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Abstract A modified weak Galerkin (MWG) finite element method is introduced for the

Brinkman equations in this paper. We approximate the model by the variational formulation

based on two discrete weak gradient operators. In the MWG finite element method, discontin-

uous piecewise polynomials of degree k and k − 1 are used to approximate the velocity u and

the pressure p, respectively. The main idea of the MWG finite element method is to replace the

boundary functions by the average of the interior functions. Therefore, the MWG finite element

method has fewer degrees of freedom than the WG finite element method without loss of accu-

racy. The MWG finite element method satisfies the stability conditions for any polynomial with

degree no more than k − 1. The MWG finite element method is highly flexible by allowing the

use of discontinuous functions on arbitrary polygons or polyhedra with certain shape regularity.

Optimal order error estimates are established for the velocity and pressure approximations in H1

and L2 norms. Some numerical examples are presented to demonstrate the accuracy, convergence

and stability of the method.

Keywords the Brinkman equations; the modified weak Galerkin finite element method; discrete

weak gradient
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1. Introduction

The Brinkman equations provide a description of fluid flow in multi-physics environment.

Modeling fluid flow in complex media with multiphysics has significant impact on many fields,

such as low porosity filtration equipment, vuggy carbonate reservoirs, biomedical hydrodynamic

and underground water hydrology [1, 2]. The Brinkman equations are applicable to both the

Darcy flow and the Stokes flow without employing complex interface assumptions [3, 4]. There-

fore, it is significant to design efficient and stable numerical schemes for the Brinkman equations
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to accommodate both the Stokes and Darcy simultaneously. In this paper, we consider the

Brinkman model which seeks unknown functions u and p satisfying

−µ∆u +∇p+ µκ−1u = f , in Ω, (1.1)

∇ · u = 0, in Ω, (1.2)

u = g , on ∂Ω, (1.3)

where µ is the fluid viscosity and κ denotes the permeability tensor of the porous media which

occupies a polygonal or polyhedral domain Ω in Rd (d = 2, 3). u and p represent the velocity and

pressure of the fluid, respectively. f is the momentum source term. g is the Dirichlet boundary

condition satisfying
∫
∂Ω

g ·n = 0. For simplicity, we consider g = 0 and µ = 1 (note that one can

always scale the solution with µ). We further assume that there exist two positive numbers λ1,

λ2 such that

λ1ξ
tξ ≤ ξtκ−1ξ ≤ λ2ξ

tξ, ∀ξ ∈ Rd, d = 2, 3,

where ξ is a column vector with the transpose ξt. We consider the case where λ1 is of unit size

and λ2 is possibly of large size.

Mathematically, the Brinkman equations (1.1)–(1.3) are the combination of the Darcy and the

Stokes equations. The challenge is how to construct the compatible schemes for both the Darcy

problems and the Stokes problems. In [5], a traditional H(div) conforming mixed finite element

method was introduced. Unfortunately, the numerical experiments indicate that the convergent

rate deteriorates as the Brinkman equations become Darcy-dominated when certain stable Stokes

elements are used, such as the P2 −P0 element, the Mini element and the Taylor-Hood element.

Similarly, the convergent rate deteriorates as Brinkman equations become Stokes-dominated

when certain stable Darcy elements, such as the Raviart-Thomas element are used. Then [4]

developed a modified H(div) conforming mixed finite element method, which is uniformly stable

with respect to the coeffients.

Furthermore, [6] introduced a new family of robust non-conforming elements for the Brinkman

equations (1.1)–(1.3), such that the corresponding finite element methods are robust and strongly

mass-conservative. Wang and Ye [7] proposed a stable and consistent method-weak Galerkin

(WG) finite element method for the Brinkman equations (1.1)–(1.3) based on the following

variational formulation: find (u ; p) ∈ [H1
0 (Ω)]

d × L2
0(Ω) satisfying

(∇u ,∇v) + (κ−1u , v)− (∇ · v , p) = (f , v), ∀v ∈ [H1
0 (Ω)]

d, (1.4)

(∇ · u , q) = 0, ∀q ∈ L2
0(Ω). (1.5)

More recently, [8] applied the WG finite element method to solve the Brinkman problems (1.1)–

(1.3) based on the variational formulation as follows: find (u ; p) ∈ [H1
0 (Ω)]

d × H1(Ω) ∩ L2
0(Ω)

such that

(∇u ,∇v) + (κ−1u , v) + (∇p, v) = (f , v), ∀v ∈ [H1
0 (Ω)]

d, (1.6)

(∇q,u) = 0, ∀q ∈ H1(Ω) ∩ L2
0(Ω), (1.7)
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which is more accurate approximating the Darcy equations and more suitable for the complex

porous media with interface problems compared with the variational formulation (1.4) and (1.5).

In addition, a proof of the existence and uniqueness of the solutions for (1.6) and (1.7) can be

found in [9].

The WG finite element method developed in [7,8] uses the new-defined discrete weak differen-

tial operators to replace the traditional differential operators, and has many nice features. Firstly,

the WG method allows the use of the discontinuous piecewise polynomials on arbitrary shape of

polygons in 2D or polyhedra in 3D with certain shape regularity. Secondly, the well-posedness

of the corresponding discrete system is independent of the parameters κ and µ. Thirdly, the nu-

merical solutions maintain mass conservation in the system. The optimal orders of convergence

can also be derived for the WG finite element method in different norms. The WG finite element

method was firstly proposed in [10] for the second order elliptic problem [10–13], and further

applied for other partial differential equations, such as the Stokes equations [14,15], the Sobolev

equations [16,17], the Brinkman equations [18,19], etc.

The central idea of the WG method is to use the discrete weak gradient and divergence

operators instead of classical differential operators. The WG finite element formulation for the

Brinkman equations in [8] is derived from the variational formulation (1.6) and (1.7) as follows:

find weak functions uh = {u0,ub} ∈ V 0
h and ph = {p0, pb} ∈ W 0

h satisfying

(∇wuh,∇wv) + (κ−1uh, v) + (v ,∇wp) + s1(uh, v) = (f , v), ∀v ∈ V 0
h , (1.8)

(uh,∇wq)− s2(ph, q) = 0, ∀q ∈ W 0
h , (1.9)

where V 0
h and W 0

h are the corresponding weak Galerkin finite element spaces. The WG finite

element method has many advantages, such as stability, high order accuracy and high flexibility.

The main problem of the WG finite element method is the calculation cost. The WG method

introduces additional freedoms on each edge/face in the partition, so the degree of freedom is

much more than the classical finite element method. To this end, [20,21] introduced a modified

weak Galerkin (MWG) finite element method for the Stokes equations, and proved the stability

and optimal order error estimates for the MWG method.

