.11) and (3.12). �

Lemma 3.4 For any integer n ≥ 1, there hold

An(0,−1) =

 (−1)mEn

2m , if n = 2m+ 1,

(−1)mEn+1

2m+1 , if n = 2m+ 2.
(3.17)

Proof Setting p = q = −1 in (3.3) and (3.4), by (1.4) and (1.5) we have

A2n+1(0,−1) =2−nA2n+1(−1) = (−1)n
E2n+1

2n
,

A2n+2(0,−1) =2−n lim
q→−1

A2n+2(q)

1 + q
= 2−nA′

2n+2(−1) = (−1)n
E2n+3

2n+1
,

which is equivalent to (3.17). �
The case q = −1 in (3.3) and (3.4), together with Lemma 3.4, leads to

Corollary 3.5 For any integer n ≥ 0, there are

A2n+1(p,−1) =
(p− 1

2

)n
E2n+1,

A2n+2(p,−1) =
p+ 1

2

(p− 1

2

)n
E2n+3.

The case p = 3 in Corollary 3.5 produces two settings counted by tangent numbers E2n+1.

See [6] for further information on various combinatorial interpretations of Euler numbers En.

Let π = a1a2 · · · an−1an ∈ Sn, define the reversal of π to be πr = anan−1 · · · a2a1, the

complement of π to be πc = (n + 1 − a1)(n + 1 − a2) · · · (n + 1 − an−1)(n + 1 − an) and the

reversal-complement of π to be πrc := (πr)c = (πc)r. For any σ ∈ S2n+1, note that i is a descent

of σ if and only if 2n+ 1− i is a descent of σrc. Specially, i is an odd (even) descent of σ if and

only if 2n+ 1− i is an even (odd) descent of σrc. Now we can return to consider the recurrence

relations for an,k.
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Theorem 3.6 For any integers n ≥ k ≥ 1, there hold

a2n,k =(n− k)a2n−1,k−1 + (k + 1)a2n−1,k, (3.18)

a2n+1,k =(n− k + 1)a2n,k−2 + (n+ 1)a2n,k−1 + (k + 1)a2n,k (3.19)

with an,0 = 1 and an,⌊n−1
2 ⌋ = En.

Proof Let αn,k be the set of permutations π ∈ Sn with k even descents and with no odd

descents, so |αn,k| = an,k. In the k = 0 case, αn,0 only contains the natural permutation

123 · · · (2n− 1)(2n), and in the k = ⌊n−1
2 ⌋ case αn,⌊n−1

2 ⌋ is exactly the set of reverse alternating

permutations in Sn. This implies an,0 = 1 and an,⌊n−1
2 ⌋ = En.

Set X = {2i|1 ≤ i ≤ n − 1} and denote by Des(π) the descent set of π ∈ Sn. For any

π ∈ α2n,k, Des(π) is a k-subset of X. In order to prove (3.18), there are exactly three cases to

consider, i.e.,

Case 1. Given π = a1a2 · · · a2n−2a2n−1 ∈ α2n−1,k, let π∗
1 = πa2n with a2n = 2n, one can

easily check that π∗
1 ∈ α2n,k and π can be recovered by deleting a2n = 2n in π∗

1 . So the total

number of such π∗
1 in the set α2n,k is a2n−1,k.

Case 2. Given π = a1a2 · · · a2ja2j+1 · · · a2n−2a2n−1 ∈ α2n−1,k with 2j ∈ Des(π), define

π∗
2 = a2j+1 · · · a2n−2a2n−1(2n)a1a2 · · · a2j . Clearly, subject to a2j > a2j+1, we obtain π∗

2 ∈ α2n,k

and vice versa. In this case, there are totally ka2n−1,k contributions to the set α2n,k.

Case 3. Given π = a1a2 · · · a2ja2j+1 · · · a2n−2a2n−1 ∈ α2n−1,k−1 with 2j ∈ X−Des(π), define

π∗
3 = a2j+1 · · · a2n−2a2n−1(2n)a1a2 · · · a2j . Similarly, subject to a2j < a2j+1, we have π∗

3 ∈ α2n,k

and vice versa. In this case, there are totally (n− k)a2n−1,k−1 contributions to the set α2n,k.