The main idea of the MWG finite element method is to use the average {u0} inside of the

element to replace ub on the boundary of the element. Therefore, the MWG method not on-

ly maintains the flexibility on the selection of approximation functions, but also eliminates the

unknowns associated with element boundaries. In this paper, we use the MWG finite element

method based on the variational formulation (1.6) and (1.7) for solving the Brinkman problems

(1.1)–(1.3). The weak Galerkin finite element spaces consist of discontinuous piecewise polynomi-

als of degree k and k− 1 for the vector-valued function u and the scalar function p, respectively.

The convergence of the MWG finite element method is obtained in both the theoretical analysis

and the numerical experiments. In addition, the numerical experiments illustrate that the MWG

method is efficient and robust both for the constant and variable permeability tensor κ.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries. In

Section 3, we propose the modified weak Galerkin finite element scheme and give a proof of the
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existence and uniqueness of the solutions. In Section 4, we derive the error equation, and further

establish the optimal order error estimates in H1 norm and L2 norm in Section 5. Finally, we

present some numerical examples in Section 6 to demonstrate the accuracy, convergence and

flexibility of the MWG finite element method.

2. Preliminaries

In this section, some preparations for the modified weak Galerkin finite element method are

given.

2.1. Space and partition

We first introduce the standard definitions for the Sobolev space Hs(Ω)(s ≥ 0), where Ω

is a closed convex polygon in R2 or polyhedron or R3 with the Lipschitz continuous boundary.

(·, ·)s,Ω and ∥·∥s,Ω denote the inner products and norms of the Sobolev space Hs(Ω), respectively.

The space H0(Ω) coincides with the space L2(Ω). In this case we drop the subscript s of above

notations without confusion. In particular, we have the following function spaces

[H1
0 (Ω)]

d = {v ∈ [H1(Ω)]d, v |∂Ω = 0},

and

L2
0(Ω) = {q ∈ L2(Ω),

∫
Ω

qdx = 0}.

The space H(div; Ω) is defined as the set of vector-valued functions v , which together with their

divergence are square integrable, i.e.,

H(div,Ω) = {v : v ∈ [L2(Ω)]d,∇ · v ∈ L2(Ω)}.

The norm in H(div,Ω) is given by

∥v∥H(div,Ω) = (∥v∥2Ω + ∥∇ · v∥2Ω)
1
2 .

Let Th be a partition of the domain Ω satisfying the shape regular conditions [22], and T be each

element with ∂T as its boundary. Denote by Eh the set of all edges/flats in Th, and E0
h = Eh \∂Ω

the set of all interior edges/faces in Th. For each T ∈ Th, denote by hT the diameter of T , and

h = maxT∈Th
hT is the mesh size of Th. Similarly, the diameter of e is given by he.

2.2. Average and jump

We define the average {·} and jump [[·]] on edges for the scalar function q, the vector-valued

function v and the matrix-valued function τ , respectively.

For the interior edge e, define

{q} =
1

2
(q|T1 + q|T2), [[q]] = q|T1n1 + q|T2n2,

{v} =
1

2
(v |T1 + v |T2), [[v ]] = v |T1 · n1 + v |T2 · n2,

{τ} =
1

2
(τ |T1 + τ |T2), [[τ ]] = n1 · τ |T1 + n2 · τ |T2 ,
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where T1 and T2 are two partition elements sharing a common edge e. n1 and n2 are the unit

outward normal vectors on e, associated with T1 and T2, respectively.

We also define a matrix-valued jump [·] for the vector-valued function v by

[v ] = v |T1 ⊗ n1 + v |T2 ⊗ n2,

where ⊗ denotes the tensors product of the two vectors.

If e is a boundary edge, the above definitions need to be adjusted accordingly so that both

the average and the jump are equal to the one-sided values on e. That is,

{q} = q|e, [[q]] = q|en , {v} = v |e, [[v ]] = v |e · n ,

{τ} = τ |e, [[τ ]] = n · τ |e, [v ] = v |e ⊗ n ,

where n is the unit outward normal on ∂Ω.

It is obvious that we can get the following properties.

Lemma 2.1 ([20]) For any smooth scalar function q, vector-valued function v, and matrix-valued

function τ , there holds∑
T∈Th

⟨v · n, q⟩∂T =
∑
e∈E0

h

⟨{v}, [[q]]⟩e +
∑
e∈Eh

⟨[[v]], {q}⟩e,

∑
T∈Th

⟨v, τ · n⟩∂T =
∑
e∈E0

h

⟨{v}, [[τ ]]⟩e +
∑
e∈Eh

⟨[v], {τ}⟩e,

and then ∑
T∈Th

⟨v · n, q − {q}⟩∂T =
∑
e∈E0

h

⟨{v}, [[q]]⟩e, (2.1)

∑
T∈Th

⟨v− {v}, τ · n⟩∂T =
∑
e∈E0

h

⟨[v], {τ}⟩e, (2.2)

where n is unit and normal to the edge e.

We then introduce the corresponding weak Galerkin finite element spaces for the scalar

function and the vector-valued function on the partition Th. In the MWG method, the weak

function of scalar function q has the form q = {q, {q}}, and can be denoted by q without

generating any confusions. The corresponding weak function space is

Wh = {q ∈ L2(Ω) : q|T ∈ Pk−1(T ), ∀ T ∈ Th}.

Denote by W 0
h the subspace of Wh satisfying

W 0
h =

{
q ∈ Wh :

∫
Ω

qdx = 0
}
.

Following the Definition 2.1 in [8], we define the discrete weak gradient for the scalar function

q ∈ Wh as follows.

Definition 2.2 For any q ∈ Wh, denote the discrete weak gradient of q by ∇̃w,k,T q, which is

determined by

(∇̃w,kq, φ)T := −(q,∇ · φ)T + ⟨{q}, φ · n⟩∂T , ∀ φ ∈ [Pk(T )]
d, ∀T ∈ Th,
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where n denotes the unit outward normal on ∂T , [Pk(T )]
d is the set of vector-valued polynomials

with degree no more than k on T .

Similarly, the weak function of the velocity function v is v = {v , {v}} denoted also by v

without any confusions. We define the weak function space by

Vh = {v ∈ [L2(Ω)]d : v |T ∈ [Pk(T )]
d, ∀ T ∈ Th},

and the subspace of Vh by V 0
h , which is

V 0
h = {v ∈ Vh : v |∂Ω = 0}.

Based on the Definition 2.1 in the paper [8], the discrete weak gradient for the vector-valued

function v ∈ Vh is defined as follows.

Definition 2.3 For any v ∈ Vh, denote the discrete weak gradient of v by ∇w,k−1v, which is

determined by

(∇w,k−1,Tv , τ)T := −(v ,∇ · τ)T + ⟨{v}, τ · n⟩∂T , ∀τ ∈ [Pk−1(T )]
d×d, ∀T ∈ Th.

For simplicity, we will drop the subscripts k − 1, k and T in the following, and use ∇̃w and

∇w to denote ∇̃w,k,T and ∇w,k−1,T , respectively.

For any v ,w ∈ Vh and p, q ∈ Wh, we define

(∇wv ,∇ww) =
∑
T∈Th

(∇wv ,∇ww)T ,

and

(v , ∇̃wq) =
∑
T∈Th

(v , ∇̃wq)T .

Then, four bilinear forms are defined as follows

s1(v ,w) =
∑
e∈Eh

h−1⟨[v ], [w ]⟩e,

a(v ,w) = (∇wv ,∇ww) + (κ−1v ,w) + s1(v ,w),

b(v , q) = (v , ∇̃wq),

s2(q, r) =
∑
e∈Eh

h⟨[[p]], [[r]]⟩e.

For convenience, we finally define the norms for any v ∈ V 0
h and q ∈ W 0

h , and the semi-norm for

q ∈ W 0
h as follows

|||v |||2 = a(v , v) = ∥κ− 1
2 v∥2 + ∥∇wv∥2 +

∑
e∈Eh

h−1∥[v ]∥2e,

|||q|||21 = ∥κ 1
2 ∇̃wq∥2 +

∑
e∈Eh

h−1∥[[q]]∥2e,

∥q∥2h = s2(q, q) =
∑
e∈Eh

h∥[[q]]∥2e.

It is easy to verify that the definitions of the norms and the semi-norm above are reasonable.
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For simplicity of analysis, we assume that the permeability parameter κ is a piecewise constant

on each element T ∈ Th in the following sections, that is, κ is a piecewise constant on Ω. The

results can be easily extended to the case of piecewise smooth parameter κ.

3. Modified weak Galerkin finite element method

In this section, we introduce modified weak Galerkin finite element algorithms to solve the

problems (1.1)–(1.3) and demonstrate the existence and uniqueness of the solution.

Algorithm 1. Find (uh; qh) ∈ V 0
h ×W 0

h , such that

a(uh, v) + b(v , ph) = (f , v), (3.1)

b(uh, q)− s2(ph, q) = 0, (3.2)

for any (v ; q) ∈ V 0
h ×W 0

h .

Theorem 3.1 The schemes (3.1) and (3.2) have a unique solution.

Proof Because (3.1) and (3.2) is a linear system, we just need to verify the uniqueness of the

homogeneous problems, that is, prove that uh = 0 and ph = 0 when f = 0 and g = 0 .

Taking v = uh and q = ph in (3.1), (3.2) and subtracting (3.2) from (3.1), with f = 0 and

g = 0 , we obtain

a(uh,uh) + s2(ph, ph) = 0.

Note that both a(uh,uh) and s2(ph, ph) are non-negative, then from the definitions of ||| · ||| and
∥ · ∥h, we have

|||uh|||2 + ∥ph∥2h = 0,

which implies that |||uh||| = 0 and ∥ph∥h = 0. Combining with the boundary conditions, we

obtain uh = 0 and [[ph]] = 0. To show ph = 0, we use the fact that uh = 0 and f = 0 , and

obtain b(v , ph) = 0 for any v ∈ V 0
h . From the definitions of b(·, ·), ∇̃w and [[ph]], and Lemma 2.1,

we derive that

0 = b(v , ph) = (v , ∇̃wph) =
∑
T∈Th

−(ph,∇ · v)T +
∑
T∈Th

⟨{ph}, v · n⟩∂T

=
∑
T∈Th

(∇ph, v)T −
∑
T∈Th

⟨ph, v · n⟩∂T +
∑
T∈Th

⟨{ph}, v · n⟩∂T

=
∑
T∈Th

(∇ph, v)T −
∑
e∈E0

h

⟨{v}, [[ph]]⟩e =
∑
T∈Th

(∇ph, v)T .

It follows that ∇ph = 0 for all T ∈ Th. ph is continuous and ph ∈ Wh ⊂ L2
0(Ω), thus ph = 0,

which completes the proof. �

4. Error equation

In this section, we establish and prove the error equations for the MWG finite element

schemes.
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4.1. Projection operator

First, we define several projection operators. For the vector-valued function u , the two L2

projection operators are denoted by

Qhu = {Q0u , Qbu}, Q̂hu = {Q̂0u , Q̂bu},

where Q0 denotes the L2 projection from [L2(T )]
d onto [Pk(T )]

d on each element T ∈ Th and Qb

denotes the L2 projection from [L2(e)]
d onto [Pk(e)]

d on each edge/face e ∈ Eh. We have the fact

that Q̂0u = Q0u on each element T , Q̂bu = {Q0u} on each interior edge e ∈ E0
h, Q̂bu = Qbg

on the outer boundaries e ∈ ∂Ω.

Similarly, for the scalar function p, define

Qhp = {Q0p,Qbp}, Q̂hp = {Q̂0p, Q̂bp},

where Q0 denotes the L2 projection from L2(T ) onto Pk−1(T ) on each element T ∈ Th and Qb

denotes L2 projection from L2(e) onto Pk−1(e) on each edge/face e ∈ Eh. We have the fact that

Q̂0p = Q0p on each element T and Q̂bp = {Q0p} on each edge e ∈ Eh.

In addition, we define Qh the matrix local L2 projection operator from [L2(T )]d×d onto

polynomials space [Pk−1(T )]
d×d.

It is easy to verify that above projection operators have the following features.

Lemma 4.1 ([8]) For any v ∈ H(div,Ω), q ∈ H1(Ω), and w ∈ [Pk(T )]
d, we have

∇w(Qhv) = Qh(∇v), (4.1)

(∇̃w(Qhq),w) = (Qh(∇q),w)−
∑
T∈Th

⟨q −Qbq,w · n⟩∂T . (4.2)

4.2. Error equation

Let eh = Q̂hu −uh and ϵh = Q̂hp−ph denote the errors between the projection of the exact

solution and the MWG numerical solution for the velocity and the pressure function, respectively.

we establish the following error equations.