Hence, summarizing the above three cases generates (3.18) immediately.

In order to prove (3.19), by the relation cn,k = an,k + an,k−1 when n is even, we need take

the equivalent form into account,

a2n+1,k =(n− k + 1)c2n,k−1 + kc2n,k + a2n,k. (3.20)

Let βn,k be the set of permutations θ ∈ Sn with k odd descents and with no even descents.

So |βn,k| = cn,k. Set Y = {2i − 1|1 ≤ i ≤ n}. For any θ ∈ β2n,k, Des(θ) is a k-subset of Y .

Similarly, there are precisely three cases to consider.

Case I. Given θ = b1b2 · · · b2n ∈ α2n,k, let θ∗1 = θb2n+1 with b2n+1 = 2n + 1. Obviously

θ∗1 ∈ α2n+1,k and θ can be easily obtained by removing b2n+1 = 2n + 1 in θ∗1 . Then there are

exactly a2n,k such θ∗1 ’s in the set α2n+1,k.

Case II. Given θ = b1b2 · · · b2j−1b2jb2j+1 · · · b2n ∈ β2n,k with 2j − 1 ∈ Des(θ), define θ∗2 =

(b1b2 · · · b2j−1)
rc(2n+ 1)b′2jb

′
2j+1 · · · b′2n = b′1b

′
2 · · · b′2j−1(2n+ 1)b′2jb

′
2j+1 · · · b′2n, where b′i = 2n+

1 − b2j−i for 1 ≤ i ≤ 2j − 1 and b′2jb
′
2j+1 · · · b′2n is a permutation on [2n] − {b′1, b′2, . . . , b′2j−1}

which has the same relative order as b2jb2j+1 · · · b2n. This procedure is naturally invertible due

to b2j−1 > b2j . Clearly, 2ℓ− 1 with 1 ≤ ℓ < j is an odd descent of θ if and only if 2j − 2ℓ is an

even descent of θ∗2 , and 2ℓ− 1 with j ≤ ℓ ≤ n is an odd descent of θ if and only if 2ℓ is an even

descent of θ∗2 . Then we get θ∗2 ∈ α2n+1,k. In this case, there are totally kc2n,k contributions to
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the set α2n+1,k. For example, let θ = 4 1 8 3 5 7 10 2 6 9 ∈ β10,3 and Des(θ) = {1, 3, 7}, we have

three θ∗2 ∈ α11,3, namely,

7 11 1 8 3 4 6 10 2 5 9, 3 10 7 11 2 4 6 9 1 5 8, 1 4 6 8 3 10 7 11 2 5 9.

Case III. Given θ = b1b2 · · · b2j−1b2jb2j+1 · · · b2n ∈ β2n,k−1 with 2j − 1 ∈ Y − Des(θ), define

θ∗3 = (b1b2 · · · b2j−1)
rc(2n + 1)b′2jb

′
2j+1 · · · b′2n = b′1b

′
2 · · · b′2j−1(2n + 1)b′2jb

′
2j+1 · · · b′2n, where b′i =

2n+1− b2j−i for 1 ≤ i ≤ 2j−1 and b′2jb
′
2j+1 · · · b′2n is a permutation on [2n]−{b′1, b′2, . . . , b′2j−1}

which has the same relative order as b2jb2j+1 · · · b2n. This procedure is also invertible subject to

b2j−1 < b2j . Similar to Case II, θ∗3 ∈ α2n+1,k. In this case, there are totally (n − k + 1)c2n,k−1

contributions to the set α2n+1,k.

Hence, summing over all the three cases yields (3.20) immediately. �
Table 1 illustrates this triangle for n up to 10 and k up to 4.

n/k 0 1 2 3 4

1 1

2 1

3 1 2

4 1 5

5 1 13 16

6 1 28 61

7 1 60 297 272

8 1 123 1011 1385

9 1 251 3651 10841 7936

10 1 506 11706 50666 50521

Table 1 The first values of an,k
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