Theorem 4.2 Let (uh; ph) ∈ V 0
h × W 0

h be the numerical solution of the variational problems

(3.1), (3.2) and (u; p) ∈ [H1
0 (Ω)]

d × L2
0(Ω) be the exact solution of the Brinkman problems

(1.1)–(1.3). Then, we have

a(eh, v) + b(v, ϵh) = φu,p(v), (4.3)

b(eh, q)− s2(ϵh, q) = ϕu,p(q), (4.4)

for any (v, q) ∈ V 0
h ×W 0

h , where

φu,p(v) = l1(v ,u)− l2(v , p) + l3(v ,u) + l4(v , p) + s1(Q̂hu , v),

ϕu,p(q) = l5(u , q)− s2(Q̂hp, q),

l1(v ,u) =
∑
T∈Th

⟨v − {v}, (∇u −Qh(∇u)) · n⟩∂T ,
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l2(v , p) =
∑
T∈Th

⟨(v − {v}) · n , p−Qbp⟩∂T ,

l3(v ,u) =
∑
T∈Th

(∇w(Q̂hu −Qhu),∇wv)T ,

l4(v , p) =
∑
T∈Th

(v , ∇̃w(Q̂hp−Qhp))T ,

l5(u , q) =
∑
T∈Th

⟨q − {q}, (u −Qhu) · n⟩∂T .

Proof Using (4.1), the definition of ∇w, the integration by parts, the definition of projection

operator, and v |∂Ω = 0, we obtain∑
T∈Th

(∇w(Qhu),∇wv)T =
∑
T∈Th

(Qh(∇u),∇wv)T

=
∑
T∈Th

−(v ,∇ ·Qh(∇u))T +
∑
T∈Th

⟨{v},Qh(∇u) · n⟩∂T

=
∑
T∈Th

(∇v ,Qh(∇u))T −
∑
T∈Th

⟨v − {v},Qh(∇u) · n⟩∂T

=
∑
T∈Th

−(v ,∇ · (∇u))T +
∑
T∈Th

⟨v ,∇u · n⟩∂T−∑
T∈Th

⟨v − {v},Qh(∇u) · n⟩∂T

=
∑
T∈Th

−(∆u , v)T +
∑
T∈Th

⟨v − {v}, (∇u −Qh(∇u)) · n⟩∂T ,

which implies

(∇w(Qhu),∇wv) = −(∆u , v) + l1(v ,u). (4.5)

Additionally, using the property (4.2), the definition of Qh, and the fact v |∂Ω = 0, we arrive at∑
T∈Th

(v , ∇̃w(Qhp))T =
∑
T∈Th

(Qh(∇p), v)T −
∑
T∈Th

⟨p−Qbp, v · n⟩∂T

=
∑
T∈Th

(∇p, v)T −
∑
T∈Th

⟨p−Qbp, (v − {v}) · n⟩∂T .

That is

(v , ∇̃w(Qhp)) = (∇p, v)− l2(v , p). (4.6)

Furthermore, testing the equation (1.1) by v ∈ V 0
h , we have

−(∆u , v) + (∇p, v) + (κ−1u , v) = (f , v).

Substituting (4.5) and (4.6) to both sides of above equation, we obtain

(∇w(Qhu),∇wv)− l1(v ,u) + (v , ∇̃w(Qhp)) + l2(v , p) + (κ−1u , v) = (f , v). (4.7)

Adding (∇w(Q̂hu),∇wv), s1(Q̂hu , v), and (v , ∇̃w(Q̂hp)) to both sides of the equation (4.7)

yields

(∇w(Q̂hu),∇wv) + (κ−1u , v) + s1(Q̂hu , v) + (v , ∇̃w(Q̂hp))
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= l1(v ,u)− l2(v , p) +
∑
T∈Th

(∇w(Q̂hu −Qhu),∇wv)T+∑
T∈Th

(v , ∇̃w(Q̂hp−Qhp))T + (f , v) + s1(Q̂hu , v).

It follows from (κ−1u , v) = (u , κ−1v) = (Q̂hu , κ
−1v) = (κ−1Q̂hu , v) that

a(∇w(Q̂hu), v) + b(v , Q̂hp) = φu,p(v) + (f , v). (4.8)

Combining with (3.1), we obtain the equation (4.3).

In addition, from the definition of ∇̃w, integration by parts, the definition of projection

operator, and the fact u |∂Ω = 0, we arrive at∑
T∈Th

(Qhu , ∇̃wq)T =
∑
T∈Th

(−(q,∇ · (Qhu))T + ⟨{q}, Qhu · n⟩∂T )

=
∑
T∈Th

(∇q,Qhu)T −
∑
T∈Th

⟨q − {q}, Qhu · n⟩∂T

=
∑
T∈Th

−(q,∇ · u)T + ⟨q,u · n⟩∂T −
∑
T∈Th

⟨q − {q}, Qhu · n⟩∂T

=
∑
T∈Th

−(q,∇ · u)T +
∑
T∈Th

⟨q − {q}, (u −Qhu) · n⟩∂T ,

then

(Qhu , ∇̃wq)−
∑
T∈Th

⟨q − {q}, (u −Qhu) · n⟩∂T = −(∇ · u , q).

Similarity, testing the equation (1.2) by q ∈ Wh, we obtain (∇ · u , q) = 0, and

(Qhu , ∇̃wq) =
∑
T∈Th

⟨q − {q}, (u −Qhu) · n⟩∂T .

Adding (Q̂hu , ∇̃wq)− s2(Q̂hp, q) to both sides of the equation above, we have

(Q̂hu , ∇̃wq)− s2(Q̂hp, q) =
∑
T∈Th

(Q̂hu −Qhu , ∇̃wq)T +
∑
T∈Th

⟨q − {q}, (u −Qhu) · n⟩∂T−

s2(Q̂hp, q).

We observe that Q̂h = Qh in the interior of T , it follows that

b(Q̂hu , q)− s2(Q̂hp, q) = l5(u , q)− s2(Q̂hp, q).

Combining with (3.2) makes the proof of this theorem completed. �

5. Error estimates

The error equations for the vector-valued function u and scalar function p are established in

the previous section. In this section, we show the detail analysis of the error estimates in H1

and L2 norms for the function u and H1 norm for the function p, respectively. The optimal

convergence orders of the MWG finite element method are derived in several theorems.

5.1. Preparation for estimating



The modified weak Galerkin finite element method for solving Brinkman equations 667

Before the error estimation, we first verify the following inf-sup condition.

Lemma 5.1 For any q ∈ Wh ⊂ L2
0(Ω), there exist two constants C1 and C2 inde-pendent of the

mesh size h such that

sup
v∈Vh

|b(v , q)|
|||v |||

≥ C1h|||q|||1 − C2∥q∥h. (5.1)

Proof For any v ∈ V 0
h , it follows from the definition of ∇wv , the integration by parts, the

Cauchy-Schwarz inequality, the triangle inequality, the trace inequality, the inverse inequality,

and the Young inequality that

∥∇wv∥2 =
∑
T∈Th

(∇wv ,∇wv)T =
∑
T∈Th

((∇v ,∇wv)T − ⟨v − {v},∇wv · n⟩∂T )

=
∑
T∈Th

((∇v ,∇v)T − ⟨v − {v}, (∇wv +∇v) · n⟩∂T )

≤
∑
T∈Th

(∥∇v∥2T + |⟨v − {v}, (∇wv +∇v) · n⟩∂T |)

≤
∑
T∈Th

(∥∇v∥2T + ∥v − {v}∥∂T ∥∇wv +∇v∥∂T )

≤
∑
T∈Th

(∥∇v∥2T + ∥v∥∂T ∥∇wv +∇v∥∂T )

≤
∑
T∈Th

(∥∇v∥2T + ∥v∥∂T (∥∇wv∥∂T + ∥∇v∥∂T ))

≤
∑
T∈Th

(∥∇v∥2T + h−1∥v∥T (∥∇wv∥T + ∥∇v∥T ))

≤ Ch−2∥v∥2 + 1

2
∥∇wv∥2.

Replacing above equation by taking v = κ∇̃wq ∈ V 0
h , we have

∥∇wv∥2 ≤ Ch−2∥v∥2 = Ch−2∥κ∇̃wq∥2 ≤ Ch−2∥κ 1
2 ∇̃wq∥2 ≤ Ch−2|||q|||21. (5.2)

For the same v , we obtain

∥κ− 1
2 v∥2 = ∥κ 1

2 ∇̃wq∥2 ≤ C|||q|||21. (5.3)

From the definition of [v ], the triangle inequality, the trace inequality, and the inverse inequality,

we have ∑
e∈Eh

h−1∥[v ]∥2e =
∑
e∈Eh

h−1∥v |T1 ⊗ n1 + v |T2 ⊗ n2∥2e

≤ C
∑
e∈Eh

h−1∥v∥2e ≤ Ch−2∥v∥2 ≤ Ch−2|||q|||21. (5.4)

Combining (5.2)–(5.4) yields

|||v ||| ≤ Ch−1|||q|||1. (5.5)

In addition, using the definition of b(v , q), |||q|||1, and ∥q∥h with above function v , we get

b(v , q) = (v , ∇̃wq) = ∥κ 1
2 ∇̃wq∥2 = |||q|||21 −

∑
e∈Eh

h−1∥[[q]]∥2e ≥ |||q|||21 − Ch−1∥q∥h|||q|||1.
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Therefore, we have

sup
v∈Vh

|b(v , q)|
|||v |||

≥ |||q|||21 − Ch−1∥q∥h|||q|||1
Ch−1|||q|||1

≥ C1h|||q|||1 − C2∥q∥h.

Thus, we complete the proof of the inf-sup condition. �

Theorem 5.2 Let (u; p) ∈ [H2(Ω) ∩ Hk+1(Ω)]d × L2
0(Ω) ∩Hk(Ω) with k ≥ 1 be the solution

of the Brinkman problems (1.1)–(1.3). Then for any (v; q) ∈ V 0
h × W 0

h , there is a constant C

independent of h such that

|φu,p(v)| ≤ Chk(∥u∥k+1 + ∥p∥k)|||v |||, (5.6)

|ϕu,p(q)| ≤ Chk(∥u∥k+1 + ∥p∥k)∥q∥h. (5.7)

Proof It follows from the triangle inequality that

|φu,p(v)| ≤ |l1(v ,u)|+ |l2(v , p)|+ |l3(v ,u)|+ |l4(v , p)|+ |s1(Q̂hu , v)|,

|ϕu,p(q)| ≤ |l5(u , q)|+ |s2(Q̂hp, q)|.

The terms on the right-hand side of the above inequalities are estimated one by one. Using the

equation (2.2), the Cauchy-Schwarz inequality, the definition of ||| · |||, the trace inequality, and

the projection inequality, we have

|l1(v ,u)| =
∣∣∣ ∑
T∈Th

⟨v − {v}, (∇u −Qh(∇u)) · n⟩∂T
∣∣∣

=
∣∣∣ ∑
e∈Eh

⟨[v ], {∇u −Qh(∇u)}⟩e
∣∣∣

≤ C
( ∑

e∈Eh

h−1∥[v ]∥2e
) 1

2
( ∑

T∈Th

h∥∇u −Qh(∇u)∥2∂T
) 1

2

≤ C|||v |||
( ∑

T∈Th

∥∇u −Qh(∇u)∥2T + h2∥∇(∇u −Qh(∇u))∥2T
) 1

2

≤ Chk∥u∥k+1|||v |||.

Similarly, we have

|l2(v , p)| ≤ Chk∥p∥k|||v |||.

Applying the definition of ∇w and Q̂h, adding and subtracting u to the right-hand side of the

equation above yields

|l3(v ,u)| =
∣∣∣ ∑
T∈Th

(∇w(Q̂hu −Qhu),∇wv)T

∣∣∣ = ∣∣∣ ∑
T∈Th

⟨{Q0u} −Qbu ,∇wv · n⟩∂T
∣∣∣

=
∣∣∣ ∑
T∈Th

⟨{Q0u − u}+ u −Qbu ,∇wv · n⟩∂T
∣∣∣

≤ C
( ∑

T∈Th

h−1(∥{Q0u − u}∥2∂T + ∥u −Qbu∥2∂T )
) 1

2
( ∑

T∈Th

h∥∇wv∥2∂T )
) 1

2

≤ Chk∥u∥k+1|||v |||.
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According to the definition of ∇̃w, Q̂h, and [[·]], we have

|l4(v , p)| =
∣∣∣ ∑
T∈Th

(v , ∇̃w(Q̂hp−Qhp))T

∣∣∣ = ∣∣∣ ∑
T∈Th

⟨v · n , {Q0p} −Qbp⟩∂T
∣∣∣

=
∣∣∣ ∑
e∈Eh

⟨[[v ]], {Q0p− p}+ p−Qbp⟩e
∣∣∣ ≤ ∣∣∣ ∑

e∈Eh

⟨[v ], {Q0p− p}+ p−Qbp⟩e
∣∣∣

≤ C
( ∑

e∈Eh

h−1∥[v ]∥2e
) 1

2
( ∑

T∈Th

h(∥{Q0p− p}∥2∂T + ∥p−Qbp∥2∂T )
) 1

2

≤ Chk∥p∥k|||v |||.

From the definition of s1(·, ·) and u ∈ [H1
0 (Ω)]

d, we obtain

|s1(Q̂hu , v)| =
∣∣∣ ∑
e∈E0

h

h−1⟨[Q0u ], [v ]⟩e
∣∣∣ = ∣∣∣ ∑

e∈E0
h

h−1⟨[Q0u − u ], [v ]⟩e
∣∣∣

≤ C
( ∑

e∈E0
h

h−1∥[v ]∥2e
) 1

2
( ∑

T∈Th

h−1∥[Q0u − u ]∥2∂T
) 1

2

≤ Chk∥u∥k+1|||v |||.

Summing all the above inequalities, we get (5.6).

In addition, it follows from the property (2.1) and the definition of Q̂h that

|l5(u , q)| =
∣∣∣ ∑
T∈Th

⟨q − {q}, (u −Qhu) · n⟩∂T
∣∣∣

=
∣∣∣ ∑
e∈E0

h

⟨[[q]], {u −Qhu}⟩e
∣∣∣

≤ C
( ∑

e∈E0
h

h∥[[q]]∥2e
) 1

2
( ∑

T∈Th

h−1∥{u −Qhu}∥2∂T
) 1

2

≤ Chk∥u∥k+1∥q∥h.

Using the definition of s2(·, ·), p ∈ L2
0(Ω), and ∥ · ∥h, we get

|s2(Q̂hp, q)| =
∣∣∣ ∑
e∈E0

h

h⟨[[Q̂hp]], [[q]]⟩e
∣∣∣ = ∣∣∣ ∑

e∈E0
h

h⟨[[Q̂hp− p]], [[q]]⟩e
∣∣∣

≤ C
( ∑

e∈E0
h

h∥[[q]]∥2e
) 1

2
( ∑

T∈Th

h∥[[Qhp− p]]∥2∂T
) 1

2

≤ Chk∥p∥k∥q∥h.

Thus, we obtain (5.7) and complete the proof. �

5.2. Error estimate in H1 and L2 norms

We give the error estimates between the numerical solution and the projection of the exact

solution in H1 and L2 norms, respectively.

Theorem 5.3 Assume (uh; ph) ∈ V 0
h ×Wh and (u; p) ∈ [H1

0 (Ω)]
d∩ [Hk+1(Ω)]d×L2

0(Ω)∩Hk(Ω)
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with k ≥ 1 are the solutions of the MWG schemes (3.1), (3.2) and the Brinkman problems

(1.1)–(1.3), respectively. Then, there exists a constant C independent of h, such that

|||eh|||+ ∥ϵh∥h ≤ Chk(∥u∥k+1 + ∥p∥k), (5.8)

|||ϵh|||1 ≤ Chk−1(∥u∥k+1 + ∥p∥k). (5.9)

Proof Let v = eh and q = ϵh in (4.3) and (4.4), respectively. From the definition of ||| · ||| and
∥ · ∥h, we have

|||eh|||2 + ∥ϵh∥2h = φu,p(eh)− ϕu,p(ϵh).

It follows from the estimations (5.6) and (5.7) that

|φu,p(eh)| ≤ Chk(∥u∥k+1 + ∥p∥k)|||eh|||,

|ϕu,p(ϵh)| ≤ Chk(∥u∥k+1 + ∥p∥k)∥ϵh∥h.

Thus

|||eh|||2 + ∥ϵh∥2h ≤ Chk(∥u∥k+1 + ∥p∥k)(|||eh|||+ ∥ϵh∥h).

Furthermore, we obtain (5.8).

In addition, using (4.3), we have

b(v , ϵh) = −a(eh, v) + φu,p(v).

From the boundedness of a(·, ·) and the estimation (5.6), we obtain

|b(v , ϵh)| ≤|||eh||||||v |||+ Chk(∥u∥k+1 + ∥p∥k)|||v ||| (5.10)

≤(|||eh|||+ Chk(∥u∥k+1 + ∥p∥k))|||v |||. (5.11)

Using the inf-sup condition (5.1), we have

|b(v , ϵh)| ≥ |||v |||(C1h|||ϵh|||1 − C2∥ϵh∥h).

Thus

h|||ϵh|||1 ≤ C(|||eh|||+ ∥ϵh∥h) + Chk(∥u∥k+1 + ∥p∥k).

Finally, we obtain (5.9) from (5.8). The proof is completed. �
In order to get the L2 estimation for velocity function u , we consider the following dual

problems. Find (Ψ; ξ) ∈ [H2(Ω)]d ×H1(Ω) satisfying

−∆Ψ+ κ−1Ψ+∇ξ = e0, in Ω, (5.12)

∇ ·Ψ = 0, in Ω, (5.13)

Ψ = 0 , on ∂Ω. (5.14)

Furthermore, we assume the solution of the equations above satisfy the regularity condition

∥Ψ∥2 + ∥ξ∥1 ≤ C∥e0∥.

Theorem 5.4 Let (u; p) ∈ [H2
0 (Ω)]

d ∩ [Hk+1(Ω)]d × L2
0(Ω) ∩ Hk(Ω) with k ≥ 1 be the exact

solutions of the Brinkman problems (1.1)–(1.3), and (uh; ph) ∈ V 0
h × W 0

h be the numerical
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solutions of the MWG schemes (3.1) and (3.2). Then there exists a constant C independent of

h, such that

∥e0∥ ≤ Chk+1(∥u∥k+1 + ∥p∥k). (5.15)

Proof Taking v = Q̂hΨ and q = Q̂hξ in (4.3) and (4.4), respectively, yields

a(eh, Q̂hΨ) + b(Q̂hΨ, ϵh) = φu,p(Q̂hΨ), (5.16)

b(eh, Q̂hξ)− s2(ϵh, Q̂hξ) = ϕu,p(Q̂hξ). (5.17)

Let Ψh, ξh be the numerical solution of the dual problems (5.12)–(5.14) in the MWG finite

element scheme. Replacing (uh, ph) by (Ψh, ξh) in (3.1), (3.2) and taking v = eh, f = e0, and

q = ϵh, we obtain

a(Ψh, eh) + b(eh, ξh) = ∥e0∥2, (5.18)

b(Ψh, ϵh)− s2(ξh, ϵh) = 0. (5.19)

Noticing that Q̂hΨ−Ψ and Q̂hξ − ξ satisfy (4.3), (4.4), (5.18) and (5.19), respectively, we get

a(Q̂hΨ, eh) + b(eh, Q̂hξ) = a(Q̂hΨ−Ψh, eh) + b(eh, Q̂hξ − ξh) + ∥e0∥2

= φΨ,ξ(eh) + ∥e0∥2, (5.20)

b(Q̂hΨ, ϵh)− s2(Q̂hξ, ϵh) = b(Q̂hΨ−Ψh, ϵh)− s2(Q̂hξ − ξh, ϵh)

= ϕΨ,ξ(ϵh). (5.21)

Combining equations (5.16), (5.17), (5.20) and (5.21) yields

∥e0∥2 = φu,p(Q̂hΨ) + ϕu,p(Q̂hξ)− φΨ,ξ(eh)− ϕΨ,ξ(ϵh). (5.22)

From the estimation of H1 and k = 1, we obtain

|φΨ,ξ(eh)| ≤ Chk(∥Ψ∥k+1 + ∥ξ∥k)|||eh||| ≤ Ch(∥Ψ∥2 + ∥ξ∥1)|||eh|||, (5.23)

|ϕΨ,ξ(ϵh)| ≤ Ch(∥Ψ∥2 + ∥ξ∥1)∥ϵh∥h. (5.24)

In addition, using the definition of φu,p and the triangle inequality, we arrive at

|φu,p(Q̂hΨ)| ≤|l1(Q̂hΨ,u)|+ |l2(Q̂hΨ, p)|+ |l3(Q̂hΨ,u)|+

|l4(Q̂hΨ, p)|+ |s1(Q̂hu , Q̂hΨ)|.

From the definition of l1, the Cauchy-Schwarz inequality, the triangle inequality, the trace in-

equality, and the projection inequality with k = 1, we obtain

|l1(Q̂hΨ,u)| =
∣∣∣ ∑
T∈Th

⟨Q̂hΨ− {Q̂hΨ}, (∇u −Qh(∇u)) · n⟩∂T
∣∣∣

=
∣∣∣ ∑
T∈Th

⟨Q̂hΨ−Ψ+ {Ψ− Q̂hΨ}, {∇u −Qh(∇u)}⟩∂T
∣∣∣

≤C
( ∑

T∈Th

h−1(∥Q̂hΨ−Ψ∥2∂T + ∥{Ψ− Q̂hΨ}∥2∂T )
) 1

2 ·
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T∈Th

h∥∇u −Qh(∇u)∥2∂T
) 1

2

≤Chk∥u∥k+1h
k∥Ψ∥k+1 ≤ Chk+1∥u∥k+1∥Ψ∥2.

Similarly, we have

|l2(Q̂hΨ, p)| =
∣∣∣ ∑
T∈Th

⟨(Q̂hΨ− {Q̂hΨ}) · n , p−Qbp⟩∂T
∣∣∣

≤ Chk∥p∥khk∥Ψ∥k+1 ≤ Chk+1∥p∥k∥Ψ∥2,

and

|l3(Q̂hΨ,u)| =
∣∣∣ ∑
T∈Th

(∇w(Q̂hu −Qhu),∇wQ̂hΨ)T

∣∣∣.
Replacing u and p by Q̂hΨ and ξ in the equation (4.7), respectively, and taking v = Q̂hu −Qhu

and f = e0, we obtain∑
T∈Th

(∇w(Q̂hu −Qhu),∇wQ̂hΨ)T = (∇w(Q̂hu −Qhu),∇wQ̂hΨ)

= l1(Q̂hu −Qhu , Q̂hΨ)− (Q̂hu −Qhu , ∇̃w(Qhξ))− l2(Q̂hu −Qhu , ξ)−

(κ−1Q̂hΨ, Q̂hu −Qhu) + (e0, Q̂hu −Qhu).

Noticing that Q̂hu = Qhu for any element T , hence∑
T∈Th

(∇w(Q̂hu −Qhu),∇wQ̂hΨ)T = l1(Q̂hu −Qhu , Q̂hΨ)− l2(Q̂hu −Qhu , ξ).

Similar to the H1 estimation, we obtain

|l1(Q̂hu −Qhu , Q̂hΨ)| =
∣∣∣ ∑
T∈Th

⟨{Qbu} −Qbu , (∇(Q̂hΨ)−Qh(∇Q̂hΨ)) · n⟩∂T
∣∣∣

≤ Chk∥u∥k+1h
k∥Q̂hΨ∥k+1 ≤ Chk∥u∥k+1h

k∥Ψ∥k+1

≤ Chk+1∥u∥k+1∥Ψ∥2,

|l2(Q̂hu −Qhu , ξ)| =
∣∣∣ ∑
T∈Th

⟨({Qbu} −Qbu) · n , ξ −Qbξ⟩∂T
∣∣∣

≤ Chk∥ξ∥khk∥u∥k+1 ≤ Chk+1∥ξ∥1∥u∥k+1,

and

|l3(Q̂hΨ,u)| ≤ Chk+1∥u∥k+1(∥ξ∥1 + ∥Ψ∥2).

From the definition of l4, ∇̃w, and Q̂h, Φ|∂Ω = 0, the Cauchy-Schwarz inequality, the triangle

inequality, the trace inequality, and the projection inequality with k = 1, we obtain

|l4(Q̂hΨ, p)| =
∣∣∣ ∑
T∈Th

(Q̂hΨ, ∇̃w(Q̂hp−Qhp))T

∣∣∣
=
∣∣∣ ∑
T∈Th

⟨{Q0Ψ} · n , {Q0p} −Qbp⟩∂T
∣∣∣

=
∣∣∣ ∑
e∈Eh

⟨{Q0Ψ−Ψ} · n , {Q0p− p}+ p−Qbp⟩∂T
∣∣∣
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≤ Chk∥p∥khk∥Ψ∥k+1 ≤ Chk+1∥p∥k∥Ψ∥2.

Similarly, from the definition of s1(·, ·) and the fact of u ,Ψ ∈ [H1
0 (Ω)]

d, we arrive at

|s1(Q̂hu , Q̂hΨ)| =
∣∣∣ ∑
e∈Eh

h−1⟨[Q̂0u ], [Q̂0Ψ]⟩e
∣∣∣

=
∣∣∣ ∑
e∈Eh

h−1⟨[Q̂0u − u ], [Q̂0Ψ−Ψ]⟩e
∣∣∣

≤ C
( ∑

e∈Eh

h−1∥[Q̂0u − u ]∥2e
) 1

2
( ∑

e∈Eh

h−1∥[Q0Ψ−Ψ]∥2e
) 1

2

≤ Chk+1∥u∥k+1∥Ψ∥2.

Combining all the equations above, we have

|φu,p(Q̂hΨ)| ≤ Chk+1∥u∥k+1(∥ξ∥1 + ∥Ψ∥2). (5.25)

Similarly, using the definition of ϕu,p, we obtain

|ϕu,p(Q̂hξ)| ≤ |l5(u , Q̂hξ)|+ |s2(Q̂hp, Q̂hξ)|.

Applying the definition of Q̂h, the Cauchy-Schwarz inequality, the trace inequality, and the

projection inequality with k = 1 yields

|l5(u , Q̂hξ)| =
∣∣∣ ∑
T∈Th

⟨Q0ξ − {Q0ξ}, (u −Qbu) · n⟩∂T
∣∣∣

=
∣∣∣ ∑
T∈Th

⟨Q0ξ − ξ + {ξ −Q0ξ}, (u −Qbu) · n⟩∂T
∣∣∣

≤ Chk∥u∥k+1h
k∥ξ∥k ≤ Chk+1∥u∥k+1∥ξ∥1.

It follows from the definition of Q̂h, p ∈ L2
0(Ω), and ξ ∈ H1(Ω) that

|s2(Q̂hp, Q̂hξ)| =
∣∣∣ ∑
e∈E0

h

h⟨[[Qbp]], [[Q0ξ]]⟩e
∣∣∣ = ∣∣∣ ∑

e∈E0
h

h⟨[[Qbp− p]], [[Q0ξ − ξ]]⟩e
∣∣∣

≤ C
( ∑

e∈E0
h

h∥[[Qbp− p]]∥2e
) 1

2
( ∑

e∈E0
h

h∥[[Q0ξ − ξ]]∥2e
) 1

2

≤ Chk∥p∥khk∥ξ∥k ≤ Chk+1∥p∥k∥ξ∥1.

Thus, we obtain

|ϕu,p(Q̂hξ)| ≤ Chk+1(∥u∥k+1 + ∥p∥k)∥ξ∥1. (5.26)

Combining (5.22)–(5.26), applying (5.8) and the assumption of regularity, we have

∥e0∥2 ≤ Ch(∥Ψ∥2 + ∥ξ∥1)(|||eh|||+ ∥ϵh∥h) + Chk+1(∥u∥k+1 + ∥p∥k)(∥Ψ∥2 + ∥ξ∥1)

≤ Chk+1(∥u∥k+1 + ∥p∥k)∥e0∥.

Eliminating the same terms, we get (5.15). This completes the proof of the theorem. �

6. Numerical results
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In this section, we present the numerical experiments to verify the convergence and the

stability of the modified weak Galerkin finite element method established in Section 3.

Example 6.1 In this example, the MWG finite element space is Vh = {v |T∈ [L2(Ω)]2 : v ∈
[P1(T )]

2} and Wh = {q ∈ L2
0(Ω) : q |T∈ P0(T )}. Let Ω = (0, 1)× (0, 1). h denotes the mesh size

of the triangulation partition on Ω. We further assume that the parameter κ−1 = 1. The exact

solution is as follows

u =

(
sin(2πx) cos(2πy)

− cos(2πx) sin(2πy)

)
and p = x2y2 − 1

9
.

The forcing term f is easily computed to match the exact solution u and p. Tables 1 and 2 show

the errors and the convergence rates with respect to h, when µ = 1 and µ = 0.01, respectively.

h |||eh||| order ∥e0∥ order ∥ϵh∥ order

1/16 7.2143e-01 1.9953e-02 6.2139e-02

1/24 4.6733e-01 1.0709 8.8897e-03 1.9939 3.2807e-02 1.5753

1/32 3.4451e-01 1.0599 4.9881e-03 2.0085 2.0468e-02 1.6398

1/48 2.2530e-01 1.0474 2.2039e-03 2.0145 1.0520e-02 1.6416

1/56 1.9199e-01 1.0381 1.6152e-03 2.0160 8.2092e-03 1.6091

1/64 1.6723e-01 1.0338 1.2340e-03 2.0158 6.6483e-03 1.5793

Table 1 Numerical errors and orders for Example 6.1 when µ = 1

h |||eh||| order ∥e0∥ order ∥ϵh∥ order

1/16 3.38285e-01 1.2752e-01 4.4309e-02

1/24 1.8749e-01 1.4552 5.9225e-02 1.8915 2.9384e-02 1.0130

1/32 1.2370e-01 1.4456 3.3711e-02 1.9589 2.1769e-02 1.0428

1/48 6.9405e-02 1.4253 1.5036e-02 1.9912 1.4221e-02 1.0500

1/56 5.5898e-02 1.4040 1.1040e-02 2.0042 1.2099e-02 1.0483

1/64 4.6421e-02 1.3913 8.4437e-03 2.0075 1.0522e-02 1.0457

Table 2 Numerical errors and orders for Example 6.1 when µ = 0.01

Tables 1 and 2 show that the errors and the convergence rates for the velocity function u are

of orderO(h) and O(h2) in ||| · ||| norm and L2 norm, respectively. The errors and the convergence

rates for the pressure function p are of order O(h) in L2 norm for µ = 1 and µ = 0.01. Therefore,

we obtain the optimal orders of convergence for the velocity function and the pressure function

in variational norms, which coincide with the theoretical analysis.

Example 6.2 This Example is based on Example 6.1 by taking κ−1 = 104(sin(2πx) + 1.1),

Tables 3 and 4 show the errors and the convergence rates with respect to h, when µ = 1 and

µ = 0.01, respectively.

We observe from Tables 3 and 4 that the convergence rates for the velocity function are of

order O(h) and O(h2) in ||| · ||| norm and L2 norm, and for the pressure function are of order O(h)

in L2 norm, which agrees well with the theoretical conclusions.
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The two examples indicate that the modified weak Galerkin finite element method is stable,

consistent and convergent, whenever the parameter κ is a constant or a function.

h |||eh||| order ∥e0| order ∥ϵh∥ order

1/32 3.1367e-01 2.7631e-03 1.3452e-01

1/48 2.1498e-01 0.9318 1.2953e-03 1.8685 1.0532e-01 0.6036

1/64 1.6271e-01 0.9683 7.5004e-04 1.8992 8.3841e-02 0.7929

1/80 1.3059e-01 0.9858 4.8886e-04 1.9183 6.7899e-02 0.9451

1/96 1.0893e-01 0.9947 3.4383e-04 1.9302 5.5826e-02 1.0739

1/120 8.7137e-02 1.0002 2.2298e-03 1.9408 4.2616e-02 1.2100

Table 3 Numerical errors and orders for Example 6.2 when µ = 1

h |||eh||| order ∥e0∥ order ∥ϵh∥ order

1/32 1.2234e-01 2.4090e-03 2.4689e-02

1/48 6.8911e-02 1.4157 1.0314e-03 2.0920 1.5144e-02 1.2053

1/64 4.6184e-02 1.3910 5.6993e-04 2.0619 1.0921e-02 1.1363

1/80 3.4031e-02 1.3685 3.6119e-04 2.0440 8.5467e-03 1.0988

1/96 2.6614e-02 1.3483 2.4933e-04 2.0328 7.0237e-03 1.0764

1/120 1.9796e-02 1.3263 1.5871e-04 2.0241 5.5452e-03 1.0592

Table 4 Numerical errors and orders for Example 6.2 when µ = 0.01
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